Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2021

Open Access 01-12-2021 | Pulmonary Hypertension | Letter to the Editor

Myeloproliferative neoplasm-driving Calr frameshift promotes the development of pulmonary hypertension in mice

Authors: Keiji Minakawa, Tetsuro Yokokawa, Koki Ueda, Osamu Nakajima, Tomofumi Misaka, Yusuke Kimishima, Kento Wada, Yusuke Tomita, Saori Miura, Yuka Sato, Kosaku Mimura, Koichi Sugimoto, Kazuhiko Nakazato, Kenneth E. Nollet, Kazuei Ogawa, Takayuki Ikezoe, Yuko Hashimoto, Yasuchika Takeishi, Kazuhiko Ikeda

Published in: Journal of Hematology & Oncology | Issue 1/2021

Login to get access

Abstract

Frameshifts in the Calreticulin (CALR) exon 9 provide a recurrent driver mutation of essential thrombocythemia (ET) and primary myelofibrosis among myeloproliferative neoplasms (MPNs). Here, we generated knock-in mice with murine Calr exon 9 mimicking the human CALR mutations, using the CRISPR-Cas9 method. Knock-in mice with del10 [Calrdel10/WT (wild−type) mice] exhibited an ET phenotype with increases of peripheral blood (PB) platelets and leukocytes, and accumulation of megakaryocytes in bone marrow (BM), while those with ins2 (Calrins2/WT mice) showed a slight splenic enlargement. Phosphorylated STAT3 (pSTAT3) was upregulated in BM cells of both knock-in mice. In BM transplantation (BMT) recipients from Calrdel10/WT mice, although PB cell counts were not different from those in BMT recipients from CalrWT/WT mice, Calrdel10/WT BM-derived macrophages exhibited elevations of pSTAT3 and Endothelin-1 levels. Strikingly, BMT recipients from Calrdel10/WT mice developed more severe pulmonary hypertension (PH)—which often arises as a comorbidity in patients with MPNs—than BMT recipients from CalrWT/WT mice, with pulmonary arterial remodeling accompanied by an accumulation of donor-derived macrophages in response to chronic hypoxia. In conclusion, our murine model with the frameshifted murine Calr presented an ET phenotype analogous to human MPNs in molecular mechanisms and cardiovascular complications such as PH.
Appendix
Available only for authorised users
Literature
1.
go back to reference Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369:2379–90.CrossRef Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369:2379–90.CrossRef
2.
go back to reference Rabinovitch M, Guignabert C, Humbert M, Nicolls MR. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res. 2014;115:165–75.CrossRef Rabinovitch M, Guignabert C, Humbert M, Nicolls MR. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res. 2014;115:165–75.CrossRef
3.
go back to reference Asosingh K, Farha S, Lichtin A, Graham B, George D, Aldred M, et al. Pulmonary vascular disease in mice xenografted with human BM progenitors from patients with pulmonary arterial hypertension. Blood. 2012;120:1218–27.CrossRef Asosingh K, Farha S, Lichtin A, Graham B, George D, Aldred M, et al. Pulmonary vascular disease in mice xenografted with human BM progenitors from patients with pulmonary arterial hypertension. Blood. 2012;120:1218–27.CrossRef
4.
go back to reference Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2013;62:D34-41.CrossRef Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2013;62:D34-41.CrossRef
5.
go back to reference Adir Y, Elia D, Harari S. Pulmonary hypertension in patients with chronic myeloproliferative disorders. Eur Respir Rev. 2015;24:400–10.CrossRef Adir Y, Elia D, Harari S. Pulmonary hypertension in patients with chronic myeloproliferative disorders. Eur Respir Rev. 2015;24:400–10.CrossRef
6.
go back to reference Lee M-W, Ryu H, Choi Y-S, Song I-C, Lee H-J, Yun H-J, et al. Pulmonary hypertension in patients with Philadelphia-negative myeloproliferative neoplasms: a single-center retrospective analysis of 225 patients. Blood Res. 2020;55:77–84.CrossRef Lee M-W, Ryu H, Choi Y-S, Song I-C, Lee H-J, Yun H-J, et al. Pulmonary hypertension in patients with Philadelphia-negative myeloproliferative neoplasms: a single-center retrospective analysis of 225 patients. Blood Res. 2020;55:77–84.CrossRef
7.
go back to reference Gomez-Arroyo J, Saleem SJ, Mizuno S, Syed AA, Bogaard HJ, Abbate A, et al. A brief overview of mouse models of pulmonary arterial hypertension: problems and prospects. Am J Physiol Cell Mol Physiol. 2012;302:L977–91.CrossRef Gomez-Arroyo J, Saleem SJ, Mizuno S, Syed AA, Bogaard HJ, Abbate A, et al. A brief overview of mouse models of pulmonary arterial hypertension: problems and prospects. Am J Physiol Cell Mol Physiol. 2012;302:L977–91.CrossRef
8.
go back to reference Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2019;47:D941–7.CrossRef Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2019;47:D941–7.CrossRef
9.
go back to reference Shide K. The role of driver mutations in myeloproliferative neoplasms: insights from mouse models. Int J Hematol. 2020;111:206–16.CrossRef Shide K. The role of driver mutations in myeloproliferative neoplasms: insights from mouse models. Int J Hematol. 2020;111:206–16.CrossRef
10.
go back to reference Masubuchi N, Araki M, Yang Y, Hayashi E, Imai M, Edahiro Y, et al. Mutant calreticulin interacts with MPL in the secretion pathway for activation on the cell surface. Leukemia. 2020;34:499–509.CrossRef Masubuchi N, Araki M, Yang Y, Hayashi E, Imai M, Edahiro Y, et al. Mutant calreticulin interacts with MPL in the secretion pathway for activation on the cell surface. Leukemia. 2020;34:499–509.CrossRef
11.
go back to reference Ueda K, Ikeda K, Ikezoe T, Harada-Shirado K, Ogawa K, Hashimoto Y, et al. Hmga2 collaborates with JAK2V617F in the development of myeloproliferative neoplasms. Blood Adv. 2017;1:1001–15.CrossRef Ueda K, Ikeda K, Ikezoe T, Harada-Shirado K, Ogawa K, Hashimoto Y, et al. Hmga2 collaborates with JAK2V617F in the development of myeloproliferative neoplasms. Blood Adv. 2017;1:1001–15.CrossRef
12.
go back to reference Alimam S, Villiers W, Dillon R, Simpson M, Runglall M, Smith A, et al. Patients with triple-negative, JAK2 V617F- and CALR -mutated essential thrombocythemia share a unique gene expression signature. Blood Adv. 2021;5:1059–68.CrossRef Alimam S, Villiers W, Dillon R, Simpson M, Runglall M, Smith A, et al. Patients with triple-negative, JAK2 V617F- and CALR -mutated essential thrombocythemia share a unique gene expression signature. Blood Adv. 2021;5:1059–68.CrossRef
Metadata
Title
Myeloproliferative neoplasm-driving Calr frameshift promotes the development of pulmonary hypertension in mice
Authors
Keiji Minakawa
Tetsuro Yokokawa
Koki Ueda
Osamu Nakajima
Tomofumi Misaka
Yusuke Kimishima
Kento Wada
Yusuke Tomita
Saori Miura
Yuka Sato
Kosaku Mimura
Koichi Sugimoto
Kazuhiko Nakazato
Kenneth E. Nollet
Kazuei Ogawa
Takayuki Ikezoe
Yuko Hashimoto
Yasuchika Takeishi
Kazuhiko Ikeda
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2021
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-021-01064-8

Other articles of this Issue 1/2021

Journal of Hematology & Oncology 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine