Skip to main content
Top
Published in: Journal of Neurology 5/2013

01-05-2013 | Original Communication

PRRT2-related disorders: further PKD and ICCA cases and review of the literature

Authors: Felicitas Becker, Julian Schubert, Pasquale Striano, Anna-Kaisa Anttonen, Elina Liukkonen, Eija Gaily, Christian Gerloff, Stephan Müller, Nicole Heußinger, Christoph Kellinghaus, Angela Robbiano, Anne Polvi, Simone Zittel, Tim J. von Oertzen, Kevin Rostasy, Ludger Schöls, Tom Warner, Alexander Münchau, Anna-Elina Lehesjoki, Federico Zara, Holger Lerche, Yvonne G. Weber

Published in: Journal of Neurology | Issue 5/2013

Login to get access

Abstract

Recent studies reported mutations in the gene encoding the proline-rich transmembrane protein 2 (PRRT2) to be causative for paroxysmal kinesigenic dyskinesia (PKD), PKD combined with infantile seizures (ICCA), and benign familial infantile seizures (BFIS). PRRT2 is a presynaptic protein which seems to play an important role in exocytosis and neurotransmitter release. PKD is the most common form of paroxysmal movement disorder characterized by recurrent brief involuntary hyperkinesias triggered by sudden movements. Here, we sequenced PRRT2 in 14 sporadic and 8 familial PKD and ICCA cases of Caucasian origin and identified three novel mutations (c.919C>T/p.Gln307*, c.388delG/p.Ala130Profs*46, c.884G>A/p.Arg295Gln) predicting two truncated proteins and one probably damaging point mutation. A review of all published cases is also included. PRRT2 mutations occur more frequently in familial forms of PRRT2-related syndromes (80–100 %) than in sporadic cases (33-46 %) suggesting further heterogeneity in the latter. PRRT2 mutations were rarely described in other forms of paroxysmal dyskinesias deviating from classical PKD, as we report here in one ICCA family without kinesigenic triggers. Mutations are exclusively found in two exons of the PRRT2 gene at a high rate across all syndromes and with one major mutation (c.649dupC) in a mutational hotspot of nine cytosines, which is responsible for 57 % of all cases in all phenotypes. We therefore propose that genetic analysis rapidly performed in early stages of the disease is highly cost-effective and can help to avoid further unnecessary diagnostic and therapeutic interventions.
Literature
1.
go back to reference Zenzola A, De Mari M, De Blasi R et al (2001) Paroxysmal dystonia with thalamic lesion in multiple sclerosis. Neurol Sci 22:391–394PubMedCrossRef Zenzola A, De Mari M, De Blasi R et al (2001) Paroxysmal dystonia with thalamic lesion in multiple sclerosis. Neurol Sci 22:391–394PubMedCrossRef
2.
go back to reference Weber YG, Storch A, Wuttke TV et al (2008) GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Invest 118(6):2157–2168PubMed Weber YG, Storch A, Wuttke TV et al (2008) GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Invest 118(6):2157–2168PubMed
3.
go back to reference Suls A, Dedeken P, Goffin K et al (2008) Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1. Brain 131(Pt 7):1831–1844. Epub Jun 24 Suls A, Dedeken P, Goffin K et al (2008) Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1. Brain 131(Pt 7):1831–1844. Epub Jun 24
4.
go back to reference Rainier S, Thomas D, Tokarz D et al (2004) Myofibrillogenesis regulator 1 gene mutations cause paroxysmal dystonic choreoathetosis. Arch Neurol 61:1025–1029PubMedCrossRef Rainier S, Thomas D, Tokarz D et al (2004) Myofibrillogenesis regulator 1 gene mutations cause paroxysmal dystonic choreoathetosis. Arch Neurol 61:1025–1029PubMedCrossRef
5.
go back to reference Lee HY, Nakayama J, Xu Y et al (2012) Dopamine dysregulation in a mouse model of paroxysmal nonkinesigenic dyskinesia. J Clin Invest 122(2):507–518PubMedCrossRef Lee HY, Nakayama J, Xu Y et al (2012) Dopamine dysregulation in a mouse model of paroxysmal nonkinesigenic dyskinesia. J Clin Invest 122(2):507–518PubMedCrossRef
6.
go back to reference Smith LA, Heersma PH (1941) Periodic dystonia. May Clin Proc 16:842–846 Smith LA, Heersma PH (1941) Periodic dystonia. May Clin Proc 16:842–846
9.
go back to reference Goodenough DJ, Fariello RG, Annis BL et al (1978) Familial and acquired paroxysmal dyskinesias: a proposed classification with delineation of clinical features. Arch Neurol 35(12):827–831PubMedCrossRef Goodenough DJ, Fariello RG, Annis BL et al (1978) Familial and acquired paroxysmal dyskinesias: a proposed classification with delineation of clinical features. Arch Neurol 35(12):827–831PubMedCrossRef
10.
go back to reference Perona-Moratalla AB, Argandoña L, García-Muñozguren S (2009) Paroxysmal dyskinesias. Rev Neurol 48(Suppl 1):S7–S9PubMed Perona-Moratalla AB, Argandoña L, García-Muñozguren S (2009) Paroxysmal dyskinesias. Rev Neurol 48(Suppl 1):S7–S9PubMed
11.
go back to reference Chen WJ, Lin Y, Xiong ZQ et al (2011) Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia. Nat Genet 43:1252–1255PubMedCrossRef Chen WJ, Lin Y, Xiong ZQ et al (2011) Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia. Nat Genet 43:1252–1255PubMedCrossRef
12.
go back to reference Heron SE, Grinton BE, Kivity S et al (2012) PRRT2 Mutations cause benign familial infantile epilepsy and infantile convulsions with choreoathetosis syndrome. Am J Hum Genet 90:152–160PubMedCrossRef Heron SE, Grinton BE, Kivity S et al (2012) PRRT2 Mutations cause benign familial infantile epilepsy and infantile convulsions with choreoathetosis syndrome. Am J Hum Genet 90:152–160PubMedCrossRef
13.
go back to reference Lee HY, Huang Y, Bruneau N et al (2012) Mutations in the gene PRRT2 cause paroxysmal kinesigenic dyskinesia with infantile convulsions. Cell Reports 1:1–11CrossRef Lee HY, Huang Y, Bruneau N et al (2012) Mutations in the gene PRRT2 cause paroxysmal kinesigenic dyskinesia with infantile convulsions. Cell Reports 1:1–11CrossRef
14.
go back to reference Li J, Zhu X, Wang X et al (2012) Targeted genomic sequencing identifies PRRT2 mutations as a cause of paroxysmal kinesigenic choreoathetosis. Med Genet 49:76–78CrossRef Li J, Zhu X, Wang X et al (2012) Targeted genomic sequencing identifies PRRT2 mutations as a cause of paroxysmal kinesigenic choreoathetosis. Med Genet 49:76–78CrossRef
15.
go back to reference Wang JL, Cao L, Li XH et al (2011) Identification of PRRT2 as the causative gene of paroxysmal kinesigenic dyskinesias. Brain 134:3490–3498 Wang JL, Cao L, Li XH et al (2011) Identification of PRRT2 as the causative gene of paroxysmal kinesigenic dyskinesias. Brain 134:3490–3498
16.
go back to reference Schubert J, Paravidino R, Becker F et al (2012) PRRT2 mutations are the major cause of benign familial infantile seizures (BFIS). Hum Mutat (Epub ahead of print) Schubert J, Paravidino R, Becker F et al (2012) PRRT2 mutations are the major cause of benign familial infantile seizures (BFIS). Hum Mutat (Epub ahead of print)
17.
go back to reference Méneret A, Grabli D, Depienne C et al (2012) PRRT2 mutations: a major cause of paroxysmal kinesigenic dyskinesia in the European population. Neurology 79:170–174PubMedCrossRef Méneret A, Grabli D, Depienne C et al (2012) PRRT2 mutations: a major cause of paroxysmal kinesigenic dyskinesia in the European population. Neurology 79:170–174PubMedCrossRef
18.
go back to reference Liu Q, Qi Z, Wan XH et al (2012) Mutations in PRRT2 result in paroxysmal dyskinesias with marked variability in clinical expression. J Med Genet 49:79–82PubMedCrossRef Liu Q, Qi Z, Wan XH et al (2012) Mutations in PRRT2 result in paroxysmal dyskinesias with marked variability in clinical expression. J Med Genet 49:79–82PubMedCrossRef
19.
go back to reference Groffen AJ, Klapwijk T, van Rootselaar AF et al (2012) Genetic and phenotypic heterogeneity in sporadic and familial forms of paroxysmal dyskinesia. J Neurol (Epub ahead of print) Groffen AJ, Klapwijk T, van Rootselaar AF et al (2012) Genetic and phenotypic heterogeneity in sporadic and familial forms of paroxysmal dyskinesia. J Neurol (Epub ahead of print)
20.
go back to reference Cao L, Huang XJ, Zheng L et al (2012) Identification of a novel PRRT2 mutation in patients with paroxysmal kinesigenic dyskinesias and c.649dupC as a mutation hot-spot. Parkinsonism Relat Disord 18(5):704–706PubMedCrossRef Cao L, Huang XJ, Zheng L et al (2012) Identification of a novel PRRT2 mutation in patients with paroxysmal kinesigenic dyskinesias and c.649dupC as a mutation hot-spot. Parkinsonism Relat Disord 18(5):704–706PubMedCrossRef
21.
go back to reference Ono S, Yoshiura K, Kinoshita A (2012) Mutations in PRRT2 responsible for paroxysmal kinesigenic dyskinesias also cause benign familial infantile convulsions. J Hum Genet 57(5):338–341PubMedCrossRef Ono S, Yoshiura K, Kinoshita A (2012) Mutations in PRRT2 responsible for paroxysmal kinesigenic dyskinesias also cause benign familial infantile convulsions. J Hum Genet 57(5):338–341PubMedCrossRef
22.
go back to reference van Vliet R, Breedveld G, de Rijk-van Andel J et al (2012) PRRT2 phenotypes and penetrance of paroxysmal kinesigenic dyskinesia and infantile convulsions. Neurology. (Epub ahead of print) van Vliet R, Breedveld G, de Rijk-van Andel J et al (2012) PRRT2 phenotypes and penetrance of paroxysmal kinesigenic dyskinesia and infantile convulsions. Neurology. (Epub ahead of print)
24.
go back to reference Gardiner AR, Bhatia KP, Stamelou M et al (2012) PRRT2 gene mutations: From paroxysmal dyskinesia to episodic ataxia and hemiplegic migraine. Neurology 79(21):2115–2121 Gardiner AR, Bhatia KP, Stamelou M et al (2012) PRRT2 gene mutations: From paroxysmal dyskinesia to episodic ataxia and hemiplegic migraine. Neurology 79(21):2115–2121
25.
go back to reference Dale RC, Gardiner A, Antony J, et al (2012) Familial PRRT2 mutation with heterogeneous paroxysmal disorders including paroxysmal torticollis and hemiplegic migraine. Dev Med Child Neurol (Epub ahead of print) Dale RC, Gardiner A, Antony J, et al (2012) Familial PRRT2 mutation with heterogeneous paroxysmal disorders including paroxysmal torticollis and hemiplegic migraine. Dev Med Child Neurol (Epub ahead of print)
26.
go back to reference Weber YG, Berger A, Bebek N et al (2004) Benign familial infantile convulsions: linkage to chromosome 16p12-q12 in 14 families. Epilepsia 45(6):601–609PubMedCrossRef Weber YG, Berger A, Bebek N et al (2004) Benign familial infantile convulsions: linkage to chromosome 16p12-q12 in 14 families. Epilepsia 45(6):601–609PubMedCrossRef
27.
go back to reference Sørensen JB, Matti U, Wei SH et al (2002) The SNARE proteinSNAP-25 is linked to fast calcium triggering of exocytosis. Proc Natl Acad Sci USA 99:1627–1632PubMedCrossRef Sørensen JB, Matti U, Wei SH et al (2002) The SNARE proteinSNAP-25 is linked to fast calcium triggering of exocytosis. Proc Natl Acad Sci USA 99:1627–1632PubMedCrossRef
28.
go back to reference Adzhubei IA, Schmidt S, Peshkin L et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248–249PubMedCrossRef Adzhubei IA, Schmidt S, Peshkin L et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248–249PubMedCrossRef
29.
go back to reference Bruno MK, Lee HY, Auburger GW et al (2007) Genotype-phenotype correlation of paroxysmal nonkinesigenic dyskinesia. Neurology 68(21):1782–1789PubMedCrossRef Bruno MK, Lee HY, Auburger GW et al (2007) Genotype-phenotype correlation of paroxysmal nonkinesigenic dyskinesia. Neurology 68(21):1782–1789PubMedCrossRef
30.
go back to reference Demirkiran M, Jankovic J (1995) Paroxysmal dyskinesias: clinical features and classification. Ann Neurol 38:571–579PubMedCrossRef Demirkiran M, Jankovic J (1995) Paroxysmal dyskinesias: clinical features and classification. Ann Neurol 38:571–579PubMedCrossRef
31.
go back to reference Houser MK, Soland VL, Bhatia KP et al (1999) Paroxysmal kinesigenic choreoathetosis: a report of 26 patients. J Neurol 246(2):120–126PubMedCrossRef Houser MK, Soland VL, Bhatia KP et al (1999) Paroxysmal kinesigenic choreoathetosis: a report of 26 patients. J Neurol 246(2):120–126PubMedCrossRef
32.
go back to reference Plant GT, Williams AC, Earl CJ et al (1984) Familial paroxysmal dystonia induced by exercise. J Neurol Neurosurg Psychiatry 47:275–279PubMedCrossRef Plant GT, Williams AC, Earl CJ et al (1984) Familial paroxysmal dystonia induced by exercise. J Neurol Neurosurg Psychiatry 47:275–279PubMedCrossRef
33.
go back to reference Wali GM (1992) Paroxysmal hemidystonia induced by prolonged exercise and cold. J Neurol Neurosurg Psychiatry 55(3):236–237PubMedCrossRef Wali GM (1992) Paroxysmal hemidystonia induced by prolonged exercise and cold. J Neurol Neurosurg Psychiatry 55(3):236–237PubMedCrossRef
34.
go back to reference Bruno MK, Hallett M, Gwinn-Hardy K et al (2004) Clinical evaluation of idiopathic paroxysmal kinesigenic dyskinesia: new diagnostic criteria. Neurology 63(12):2280–2287PubMedCrossRef Bruno MK, Hallett M, Gwinn-Hardy K et al (2004) Clinical evaluation of idiopathic paroxysmal kinesigenic dyskinesia: new diagnostic criteria. Neurology 63(12):2280–2287PubMedCrossRef
35.
go back to reference Kikuchi T, Nomura M, Tomita H et al (2007) Paroxysmal kinesigenic choreoathetosis (PKC): confirmation of linkage to 16p11-q21, but unsuccessful detection of mutations among 157 genes at the PKC-critical region in seven PKC families. J Hum Genet 52(4):334–341 (Epub 2007 Feb 14) Kikuchi T, Nomura M, Tomita H et al (2007) Paroxysmal kinesigenic choreoathetosis (PKC): confirmation of linkage to 16p11-q21, but unsuccessful detection of mutations among 157 genes at the PKC-critical region in seven PKC families. J Hum Genet 52(4):334–341 (Epub 2007 Feb 14)
36.
go back to reference Liao Y, Deprez L, Maljevic S et al (2010) Molecular correlates of age-dependent seizures in an inherited neonatal-infantile epilepsy. Brain 133(Pt 5):1403–1414PubMedCrossRef Liao Y, Deprez L, Maljevic S et al (2010) Molecular correlates of age-dependent seizures in an inherited neonatal-infantile epilepsy. Brain 133(Pt 5):1403–1414PubMedCrossRef
37.
go back to reference Stelzl U, Worm U, Lalowski M et al (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122:957–968PubMedCrossRef Stelzl U, Worm U, Lalowski M et al (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122:957–968PubMedCrossRef
38.
go back to reference Hu K, Carroll J, Fedorovich S et al (2002) Vesicular restriction of synaptobrevin suggests a role for calcium in membrane fusion. Nature 415:646–650PubMedCrossRef Hu K, Carroll J, Fedorovich S et al (2002) Vesicular restriction of synaptobrevin suggests a role for calcium in membrane fusion. Nature 415:646–650PubMedCrossRef
39.
go back to reference Zhao N, Hashida H, Takahashi N et al (1994) Cloning and sequence analysis of the human SNAP25 cDNA. Gene 145:313–314PubMedCrossRef Zhao N, Hashida H, Takahashi N et al (1994) Cloning and sequence analysis of the human SNAP25 cDNA. Gene 145:313–314PubMedCrossRef
Metadata
Title
PRRT2-related disorders: further PKD and ICCA cases and review of the literature
Authors
Felicitas Becker
Julian Schubert
Pasquale Striano
Anna-Kaisa Anttonen
Elina Liukkonen
Eija Gaily
Christian Gerloff
Stephan Müller
Nicole Heußinger
Christoph Kellinghaus
Angela Robbiano
Anne Polvi
Simone Zittel
Tim J. von Oertzen
Kevin Rostasy
Ludger Schöls
Tom Warner
Alexander Münchau
Anna-Elina Lehesjoki
Federico Zara
Holger Lerche
Yvonne G. Weber
Publication date
01-05-2013
Publisher
Springer-Verlag
Published in
Journal of Neurology / Issue 5/2013
Print ISSN: 0340-5354
Electronic ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-012-6777-y

Other articles of this Issue 5/2013

Journal of Neurology 5/2013 Go to the issue