Skip to main content
Top
Published in: BMC Neurology 1/2018

Open Access 01-12-2018 | Study protocol

Protocol for promoting recovery optimization of walking activity in stroke (PROWALKS): a randomized controlled trial

Authors: Henry Wright, Tamara Wright, Ryan T. Pohlig, Scott E. Kasner, Jonathan Raser-Schramm, Darcy Reisman

Published in: BMC Neurology | Issue 1/2018

Login to get access

Abstract

Background

Stroke survivors are more physically inactive than even the most sedentary older adults, and low activity is associated with increased risk of recurrent stroke, medical complications, and mortality. We hypothesize that the combination of a fast walking intervention that improves walking capacity, with a step activity monitoring program that facilitates translation of gains from the clinic to the “real-world”, would generate greater improvements in real world walking activity than with either intervention alone.

Methods

Using a single-blind randomized controlled experimental design, 225 chronic (> 6 months) stroke survivors complete 12 weeks of fast walking training, a step activity monitoring program or a fast walking training + step activity monitoring program. Main eligibility criteria include: chronic ischemic or hemorrhagic stroke (> 6 months post), no evidence of cerebellar stroke, baseline walking speed between 0.3 m/s and 1.0 m/s, and baseline average steps / day < 8000. The primary (steps per day), secondary (self-selected and fastest walking speed, walking endurance, oxygen consumption) and exploratory (vascular events, blood lipids, glucose, blood pressure) outcomes are assessed prior to initiating treatment, after the last treatment and at a 6 and 12-month follow-up. Moderation of the changes in outcomes by baseline characteristics are evaluated to determine for whom the interventions are effective.

Discussion

Following completion of this study, we will not only understand the efficacy of the interventions and the individuals for which they are effective, we will have the necessary information to design a study investigating the secondary prevention benefits of improved physical activity post-stroke. This study is, therefore, an important step in the development of both rehabilitative and secondary prevention guidelines for persons with stroke.

