Skip to main content
Top
Published in: BMC Cancer 1/2016

Open Access 01-12-2016 | Research Article

Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with Raman-spectroscopy as a pathological screening tool

Authors: Thomas W. Bocklitz, Firas Subhi Salah, Nadine Vogler, Sandro Heuke, Olga Chernavskaia, Carsten Schmidt, Maximilian J. Waldner, Florian R. Greten, Rolf Bräuer, Michael Schmitt, Andreas Stallmach, Iver Petersen, Jürgen Popp

Published in: BMC Cancer | Issue 1/2016

Login to get access

Abstract

Background

Due to the steadily increasing number of cancer patients worldwide the early diagnosis and treatment of cancer is a major field of research. The diagnosis of cancer is mostly performed by an experienced pathologist via the visual inspection of histo-pathological stained tissue sections. To save valuable time, low quality cryosections are frequently analyzed with diagnostic accuracies that are below those of high quality embedded tissue sections. Thus, alternative means have to be found that enable for fast and accurate diagnosis as the basis of following clinical decision making.

Methods

In this contribution we will show that the combination of the three label-free non-linear imaging modalities CARS (coherent anti-Stokes Raman-scattering), TPEF (two-photon excited autofluorescence) and SHG (second harmonic generation) yields information that can be translated into computational hematoxylin and eosin (HE) images by multivariate statistics. Thereby, a computational HE stain is generated resulting in pseudo-HE overview images that allow for identification of suspicious regions. The latter are analyzed further by Raman-spectroscopy retrieving the tissue’s molecular fingerprint.

Results

The results suggest that the combination of non-linear multimodal imaging and Raman-spectroscopy possesses the potential as a precise and fast tool in routine histopathology.

Conclusions

As the key advantage, both optical methods are non-invasive enabling for further pathological investigations of the same tissue section, e.g. a direct comparison with the current pathological gold-standard.
Literature
2.
go back to reference Bombonati A, Sgroi DC. The molecular pathology of breast cancer progression. J Pathol. 2011; 223(2):308–18.CrossRef Bombonati A, Sgroi DC. The molecular pathology of breast cancer progression. J Pathol. 2011; 223(2):308–18.CrossRef
3.
go back to reference Netto GJ, Saad R. Diagnostic molecular pathology, part 2: Proteomics and clinical applications of molecular diagnostics in hematopathology. Proc (Bayl Univ Med Cent). 2005; 18(1):7. Netto GJ, Saad R. Diagnostic molecular pathology, part 2: Proteomics and clinical applications of molecular diagnostics in hematopathology. Proc (Bayl Univ Med Cent). 2005; 18(1):7.
4.
go back to reference Netto GJ, Saad RD, Dysert PA. Diagnostic molecular pathology: current techniques and clinical applications, part i. Proc (Bayl Univ Med Cent). 2003; 16(4):379. Netto GJ, Saad RD, Dysert PA. Diagnostic molecular pathology: current techniques and clinical applications, part i. Proc (Bayl Univ Med Cent). 2003; 16(4):379.
5.
go back to reference In: (Popp J, editor.)Ex-vivo and In-vivo Optical Molecular Pathology. Boschstr. 12, 69469 Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2014. In: (Popp J, editor.)Ex-vivo and In-vivo Optical Molecular Pathology. Boschstr. 12, 69469 Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2014.
6.
go back to reference Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods. 2010; 7(8):603–14.CrossRefPubMed Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods. 2010; 7(8):603–14.CrossRefPubMed
7.
go back to reference Meyer T, Bergner N, Bielecki C, Krafft C, Akimov D, Romeike BFM, Reichart R, Kalff R, Dietzek B, Popp J. Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis. J Biomed Opt. 2011; 16:021113. Meyer T, Bergner N, Bielecki C, Krafft C, Akimov D, Romeike BFM, Reichart R, Kalff R, Dietzek B, Popp J. Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis. J Biomed Opt. 2011; 16:021113.
10.
go back to reference Chung VQ, Dwyer PJ, Nehal KS, Rajadhyaksha M, Menaker GM, Charles C, Jiang SB. Use of ex vivo confocal scanning laser microscopy during mohs surgery for nonmelanoma skin cancers. Dermatol Surg. 2004; 30(12p1):1470–8.CrossRefPubMed Chung VQ, Dwyer PJ, Nehal KS, Rajadhyaksha M, Menaker GM, Charles C, Jiang SB. Use of ex vivo confocal scanning laser microscopy during mohs surgery for nonmelanoma skin cancers. Dermatol Surg. 2004; 30(12p1):1470–8.CrossRefPubMed
11.
go back to reference Wessels R, De Bruin D, Faber D, Van Leeuwen T, Van Beurden M, Ruers T. Optical biopsy of epithelial cancers by optical coherence tomography (oct). Lasers Med Sci. 2014; 29(3):1297–305.PubMed Wessels R, De Bruin D, Faber D, Van Leeuwen T, Van Beurden M, Ruers T. Optical biopsy of epithelial cancers by optical coherence tomography (oct). Lasers Med Sci. 2014; 29(3):1297–305.PubMed
12.
go back to reference Zhou Y, Xing W, Maslov KI, Cornelius LA, Wang LV. Handheld photoacoustic microscopy to detect melanoma depth in vivo. Optics Lett. 2014; 39(16):4731–4.CrossRef Zhou Y, Xing W, Maslov KI, Cornelius LA, Wang LV. Handheld photoacoustic microscopy to detect melanoma depth in vivo. Optics Lett. 2014; 39(16):4731–4.CrossRef
13.
go back to reference Kitai T, Torii M, Sugie T, Kanao S, Mikami Y, Shiina T, Toi M. Photoacoustic mammography: initial clinical results. Breast Cancer. 2014; 21(2):146–53.CrossRefPubMed Kitai T, Torii M, Sugie T, Kanao S, Mikami Y, Shiina T, Toi M. Photoacoustic mammography: initial clinical results. Breast Cancer. 2014; 21(2):146–53.CrossRefPubMed
16.
go back to reference Meyer T, Schmitt M, Dietzek B, Popp J. Accumulating advantages, reducing limitations: Multimodal nonlinear imaging in biomedical sciences–the synergy of multiple contrast mechanisms. J Biophoton. 2013; 6(11–12):887–904.CrossRef Meyer T, Schmitt M, Dietzek B, Popp J. Accumulating advantages, reducing limitations: Multimodal nonlinear imaging in biomedical sciences–the synergy of multiple contrast mechanisms. J Biophoton. 2013; 6(11–12):887–904.CrossRef
