Skip to main content
Top
Published in: Breast Cancer Research 1/2018

Open Access 01-12-2018 | Research article

Proteolytic single hinge cleavage of pertuzumab impairs its Fc effector function and antitumor activity in vitro and in vivo

Authors: Hao-Ching Hsiao, Xuejun Fan, Robert E. Jordan, Ningyan Zhang, Zhiqiang An

Published in: Breast Cancer Research | Issue 1/2018

Login to get access

Abstract

Background

Proteolytic impairment of the Fc effector functions of therapeutic monoclonal antibodies (mAbs) can compromise their antitumor efficacy in the tumor microenvironment and may represent an unappreciated mechanism of host immune evasion. Pertuzumab is a human epidermal growth factor receptor 2 (HER2)-targeting antibody and has been widely used in the clinic in combination with trastuzumab for treatment of HER2-overexpressing breast cancer. Pertuzumab susceptibility to proteolytic hinge cleavage and its impact on the drug’s efficacy has not been previously studied.

Methods

Pertuzumab was incubated with high and low HER2-expressing cancer cells and proteolytic cleavage in the lower hinge region was detected by western blotting. The single hinge cleaved pertuzumab (scIgG-P) was purified and evaluated for its ability to mediate antibody-dependent cellular cytotoxicity (ADCC) in vitro and anti-tumor efficacy in vivo. To assess the cleavage of trastuzumab (IgG-T) and pertuzumab (IgG-P) when simultaneously bound to the same cancer cell surface, F(ab’)2 fragments of IgG-T or IgG-P were combined with the intact IgG-P and IgG-T, respectively, to detect scIgG generation by western blotting.

Results

Pertuzumab hinge cleavage occurred when the mAb was incubated with high HER2-expressing cancer cells. The hinge cleavage of pertuzumab caused a substantial loss of ADCC in vitro and reduced antitumor efficacy in vivo. The reduced ADCC function of scIgG-P was restored by an anti-hinge mAb specific for a cleavage site neoepitope. In addition, we constructed a protease-resistant version of the anti-hinge mAb that restored ADCC and the cell-killing functions of pertuzumab when cancer cells exressed a potent IgG hinge-cleaving protease. We also observed increased hinge cleavage of pertuzumab when combined with trastuzumab.