Trial registration

ClinicalTrials.gov Identifier: NCT02835313.
First Posted: July 18, 2016.
Literature
1.
go back to reference Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics--2013 update: a report from the American Heart Association. Circulation. 2013;127(1):e245.CrossRef Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics--2013 update: a report from the American Heart Association. Circulation. 2013;127(1):e245.CrossRef
2.
go back to reference Michael K, Macko RF. Ambulatory activity intensity profiles, fitness, and fatigue in chronic stroke. Top Stroke Rehabil. 2007;14(2):5–12.CrossRefPubMed Michael K, Macko RF. Ambulatory activity intensity profiles, fitness, and fatigue in chronic stroke. Top Stroke Rehabil. 2007;14(2):5–12.CrossRefPubMed
3.
go back to reference Michael KM, Allen JK, Macko RF. Reduced ambulatory activity after stroke: the role of balance, gait, and cardiovascular fitness. Arch Phys Med Rehabil. 2005;86(8):1552–6.CrossRefPubMed Michael KM, Allen JK, Macko RF. Reduced ambulatory activity after stroke: the role of balance, gait, and cardiovascular fitness. Arch Phys Med Rehabil. 2005;86(8):1552–6.CrossRefPubMed
4.
go back to reference Rand D, Eng JJ, Tang P, Hung C, Jeng J. Daily physical activity and its contribution to the health-related quality of life of ambulatory individuals with chronic stroke. Health Qual Life Outcomes. 2010;8(1):80.CrossRefPubMedPubMedCentral Rand D, Eng JJ, Tang P, Hung C, Jeng J. Daily physical activity and its contribution to the health-related quality of life of ambulatory individuals with chronic stroke. Health Qual Life Outcomes. 2010;8(1):80.CrossRefPubMedPubMedCentral
5.
go back to reference Hornnes N, Larsen K, Boysen G. Little change of modifiable risk factors 1 year after stroke: a pilot study. Int J Stroke. 2010;5(3):157–62.CrossRefPubMed Hornnes N, Larsen K, Boysen G. Little change of modifiable risk factors 1 year after stroke: a pilot study. Int J Stroke. 2010;5(3):157–62.CrossRefPubMed
6.
go back to reference Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, et al. Heart disease and stroke statistics--2010 update: a report from the American Heart Association. Circulation. 2010;121(7):e215. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, et al. Heart disease and stroke statistics--2010 update: a report from the American Heart Association. Circulation. 2010;121(7):e215.
7.
go back to reference Michael K, Goldberg AP, Treuth MS, Beans J, Normandt P, Macko RF. Progressive adaptive physical activity in stroke improves balance, gait, and fitness: preliminary results. Top Stroke Rehabil. 2009;16(2):133–9.CrossRefPubMedPubMedCentral Michael K, Goldberg AP, Treuth MS, Beans J, Normandt P, Macko RF. Progressive adaptive physical activity in stroke improves balance, gait, and fitness: preliminary results. Top Stroke Rehabil. 2009;16(2):133–9.CrossRefPubMedPubMedCentral
8.
go back to reference Moore JL, Roth EJ, Killian C, Hornby TG. Locomotor training improves daily stepping activity and gait efficiency in individuals Poststroke who have reached a “plateau” in recovery. Stroke. 2010;41(1):129–35.CrossRefPubMed Moore JL, Roth EJ, Killian C, Hornby TG. Locomotor training improves daily stepping activity and gait efficiency in individuals Poststroke who have reached a “plateau” in recovery. Stroke. 2010;41(1):129–35.CrossRefPubMed
9.
go back to reference Mudge S, Barber PA, Stott NS. Circuit-based rehabilitation improves gait endurance but not usual walking activity in chronic stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2009;90(12):1989–96.CrossRefPubMed Mudge S, Barber PA, Stott NS. Circuit-based rehabilitation improves gait endurance but not usual walking activity in chronic stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2009;90(12):1989–96.CrossRefPubMed
10.