17.
go back to reference Patil CA, Kirshnamoorthi H, Ellis DL, van Leeuwen TG, Mahadevan-Jansen A. A clinical instrument for combined raman spectroscopy-optical coherence tomography of skin cancers. Lasers Surg Med. 2011; 43(2):143–51.CrossRefPubMedPubMedCentral Patil CA, Kirshnamoorthi H, Ellis DL, van Leeuwen TG, Mahadevan-Jansen A. A clinical instrument for combined raman spectroscopy-optical coherence tomography of skin cancers. Lasers Surg Med. 2011; 43(2):143–51.CrossRefPubMedPubMedCentral
18.
go back to reference Schwitalla S, Ziegler PK, Horst D, Becker V, Kerle I, Begus-Nahrmann Y, Lechel A, Rudolph L, Langer R, Slotta-Huspenina J, Bader FG, Prazeres da Costa O, Neurath M, Meining A, Kirchner T, Greten FR. Loss of p53 in enterocytes generates an inflammatory microenvironment enabling invasion and lymph node metastasis of carcinogen-induced colorectal tumors. Cancer Cell. 2013; 23(1):93–106.CrossRefPubMed Schwitalla S, Ziegler PK, Horst D, Becker V, Kerle I, Begus-Nahrmann Y, Lechel A, Rudolph L, Langer R, Slotta-Huspenina J, Bader FG, Prazeres da Costa O, Neurath M, Meining A, Kirchner T, Greten FR. Loss of p53 in enterocytes generates an inflammatory microenvironment enabling invasion and lymph node metastasis of carcinogen-induced colorectal tumors. Cancer Cell. 2013; 23(1):93–106.CrossRefPubMed
19.
go back to reference Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Göktuna SI, Ziegler PK, Canli O, Heijmans J, Huels DJ, Moreaux G, Rupec RA, Gerhard M, Schmid R, Barker N, Clevers H, Lang R, Neumann J, Kirchner T, Taketo MM, van den Brink GR, Sansom OJ, Arkan MC, Greten FR. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell. 2013; 152(1):25–38.CrossRefPubMed Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Göktuna SI, Ziegler PK, Canli O, Heijmans J, Huels DJ, Moreaux G, Rupec RA, Gerhard M, Schmid R, Barker N, Clevers H, Lang R, Neumann J, Kirchner T, Taketo MM, van den Brink GR, Sansom OJ, Arkan MC, Greten FR. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell. 2013; 152(1):25–38.CrossRefPubMed
20.
go back to reference Heuke S, Vogler N, Meyer T, Akimov D, Kluschke F, Röwert-Huber HJ, Lademann J, Dietzek B, Popp J. Multimodal mapping of human skin. Br J Dermatol. 2013; 169(4):794–803.CrossRefPubMed Heuke S, Vogler N, Meyer T, Akimov D, Kluschke F, Röwert-Huber HJ, Lademann J, Dietzek B, Popp J. Multimodal mapping of human skin. Br J Dermatol. 2013; 169(4):794–803.CrossRefPubMed
21.
go back to reference Meyer T, Baumgartl M, Gottschall T, Pascher T, Wuttig A, Matthäus C, Romeike BF, Brehm BR, Limpert J, Tünnermann A, Guntinas-Lichius O, Dietzek B, Schmitt M, Popp J. A compact microscope setup for multimodal nonlinear imaging in clinics and its application to disease diagnostics. Analyst. 2013; 138(14):4048–57.CrossRefPubMed Meyer T, Baumgartl M, Gottschall T, Pascher T, Wuttig A, Matthäus C, Romeike BF, Brehm BR, Limpert J, Tünnermann A, Guntinas-Lichius O, Dietzek B, Schmitt M, Popp J. A compact microscope setup for multimodal nonlinear imaging in clinics and its application to disease diagnostics. Analyst. 2013; 138(14):4048–57.CrossRefPubMed
22.
go back to reference Gonzalez RC, Woods RE, Eddins SL, Vol. 2. Digital Image Processing Using MATLAB. Knoxville: Gatesmark Publishing; 2009. Gonzalez RC, Woods RE, Eddins SL, Vol. 2. Digital Image Processing Using MATLAB. Knoxville: Gatesmark Publishing; 2009.
24.
go back to reference R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2007. R Foundation for Statistical Computing. http://www.R-project.org. Accessed 13 Jul 2016. R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2007. R Foundation for Statistical Computing. http://​www.​R-project.​org. Accessed 13 Jul 2016.
28.
go back to reference Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning – Data Mining, Inference, and Prediction. Heidelberg: Springer; 2008. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning – Data Mining, Inference, and Prediction. Heidelberg: Springer; 2008.