Conclusion

The reduced Fc effector function of single hinge-cleaved pertuzumab can be restored by an anti-hinge mAb. The restoration effect indicated that immune function could be readily augmented when the damaged primary antibodies were bound to cancer cell surfaces. The anti-hinge mAb also restored Fc effector function to the mixture of proteolytically disabled trastuzumab and pertuzumab, suggesting a general therapeutic strategy to restore the immune effector function to protease-inactivated anticancer antibodies in the tumor microenvironment. The findings point to a novel tactic for developing breast cancer immunotherapy.
Literature
1.
go back to reference Agniswamy J, Lei B, Musser JM, Sun PD. Insight of host immune evasion mediated by two variants of group a Streptococcus mac protein. J Biol Chem. 2004;279(50):52789–96.CrossRefPubMed Agniswamy J, Lei B, Musser JM, Sun PD. Insight of host immune evasion mediated by two variants of group a Streptococcus mac protein. J Biol Chem. 2004;279(50):52789–96.CrossRefPubMed
2.
go back to reference Biancheri P, Brezski RJ, Di Sabatino A, Greenplate AR, Soring KL, Corazza GR, Kok KB, Rovedatti L, Vossenkamper A, Ahmad N, et al. Proteolytic cleavage and loss of function of biologic agents that neutralize tumor necrosis factor in the mucosa of Patients with inflammatory bowel disease. Gastroenterology. 2015;149(6):1564–74.CrossRefPubMed Biancheri P, Brezski RJ, Di Sabatino A, Greenplate AR, Soring KL, Corazza GR, Kok KB, Rovedatti L, Vossenkamper A, Ahmad N, et al. Proteolytic cleavage and loss of function of biologic agents that neutralize tumor necrosis factor in the mucosa of Patients with inflammatory bowel disease. Gastroenterology. 2015;149(6):1564–74.CrossRefPubMed
3.
go back to reference Gearing AJ, Thorpe SJ, Miller K, Mangan M, Varley PG, Dudgeon T, Ward G, Turner C, Thorpe R. Selective cleavage of human IgG by the matrix metalloproteinases, matrilysin and stromelysin. Immunol Lett. 2002;81(1):41–8.CrossRefPubMed Gearing AJ, Thorpe SJ, Miller K, Mangan M, Varley PG, Dudgeon T, Ward G, Turner C, Thorpe R. Selective cleavage of human IgG by the matrix metalloproteinases, matrilysin and stromelysin. Immunol Lett. 2002;81(1):41–8.CrossRefPubMed
4.
go back to reference Zhang N, Deng H, Fan X, Gonzalez A, Zhang S, Brezski RJ, Choi BK, Rycyzyn M, Strohl W, Jordan R, et al. Dysfunctional antibodies in the tumor microenvironment associate with impaired anticancer immunity. Clin Cancer Res. 2015;21(23):5380–90.CrossRefPubMed Zhang N, Deng H, Fan X, Gonzalez A, Zhang S, Brezski RJ, Choi BK, Rycyzyn M, Strohl W, Jordan R, et al. Dysfunctional antibodies in the tumor microenvironment associate with impaired anticancer immunity. Clin Cancer Res. 2015;21(23):5380–90.CrossRefPubMed
5.
go back to reference Falkenburg WJ, van Schaardenburg D, Ooijevaar-de Heer P, Tsang ASMW, Bultink IE, Voskuyl AE, Bentlage AE, Vidarsson G, Wolbink G, Rispens T. Anti-hinge antibodies recognize IgG subclass- and protease-restricted neoepitopes. J Immunol. 2017;198(1):82–93.CrossRefPubMed Falkenburg WJ, van Schaardenburg D, Ooijevaar-de Heer P, Tsang ASMW, Bultink IE, Voskuyl AE, Bentlage AE, Vidarsson G, Wolbink G, Rispens T. Anti-hinge antibodies recognize IgG subclass- and protease-restricted neoepitopes. J Immunol. 2017;198(1):82–93.CrossRefPubMed
6.
go back to reference Ryan MH, Petrone D, Nemeth JF, Barnathan E, Bjorck L, Jordan RE. Proteolysis of purified IgGs by human and bacterial enzymes in vitro and the detection of specific proteolytic fragments of endogenous IgG in rheumatoid synovial fluid. Mol Immunol. 2008;45(7):1837–46.CrossRefPubMed Ryan MH, Petrone D, Nemeth JF, Barnathan E, Bjorck L, Jordan RE. Proteolysis of purified IgGs by human and bacterial enzymes in vitro and the detection of specific proteolytic fragments of endogenous IgG in rheumatoid synovial fluid. Mol Immunol. 2008;45(7):1837–46.CrossRefPubMed
7.
go back to reference Fan X, Brezski RJ, Deng H, Dhupkar PM, Shi Y, Gonzalez A, Zhang S, Rycyzyn M, Strohl WR, Jordan RE, et al. A novel therapeutic strategy to rescue the immune effector function of proteolytically inactivated cancer therapeutic antibodies. Mol Cancer Ther. 2015;14(3):681–91.CrossRefPubMed Fan X, Brezski RJ, Deng H, Dhupkar PM, Shi Y, Gonzalez A, Zhang S, Rycyzyn M, Strohl WR, Jordan RE, et al. A novel therapeutic strategy to rescue the immune effector function of proteolytically inactivated cancer therapeutic antibodies. Mol Cancer Ther. 2015;14(3):681–91.CrossRefPubMed