go back to reference Mirelman A, Bonato P, Deutsch JE. Effects of training with a robot-virtual reality system compared with a robot alone on the gait of individuals after stroke. Stroke. 2009;40(1):169–74.CrossRefPubMed Mirelman A, Bonato P, Deutsch JE. Effects of training with a robot-virtual reality system compared with a robot alone on the gait of individuals after stroke. Stroke. 2009;40(1):169–74.CrossRefPubMed
11.
go back to reference Bowden MG, Behrman AL, Neptune RR, Gregory CM, Kautz SA. Locomotor rehabilitation of individuals with chronic stroke: difference between responders and nonresponders. Arch Phys Med Rehabil. 2013;94(5):856.CrossRefPubMed Bowden MG, Behrman AL, Neptune RR, Gregory CM, Kautz SA. Locomotor rehabilitation of individuals with chronic stroke: difference between responders and nonresponders. Arch Phys Med Rehabil. 2013;94(5):856.CrossRefPubMed
12.
go back to reference Reisman DS, Binder-MacLeod S, Farquhar WB. Changes in metabolic cost of transport following locomotor training poststroke. Top Stroke Rehabil. 2013;20(2):161–70.CrossRefPubMedPubMedCentral Reisman DS, Binder-MacLeod S, Farquhar WB. Changes in metabolic cost of transport following locomotor training poststroke. Top Stroke Rehabil. 2013;20(2):161–70.CrossRefPubMedPubMedCentral
13.
go back to reference Awad LN, Reisman DS, Pohlig RT, Binder-Macleod SA. Reducing the cost of transport and increasing walking distance after stroke. Neurorehabil Neural Repair. 2016;30(7):661–70.CrossRefPubMed Awad LN, Reisman DS, Pohlig RT, Binder-Macleod SA. Reducing the cost of transport and increasing walking distance after stroke. Neurorehabil Neural Repair. 2016;30(7):661–70.CrossRefPubMed
14.
go back to reference Reisman D, Kesar T, Perumal R, Roos M, Rudolph K, Higginson J, et al. Time course of functional and biomechanical improvements during a gait training intervention in persons with chronic stroke. J Neurol Phys Ther. 2013;37(4):159–65.CrossRefPubMedPubMedCentral Reisman D, Kesar T, Perumal R, Roos M, Rudolph K, Higginson J, et al. Time course of functional and biomechanical improvements during a gait training intervention in persons with chronic stroke. J Neurol Phys Ther. 2013;37(4):159–65.CrossRefPubMedPubMedCentral
15.
go back to reference Kesar TM, Reisman DS, Perumal R, Jancosko AM, Higginson JS, Rudolph KS, et al. Combined effects of fast treadmill walking and functional electrical stimulation on post-stroke gait. Gait & Posture. 2011;33(2):309–13.CrossRef Kesar TM, Reisman DS, Perumal R, Jancosko AM, Higginson JS, Rudolph KS, et al. Combined effects of fast treadmill walking and functional electrical stimulation on post-stroke gait. Gait & Posture. 2011;33(2):309–13.CrossRef
16.
go back to reference Reisman DS, Rudolph KS, Farquhar WB. Influence of speed on walking economy Poststroke. Neurorehabil Neural Repair. 2009;23(6):529–34.CrossRefPubMed Reisman DS, Rudolph KS, Farquhar WB. Influence of speed on walking economy Poststroke. Neurorehabil Neural Repair. 2009;23(6):529–34.CrossRefPubMed
17.
go back to reference Tyrell CM, Roos MA, Rudolph KS, Reisman DS. Influence of systematic increases in treadmill walking speed on gait kinematics after stroke. Phys Ther. 2011;91(3):392–403.CrossRefPubMedPubMedCentral Tyrell CM, Roos MA, Rudolph KS, Reisman DS. Influence of systematic increases in treadmill walking speed on gait kinematics after stroke. Phys Ther. 2011;91(3):392–403.CrossRefPubMedPubMedCentral
18.
go back to reference Tudor-Locke C, Bassett Jr DR. How many steps/day are enough?: preliminary pedometer indices for public health. Sports Med. 2004;34(1):1–8.CrossRefPubMed Tudor-Locke C, Bassett Jr DR. How many steps/day are enough?: preliminary pedometer indices for public health. Sports Med. 2004;34(1):1–8.CrossRefPubMed
19.