30.
go back to reference Ryan CG, Clayton E, Griffin WL, Sie SH, Cousens DR. SNIP, a statistics-sensitive background treatment for the quantitative analysis of pixe spectra in geosience aplications. Nucl Instrum Methods Phys Res Sect B. 1988; 34:396–402. Ryan CG, Clayton E, Griffin WL, Sie SH, Cousens DR. SNIP, a statistics-sensitive background treatment for the quantitative analysis of pixe spectra in geosience aplications. Nucl Instrum Methods Phys Res Sect B. 1988; 34:396–402.
32.
go back to reference Diem M, Mazur A, Lenau K, Schubert J, Bird B, Miljković M, Krafft C, Popp J. Molecular pathology via IR and Raman spectral imaging. J Biophoton. 2013; 6(11–12):855–86.CrossRef Diem M, Mazur A, Lenau K, Schubert J, Bird B, Miljković M, Krafft C, Popp J. Molecular pathology via IR and Raman spectral imaging. J Biophoton. 2013; 6(11–12):855–86.CrossRef
33.
go back to reference Zhang X, Roeffaers MB, Basu S, Daniele JR, Fu D, Freudiger CW, Holtom GR, Xie XS. Label-free live-cell imaging of nucleic acids using stimulated raman scattering microscopy. ChemPhysChem. 2012; 13(4):1054–9.CrossRefPubMedPubMedCentral Zhang X, Roeffaers MB, Basu S, Daniele JR, Fu D, Freudiger CW, Holtom GR, Xie XS. Label-free live-cell imaging of nucleic acids using stimulated raman scattering microscopy. ChemPhysChem. 2012; 13(4):1054–9.CrossRefPubMedPubMedCentral
34.
go back to reference Mavarani L, Petersen D, El-Mashtoly SF, Mosig A, Tannapfel A, Kötting C, Gerwert K. Spectral histopathology of colon cancer tissue sections by Raman imaging with 532 nm excitation provides label free annotation of lymphocytes, erythrocytes and proliferating nuclei of cancer cells. Analyst. 2013; 138:4035–9. doi:http://dx.doi.org/10.1039/c3an00370a. Mavarani L, Petersen D, El-Mashtoly SF, Mosig A, Tannapfel A, Kötting C, Gerwert K. Spectral histopathology of colon cancer tissue sections by Raman imaging with 532 nm excitation provides label free annotation of lymphocytes, erythrocytes and proliferating nuclei of cancer cells. Analyst. 2013; 138:4035–9. doi:http://​dx.​doi.​org/​10.​1039/​c3an00370a.
35.
go back to reference Notingher I, Hench LL. Raman microspectroscopy: a noninvasive tool for studies of individual living cells in vitro. Expert Rev Med Devices. 2006; 3(2):215–34.CrossRefPubMed Notingher I, Hench LL. Raman microspectroscopy: a noninvasive tool for studies of individual living cells in vitro. Expert Rev Med Devices. 2006; 3(2):215–34.CrossRefPubMed
36.
go back to reference Krafft C, Knetschke T, Siegner A, Funk RHW, Salzer R. Mapping of single cells by near infrared Raman microspectroscopy. Vib Spectrosc. 2003; 32(1):75–83.CrossRef Krafft C, Knetschke T, Siegner A, Funk RHW, Salzer R. Mapping of single cells by near infrared Raman microspectroscopy. Vib Spectrosc. 2003; 32(1):75–83.CrossRef
37.
go back to reference Knipfer C, Motz J, Adler W, Brunner K, Tesfay GM, Hankel R, Agaimy A, Will S, Braeuer A, Wilhelm NF, Stelzle F. Raman difference spectroscopy: a non-invasive method for identification of oral squamous cell carcinoma. Biomed Optics Express. 2014; 5(9):3252–65.CrossRef Knipfer C, Motz J, Adler W, Brunner K, Tesfay GM, Hankel R, Agaimy A, Will S, Braeuer A, Wilhelm NF, Stelzle F. Raman difference spectroscopy: a non-invasive method for identification of oral squamous cell carcinoma. Biomed Optics Express. 2014; 5(9):3252–65.CrossRef
Metadata
Title
Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with Raman-spectroscopy as a pathological screening tool
Authors
Thomas W. Bocklitz
Firas Subhi Salah
Nadine Vogler
Sandro Heuke
Olga Chernavskaia
Carsten Schmidt
Maximilian J. Waldner
Florian R. Greten
Rolf Bräuer
Michael Schmitt
Andreas Stallmach
Iver Petersen
Jürgen Popp
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2016
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-016-2520-x

Other articles of this Issue 1/2016

BMC Cancer 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine