Skip to main content
Top
Published in: Neurological Research and Practice 1/2019

Open Access 01-12-2019 | Clinical trial protocol

Protocol of a randomized, double-blind, placebo-controlled, parallel-group, multicentre study of the efficacy and safety of nicotinamide in patients with Friedreich ataxia (NICOFA)

Authors: Kathrin Reetz, Ralf-Dieter Hilgers, Susanne Isfort, Marc Dohmen, Claire Didszun, Kathrin Fedosov, Jennifer Kistermann, Caterina Mariotti, Alexandra Durr, Sylvia Boesch, Thomas Klopstock, Francisco Javier Rodríguez de Rivera Garrido, Ludger Schöls, Thomas Klockgether, Massimo Pandolfo, Rudolf Korinthenberg, Philip Lavin, Geert Molenberghs, Vincenzo Libri, Paola Giunti, Richard Festenstein, Jörg B. Schulz, the EFACTS or NICOFA study group

Published in: Neurological Research and Practice | Issue 1/2019

Login to get access

Abstract

Introduction

Currently, no treatment that delays with the progression of Friedreich ataxia is available. In the majority of patients Friedreich ataxia is caused by homozygous pathological expansion of GAA repeats in the first intron of the FXN gene. Nicotinamide acts as a histone deacetylase inhibitor. Dose escalation studies have shown, that short term treatment with dosages of up to 4 g/day increase the expression of FXN mRNA and frataxin protein up to the levels of asymptomatic heterozygous gene carriers. The long-term effects and the effects on clinical endpoints, activities of daily living and quality of life are unknown.

Methods

The aim of the NICOFA study is to investigate the efficacy and safety of nicotinamide for the treatment of Friedreich ataxia over 24 months. An open-label dose adjustment wash-in period with nicotinamide (phase A: weeks 1–4) to the individually highest tolerated dose of 2–4 g nicotinamide/day will be followed by a 2 (nicotinamide group): 1 (placebo group) randomization (phase B: weeks 5–104). In the nicotinamide group, patients will continue with their individually highest tolerated dose between 2 and 4 g/d per os once daily and the placebo group patients will be receiving matching placebo. Safety assessments will consist of monitoring and recording of all adverse events and serious adverse events, regular monitoring of haematology, blood chemistry and urine values, regular measurement of vital signs and the performance of physical examinations including cardiological signs. The primary outcome is the change in the Scale for the Assessment and Rating of Ataxia (SARA) over time as compared with placebo in patients with Friedreich ataxia based on the linear mixed effect model (LMEM) model. Secondary endpoints are measures of quality of life, functional motor and cognitive measures, clinician’s and patient’s global impression-change scales as well as the up-regulation of the frataxin protein level, safety and survival/death.

Perspective

The NICOFA study represents one of the first attempts to assess the clinical efficacy of an epigenetic therapeutic intervention for this disease and will provide evidence of possible disease modifying effects of nicotinamide treatment in patients with Friedreich ataxia.