go back to reference Bravata DM, Smith-Spangler C, Sundaram V, Gienger AL, Lin N, Lewis R, et al. Using pedometers to increase physical activity and improve health: a systematic review. JAMA. 2007;298(19):2296–304.CrossRefPubMed Bravata DM, Smith-Spangler C, Sundaram V, Gienger AL, Lin N, Lewis R, et al. Using pedometers to increase physical activity and improve health: a systematic review. JAMA. 2007;298(19):2296–304.CrossRefPubMed
20.
go back to reference Sidman CL, Corbin CB, Le Masurier G. Promoting physical activity among sedentary women using pedometers. Res Q Exerc Sport. 2004;75(2):122–9.CrossRefPubMed Sidman CL, Corbin CB, Le Masurier G. Promoting physical activity among sedentary women using pedometers. Res Q Exerc Sport. 2004;75(2):122–9.CrossRefPubMed
21.
go back to reference Tudor-Locke C, Lutes L. Why do pedometers work?: a reflection upon the factors related to successfully increasing physical activity. Sports Med. 2009;39(12):981–93.CrossRefPubMed Tudor-Locke C, Lutes L. Why do pedometers work?: a reflection upon the factors related to successfully increasing physical activity. Sports Med. 2009;39(12):981–93.CrossRefPubMed
22.
go back to reference Morris JH, Macgillivray S, McFarlane S. Interventions to promote long-term participation in physical activity after stroke: a systematic review of the literature. Arch Phys Med Rehabil. 2014;95(5):956–67.CrossRefPubMed Morris JH, Macgillivray S, McFarlane S. Interventions to promote long-term participation in physical activity after stroke: a systematic review of the literature. Arch Phys Med Rehabil. 2014;95(5):956–67.CrossRefPubMed
23.
go back to reference Butler L, Furber S, Phongsavan P, Mark A, Bauman A. Effects of a pedometer-based intervention on physical activity levels after cardiac rehabilitation: a RANDOMIZED CONTROLLED TRIAL. J Cardiopulm Rehabil Prev. 2009;29(2):105–14.CrossRefPubMed Butler L, Furber S, Phongsavan P, Mark A, Bauman A. Effects of a pedometer-based intervention on physical activity levels after cardiac rehabilitation: a RANDOMIZED CONTROLLED TRIAL. J Cardiopulm Rehabil Prev. 2009;29(2):105–14.CrossRefPubMed
24.
go back to reference Danks KA, Roos MA, McCoy D, Reisman DS. A step activity monitoring program improves real world walking activity post stroke. Disabil Rehabil. 2014;36(26):2233–6.CrossRefPubMedPubMedCentral Danks KA, Roos MA, McCoy D, Reisman DS. A step activity monitoring program improves real world walking activity post stroke. Disabil Rehabil. 2014;36(26):2233–6.CrossRefPubMedPubMedCentral
25.
go back to reference Danks KA, Pohlig R, Reisman DS. Combining fast-walking training and a step activity monitoring program to improve daily walking activity after stroke: a preliminary study. Arch Phys Med Rehabil. 2016;97(9 Suppl):S193. Danks KA, Pohlig R, Reisman DS. Combining fast-walking training and a step activity monitoring program to improve daily walking activity after stroke: a preliminary study. Arch Phys Med Rehabil. 2016;97(9 Suppl):S193.
26.
go back to reference Lam JM, Globas C, Cerny J, Hertler B, Uludag K, Forrester LW, et al. Predictors of response to treadmill exercise in stroke survivors. Neurorehabil Neural Repair. 2010;24(6):567–74.CrossRefPubMedPubMedCentral Lam JM, Globas C, Cerny J, Hertler B, Uludag K, Forrester LW, et al. Predictors of response to treadmill exercise in stroke survivors. Neurorehabil Neural Repair. 2010;24(6):567–74.CrossRefPubMedPubMedCentral
27.
go back to reference Sullivan KJ, Brown DA, Klassen T, Mulroy S, Ge T, Azen SP, et al. Effects of task-specific locomotor and strength training in adults who were ambulatory after stroke: results of the STEPS randomized clinical trial. Phys Ther. 2007;87(12):1580–602.CrossRefPubMed Sullivan KJ, Brown DA, Klassen T, Mulroy S, Ge T, Azen SP, et al. Effects of task-specific locomotor and strength training in adults who were ambulatory after stroke: results of the STEPS randomized clinical trial. Phys Ther. 2007;87(12):1580–602.CrossRefPubMed
28.
go back to reference Pickering TG, Hall JE, Appel LJ, Falkner BE, Graves J, Hill MN, et al. Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on high blood pressure research. Hypertension. 2005;45(1):142–61.CrossRefPubMed Pickering TG, Hall JE, Appel LJ, Falkner BE, Graves J, Hill MN, et al. Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on high blood pressure research. Hypertension. 2005;45(1):142–61.CrossRefPubMed
29.
go back to reference Berlowitz DR, Hoenig H, Cowper DC, Duncan PW, Vogel WB. Impact of comorbidities on stroke rehabilitation outcomes: does the method matter? Arch Phys Med Rehabil. 2008;89(10):1903–6.CrossRefPubMed Berlowitz DR, Hoenig H, Cowper DC, Duncan PW, Vogel WB. Impact of comorbidities on stroke rehabilitation outcomes: does the method matter? Arch Phys Med Rehabil. 2008;89(10):1903–6.CrossRefPubMed
30.
go back to reference Plummer P, Behrman AL, Duncan PW, Spigel P, Saracino D, Martin J, et al. Effects of stroke severity and training duration on locomotor recovery after stroke: a pilot study. Neurorehabil Neural Repair. 2007;21(2):137–51.CrossRefPubMed Plummer P, Behrman AL, Duncan PW, Spigel P, Saracino D, Martin J, et al. Effects of stroke severity and training duration on locomotor recovery after stroke: a pilot study. Neurorehabil Neural Repair. 2007;21(2):137–51.CrossRefPubMed
31.
go back to reference Pohl PS, Duncan PW, Perera S, Liu W, Lai SM, Studenski S, et al. Influence of stroke-related impairments on performance in 6-minute walk test. J Rehabil Res Dev. 2002;39(4):439.PubMed Pohl PS, Duncan PW, Perera S, Liu W, Lai SM, Studenski S, et al. Influence of stroke-related impairments on performance in 6-minute walk test. J Rehabil Res Dev. 2002;39(4):439.PubMed
32.
go back to reference Botner EM, Miller WC, Eng JJ. Measurement properties of the activities-specific balance confidence scale among individuals with stroke. Disabil Rehabil. 2005;27(4):156–63.CrossRefPubMed Botner EM, Miller WC, Eng JJ. Measurement properties of the activities-specific balance confidence scale among individuals with stroke. Disabil Rehabil. 2005;27(4):156–63.CrossRefPubMed
33.
go back to reference Williams LS, Brizendine EJ, Plue L, Bakas T, Tu W, Hendrie H, et al. Performance of the PHQ-9 as a screening tool for depression after stroke. Stroke. 2005;36(3):635–8.CrossRefPubMed Williams LS, Brizendine EJ, Plue L, Bakas T, Tu W, Hendrie H, et al. Performance of the PHQ-9 as a screening tool for depression after stroke. Stroke. 2005;36(3):635–8.CrossRefPubMed
34.
go back to reference Burton L, Tyson SF. Screening for cognitive impairment after stroke: a systematic review of psychometric properties and clinical utility. J Rehabil Med. 2015;47(3):193.CrossRefPubMed Burton L, Tyson SF. Screening for cognitive impairment after stroke: a systematic review of psychometric properties and clinical utility. J Rehabil Med. 2015;47(3):193.CrossRefPubMed
35.
go back to reference Borg G. Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med. 1970;2(2):92.PubMed Borg G. Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med. 1970;2(2):92.PubMed
36.
go back to reference Whaley MH, Armstrong L. ACSM’s guidelines for exercise testing and prescription. 7th ed. Philadelphia: Lippincott Williams & Wilkins; 2006. Whaley MH, Armstrong L. ACSM’s guidelines for exercise testing and prescription. 7th ed. Philadelphia: Lippincott Williams & Wilkins; 2006.
37.
go back to reference Yates T, Haffner SM, Schulte PJ, Thomas L, Huffman KM, Bales CW, et al. Association between change in daily ambulatory activity and cardiovascular events in people with impaired glucose tolerance (NAVIGATOR trial): a cohort analysis. Lancet. 2014;383(9922):1059–66.CrossRefPubMed Yates T, Haffner SM, Schulte PJ, Thomas L, Huffman KM, Bales CW, et al. Association between change in daily ambulatory activity and cardiovascular events in people with impaired glucose tolerance (NAVIGATOR trial): a cohort analysis. Lancet. 2014;383(9922):1059–66.CrossRefPubMed