Trial registration

EudraCT-No.: 2017-002163-17, ClinicalTrials.​gov NCT03761511.
Literature
1.
go back to reference Reetz, K., et al. (2018). Nonataxia symptoms in Friedreich ataxia: Report from the registry of the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS). Neurology, 91,e917–e930.CrossRef Reetz, K., et al. (2018). Nonataxia symptoms in Friedreich ataxia: Report from the registry of the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS). Neurology, 91,e917–e930.CrossRef
2.
go back to reference Schulz, J. B., et al. (2009). Diagnosis and treatment of Friedreich ataxia: A European perspective. Nature Reviews Neurology, 5(4), 222–234.CrossRef Schulz, J. B., et al. (2009). Diagnosis and treatment of Friedreich ataxia: A European perspective. Nature Reviews Neurology, 5(4), 222–234.CrossRef
3.
go back to reference Campuzano, V., et al. (1996). Friedreich’s ataxia: Autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science, 271(5254), 1423–1427.CrossRef Campuzano, V., et al. (1996). Friedreich’s ataxia: Autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science, 271(5254), 1423–1427.CrossRef
4.
go back to reference Saveliev, A., et al. (2003). DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing. Nature, 422(6934), 909–913.CrossRef Saveliev, A., et al. (2003). DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing. Nature, 422(6934), 909–913.CrossRef
5.
go back to reference Chan, P. K., et al. (2013). Heterochromatinization induced by GAA-repeat hyperexpansion in Friedreich’s ataxia can be reduced upon HDAC inhibition by vitamin B3. Human Molecular Genetics, 22(13), 2662–2675.CrossRef Chan, P. K., et al. (2013). Heterochromatinization induced by GAA-repeat hyperexpansion in Friedreich’s ataxia can be reduced upon HDAC inhibition by vitamin B3. Human Molecular Genetics, 22(13), 2662–2675.CrossRef
6.
go back to reference Libri, V., et al. (2014). Epigenetic and neurological effects and safety of high-dose nicotinamide in patients with Friedreich’s ataxia: An exploratory, open-label, dose-escalation study. Lancet, 384(9942), 504–513.CrossRef Libri, V., et al. (2014). Epigenetic and neurological effects and safety of high-dose nicotinamide in patients with Friedreich’s ataxia: An exploratory, open-label, dose-escalation study. Lancet, 384(9942), 504–513.CrossRef
7.
go back to reference Al-Mahdawi, S., et al. (2006). GAA repeat expansion mutation mouse models of Friedreich ataxia exhibit oxidative stress leading to progressive neuronal and cardiac pathology. Genomics, 88(5), 580–590.CrossRef Al-Mahdawi, S., et al. (2006). GAA repeat expansion mutation mouse models of Friedreich ataxia exhibit oxidative stress leading to progressive neuronal and cardiac pathology. Genomics, 88(5), 580–590.CrossRef
8.
go back to reference Reetz, K., et al. (2015). Biological and clinical characteristics of the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS) cohort: A cross-sectional analysis of baseline data. Lancet Neurology, 14(2), 174–182.CrossRef Reetz, K., et al. (2015). Biological and clinical characteristics of the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS) cohort: A cross-sectional analysis of baseline data. Lancet Neurology, 14(2), 174–182.CrossRef
9.
go back to reference Reetz, K., et al. (2016). Progression characteristics of the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS): A 2 year cohort study. Lancet Neurology, 15(13), 1346–1354.CrossRef Reetz, K., et al. (2016). Progression characteristics of the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS): A 2 year cohort study. Lancet Neurology, 15(13), 1346–1354.CrossRef
10.
go back to reference Vaquero, A., et al. (2007). SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature, 450(7168), 440–444.CrossRef Vaquero, A., et al. (2007). SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature, 450(7168), 440–444.CrossRef
11.
go back to reference Hoane, M. R., Kaplan, S. A., & Ellis, A. L. (2006). The effects of nicotinamide on apoptosis and blood-brain barrier breakdown following traumatic brain injury. Brain Research, 1125(1), 185–193.CrossRef Hoane, M. R., Kaplan, S. A., & Ellis, A. L. (2006). The effects of nicotinamide on apoptosis and blood-brain barrier breakdown following traumatic brain injury. Brain Research, 1125(1), 185–193.CrossRef
12.
go back to reference Spector, R., & Kelley, P. (1979). Niacin and niacinamide accumulation by rabbit brain slices and choroid plexus in vitro. Journal of Neurochemistry, 33(1), 291–298.CrossRef Spector, R., & Kelley, P. (1979). Niacin and niacinamide accumulation by rabbit brain slices and choroid plexus in vitro. Journal of Neurochemistry, 33(1), 291–298.CrossRef
13.
go back to reference Knip, M., et al. (2000). Safety of high-dose nicotinamide: A review. Diabetologia, 43(11), 1337–1345.CrossRef Knip, M., et al. (2000). Safety of high-dose nicotinamide: A review. Diabetologia, 43(11), 1337–1345.CrossRef
14.
go back to reference Gale, E. A., et al. (2004). European Nicotinamide Diabetes Intervention Trial (ENDIT): A randomised controlled trial of intervention before the onset of type 1 diabetes. Lancet, 363(9413), 925–931.CrossRef Gale, E. A., et al. (2004). European Nicotinamide Diabetes Intervention Trial (ENDIT): A randomised controlled trial of intervention before the onset of type 1 diabetes. Lancet, 363(9413), 925–931.CrossRef
15.
go back to reference Subramony, S. H., et al. (2005). Measuring Friedreich ataxia: Interrater reliability of a neurologic rating scale. Neurology, 64(7), 1261–1262.CrossRef Subramony, S. H., et al. (2005). Measuring Friedreich ataxia: Interrater reliability of a neurologic rating scale. Neurology, 64(7), 1261–1262.CrossRef
16.
go back to reference Schmitz-Hubsch, T., et al. (2008). SCA functional index: A useful compound performance measure for spinocerebellar ataxia. Neurology, 71(7), 486–492.CrossRef Schmitz-Hubsch, T., et al. (2008). SCA functional index: A useful compound performance measure for spinocerebellar ataxia. Neurology, 71(7), 486–492.CrossRef
17.
go back to reference Dogan, I., et al. (2019). Structural characteristics of the central nervous system in Friedreich ataxia: An in vivo spinal cord and brain MRI study. Journal of Neurology, Neurosurgery, and Psychiatry, 90(5), 615–617.CrossRef Dogan, I., et al. (2019). Structural characteristics of the central nervous system in Friedreich ataxia: An in vivo spinal cord and brain MRI study. Journal of Neurology, Neurosurgery, and Psychiatry, 90(5), 615–617.CrossRef
18.
go back to reference Dogan, I., et al. (2016). Cognition in Friedreich’s ataxia: A behavioral and multimodal imaging study. Annals of Clinical Translational Neurology, 3(8), 572–587.CrossRef Dogan, I., et al. (2016). Cognition in Friedreich’s ataxia: A behavioral and multimodal imaging study. Annals of Clinical Translational Neurology, 3(8), 572–587.CrossRef
19.
go back to reference Hilgers, R. D., et al. (2017). ERDO - a framework to select an appropriate randomization procedure for clinical trials. BMC Medical Research Methodology, 17(1), 159.CrossRef Hilgers, R. D., et al. (2017). ERDO - a framework to select an appropriate randomization procedure for clinical trials. BMC Medical Research Methodology, 17(1), 159.CrossRef
20.
go back to reference Mallinckrodt, C. H., Clark, W. S., & David, S. R. (2001). Accounting for dropout bias using mixed-effects models. Journal of Biopharmaceutical Statistics, 11(1–2), 9–21.CrossRef Mallinckrodt, C. H., Clark, W. S., & David, S. R. (2001). Accounting for dropout bias using mixed-effects models. Journal of Biopharmaceutical Statistics, 11(1–2), 9–21.CrossRef
Metadata
Title
Protocol of a randomized, double-blind, placebo-controlled, parallel-group, multicentre study of the efficacy and safety of nicotinamide in patients with Friedreich ataxia (NICOFA)
Authors
Kathrin Reetz
Ralf-Dieter Hilgers
Susanne Isfort
Marc Dohmen
Claire Didszun
Kathrin Fedosov
Jennifer Kistermann
Caterina Mariotti
Alexandra Durr
Sylvia Boesch
Thomas Klopstock
Francisco Javier Rodríguez de Rivera Garrido
Ludger Schöls
Thomas Klockgether
Massimo Pandolfo
Rudolf Korinthenberg
Philip Lavin
Geert Molenberghs
Vincenzo Libri
Paola Giunti
Richard Festenstein
Jörg B. Schulz
the EFACTS or NICOFA study group
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Neurological Research and Practice / Issue 1/2019
Electronic ISSN: 2524-3489
DOI
https://doi.org/10.1186/s42466-019-0038-9

Other articles of this Issue 1/2019

Neurological Research and Practice 1/2019 Go to the issue