38.
go back to reference WRITING GROUP MEMBERS, Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, et al. Heart Disease and Stroke Statistics--2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2009;119(3):480–6.CrossRef WRITING GROUP MEMBERS, Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, et al. Heart Disease and Stroke Statistics--2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2009;119(3):480–6.CrossRef
39.
go back to reference Lees KR, Zivin JA, Ashwood T, Davalos A, Davis SM, Diener H, et al. NXY-059 for acute ischemic stroke. N Engl J Med. 2006;354(6):588–600.CrossRefPubMed Lees KR, Zivin JA, Ashwood T, Davalos A, Davis SM, Diener H, et al. NXY-059 for acute ischemic stroke. N Engl J Med. 2006;354(6):588–600.CrossRefPubMed
40.
go back to reference Mayo NE, Wood-Dauphinee S, Côté R, Durcan L, Carlton J. Activity, participation, and quality of life 6 months poststroke. Arch Phys Med Rehabil. 2002;83(8):1035–42.CrossRefPubMed Mayo NE, Wood-Dauphinee S, Côté R, Durcan L, Carlton J. Activity, participation, and quality of life 6 months poststroke. Arch Phys Med Rehabil. 2002;83(8):1035–42.CrossRefPubMed
41.
go back to reference Rimmer JH, Wang E. Aerobic exercise training in stroke survivors. Top Stroke Rehabil. 2005;12(1):17–30.CrossRefPubMed Rimmer JH, Wang E. Aerobic exercise training in stroke survivors. Top Stroke Rehabil. 2005;12(1):17–30.CrossRefPubMed
42.
go back to reference Resnick B, Michael K, Shaughnessy M, Nahm ES, Kobunek S, Sorkin J, et al. Inflated perceptions of physical activity after stroke: pairing self-report with physiologic measures. J Phys Act Health. 2008;5(2):308.CrossRefPubMed Resnick B, Michael K, Shaughnessy M, Nahm ES, Kobunek S, Sorkin J, et al. Inflated perceptions of physical activity after stroke: pairing self-report with physiologic measures. J Phys Act Health. 2008;5(2):308.CrossRefPubMed
43.
go back to reference Bowden MG, Balasubramanian CK, Behrman AL, Kautz SA. Validation of a speed-based classification system using quantitative measures of walking performance Poststroke. Neurorehabil Neural Repair. 2008;22(6):672–5.CrossRefPubMedPubMedCentral Bowden MG, Balasubramanian CK, Behrman AL, Kautz SA. Validation of a speed-based classification system using quantitative measures of walking performance Poststroke. Neurorehabil Neural Repair. 2008;22(6):672–5.CrossRefPubMedPubMedCentral
44.
go back to reference Dhamoon MS, Tai W, Boden-Albala B, Rundek T, Paik MC, Sacco RL, et al. Risk of myocardial infarction or vascular death after first ischemic stroke: the northern Manhattan study. Stroke. 2007;38(6):1752–8.CrossRefPubMed Dhamoon MS, Tai W, Boden-Albala B, Rundek T, Paik MC, Sacco RL, et al. Risk of myocardial infarction or vascular death after first ischemic stroke: the northern Manhattan study. Stroke. 2007;38(6):1752–8.CrossRefPubMed
45.
go back to reference Grundy SM, Pasternak R, Greenland P, Smith S Jr, Fuster V. Assessment of cardiovascular risk by use of multiple-risk-factor assessment equations : a statement for healthcare professionals from the American Heart Association and the American College of Cardiology. Circulation. 1999;100(13):1481–92.CrossRefPubMed Grundy SM, Pasternak R, Greenland P, Smith S Jr, Fuster V. Assessment of cardiovascular risk by use of multiple-risk-factor assessment equations : a statement for healthcare professionals from the American Heart Association and the American College of Cardiology. Circulation. 1999;100(13):1481–92.CrossRefPubMed
46.
go back to reference Macko RF, Ivey FM, Forrester LW, Hanley D, Sorkin JD, Katzel LI, et al. Treadmill exercise rehabilitation improves ambulatory function and cardiovascular fitness in patients with chronic stroke: a randomized, controlled trial. Stroke. 2005;36(10):2206–11.CrossRefPubMed Macko RF, Ivey FM, Forrester LW, Hanley D, Sorkin JD, Katzel LI, et al. Treadmill exercise rehabilitation improves ambulatory function and cardiovascular fitness in patients with chronic stroke: a randomized, controlled trial. Stroke. 2005;36(10):2206–11.CrossRefPubMed
47.
go back to reference Pang MYC, Eng JJ, Dawson AS, McKay HA, Harris JE. A community-based fitness and mobility exercise program for older adults with chronic stroke: a randomized, controlled trial. J Am Geriatr Soc. 2005;53(10):1667.CrossRefPubMedPubMedCentral Pang MYC, Eng JJ, Dawson AS, McKay HA, Harris JE. A community-based fitness and mobility exercise program for older adults with chronic stroke: a randomized, controlled trial. J Am Geriatr Soc. 2005;53(10):1667.CrossRefPubMedPubMedCentral
48.
go back to reference Tudor-Locke C. Promoting lifestyle physical activity: experiences with the first step program. Am J Lifestyle Med. 2009;3(1_suppl):54S.CrossRef Tudor-Locke C. Promoting lifestyle physical activity: experiences with the first step program. Am J Lifestyle Med. 2009;3(1_suppl):54S.CrossRef
49.
go back to reference King AC, Haskell WL, Young DR, Oka RK, Stefanick ML. Long-term effects of varying intensities and formats of physical activity on participation rates, fitness, and lipoproteins in men and women aged 50 to 65 years. Circulation. 1995;91(10):2596–604.CrossRefPubMed King AC, Haskell WL, Young DR, Oka RK, Stefanick ML. Long-term effects of varying intensities and formats of physical activity on participation rates, fitness, and lipoproteins in men and women aged 50 to 65 years. Circulation. 1995;91(10):2596–604.CrossRefPubMed
50.
go back to reference King AC, Haskell WL, Taylor CB, Kraemer HC, DeBusk RF. Group- vs home-based exercise training in healthy older men and women: a community-based clinical trial. JAMA. 1991;266(11):1535–42.CrossRefPubMed King AC, Haskell WL, Taylor CB, Kraemer HC, DeBusk RF. Group- vs home-based exercise training in healthy older men and women: a community-based clinical trial. JAMA. 1991;266(11):1535–42.CrossRefPubMed
51.
go back to reference Duncan PW, Sullivan KJ, Behrman AL, Azen SP, Wu SS, Nadeau SE, et al. Body-weight–supported treadmill rehabilitation after stroke. N Engl J Med. 2011;364(21):2026–36.CrossRefPubMedPubMedCentral Duncan PW, Sullivan KJ, Behrman AL, Azen SP, Wu SS, Nadeau SE, et al. Body-weight–supported treadmill rehabilitation after stroke. N Engl J Med. 2011;364(21):2026–36.CrossRefPubMedPubMedCentral
52.
go back to reference Lo AC, Guarino PD, Richards LG, Haselkorn JK, Wittenberg GF, Federman DG, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med. 2010;362(19):1772–83.CrossRefPubMedPubMedCentral Lo AC, Guarino PD, Richards LG, Haselkorn JK, Wittenberg GF, Federman DG, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med. 2010;362(19):1772–83.CrossRefPubMedPubMedCentral
53.
go back to reference Nadeau S, Duclos C, Bouyer L, Richards CL. Guiding task-oriented gait training after stroke or spinal cord injury by means of a biomechanical gait analysis. In: Progress in brain research. Netherlands: Elsevier Science & Technology; 2011. p. 161–80. Nadeau S, Duclos C, Bouyer L, Richards CL. Guiding task-oriented gait training after stroke or spinal cord injury by means of a biomechanical gait analysis. In: Progress in brain research. Netherlands: Elsevier Science & Technology; 2011. p. 161–80.
Metadata
Title
Protocol for promoting recovery optimization of walking activity in stroke (PROWALKS): a randomized controlled trial
Authors
Henry Wright
Tamara Wright
Ryan T. Pohlig
Scott E. Kasner
Jonathan Raser-Schramm
Darcy Reisman
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2018
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-018-1044-1

Other articles of this Issue 1/2018

BMC Neurology 1/2018 Go to the issue