8.
go back to reference Brezski RJ, Luongo JL, Petrone D, Ryan MH, Zhong D, Tam SH, Schmidt AP, Kruszynski M, Whitaker BP, Knight DM, et al. Human anti-IgG1 hinge autoantibodies reconstitute the effector functions of proteolytically inactivated IgGs. J Immunol. 2008;181(5):3183–92.CrossRefPubMed Brezski RJ, Luongo JL, Petrone D, Ryan MH, Zhong D, Tam SH, Schmidt AP, Kruszynski M, Whitaker BP, Knight DM, et al. Human anti-IgG1 hinge autoantibodies reconstitute the effector functions of proteolytically inactivated IgGs. J Immunol. 2008;181(5):3183–92.CrossRefPubMed
9.
go back to reference Fan X, Brezski RJ, Fa M, Deng H, Oberholtzer A, Gonzalez A, Dubinsky WP, Strohl WR, Jordan RE, Zhang N, et al. A single proteolytic cleavage within the lower hinge of trastuzumab reduces immune effector function and in vivo efficacy. Breast Cancer Res. 2012;14(4):R116.CrossRefPubMedPubMedCentral Fan X, Brezski RJ, Fa M, Deng H, Oberholtzer A, Gonzalez A, Dubinsky WP, Strohl WR, Jordan RE, Zhang N, et al. A single proteolytic cleavage within the lower hinge of trastuzumab reduces immune effector function and in vivo efficacy. Breast Cancer Res. 2012;14(4):R116.CrossRefPubMedPubMedCentral
10.
go back to reference Brezski RJ, Kinder M, Grugan KD, Soring KL, Carton J, Greenplate AR, Petley T, Capaldi D, Brosnan K, Emmell E, et al. A monoclonal antibody against hinge-cleaved IgG restores effector function to proteolytically-inactivated IgGs in vitro and in vivo. MAbs. 2014;6(5):1265–73.CrossRefPubMedPubMedCentral Brezski RJ, Kinder M, Grugan KD, Soring KL, Carton J, Greenplate AR, Petley T, Capaldi D, Brosnan K, Emmell E, et al. A monoclonal antibody against hinge-cleaved IgG restores effector function to proteolytically-inactivated IgGs in vitro and in vivo. MAbs. 2014;6(5):1265–73.CrossRefPubMedPubMedCentral
11.
go back to reference Kinder M, Greenplate AR, Grugan KD, Soring KL, Heeringa KA, McCarthy SG, Bannish G, Perpetua M, Lynch F, Jordan RE, et al. Engineered protease-resistant antibodies with selectable cell-killing functions. J Biol Chem. 2013;288(43):30843–54.CrossRefPubMedPubMedCentral Kinder M, Greenplate AR, Grugan KD, Soring KL, Heeringa KA, McCarthy SG, Bannish G, Perpetua M, Lynch F, Jordan RE, et al. Engineered protease-resistant antibodies with selectable cell-killing functions. J Biol Chem. 2013;288(43):30843–54.CrossRefPubMedPubMedCentral
12.
go back to reference Baselga J, Cortés J, Kim SB, Im SA, Hegg R, Im YH. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med. 2012;366:109–19.CrossRefPubMed Baselga J, Cortés J, Kim SB, Im SA, Hegg R, Im YH. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med. 2012;366:109–19.CrossRefPubMed
13.
go back to reference Cho HS, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney DW Jr, Leahy DJ. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature. 2003;421(6924):756–60.CrossRefPubMed Cho HS, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney DW Jr, Leahy DJ. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature. 2003;421(6924):756–60.CrossRefPubMed
14.
go back to reference Franklin MC, Carey KD, Vajdos FF, Leahy DJ, de Vos AM, Sliwkowski MX. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell. 2004;5(4):317–28.CrossRefPubMed Franklin MC, Carey KD, Vajdos FF, Leahy DJ, de Vos AM, Sliwkowski MX. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell. 2004;5(4):317–28.CrossRefPubMed
15.
go back to reference El-Sahwi K, Bellone S, Cocco E, Cargnelutti M, Casagrande F, Bellone M, Abu-Khalaf M, Buza N, Tavassoli FA, Hui P, et al. In vitro activity of pertuzumab in combination with trastuzumab in uterine serous papillary adenocarcinoma. Br J Cancer. 2010;102(1):134–43.CrossRefPubMed El-Sahwi K, Bellone S, Cocco E, Cargnelutti M, Casagrande F, Bellone M, Abu-Khalaf M, Buza N, Tavassoli FA, Hui P, et al. In vitro activity of pertuzumab in combination with trastuzumab in uterine serous papillary adenocarcinoma. Br J Cancer. 2010;102(1):134–43.CrossRefPubMed
16.
go back to reference Nahta R, Hung MC, Esteva FJ. The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Res. 2004;64(7):2343–6.CrossRefPubMed Nahta R, Hung MC, Esteva FJ. The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Res. 2004;64(7):2343–6.CrossRefPubMed
17.
go back to reference Scheuer W, Friess T, Burtscher H, Bossenmaier B, Endl J, Hasmann M. Strongly enhanced antitumor activity of trastuzumab and pertuzumab combination treatment on HER2-positive human xenograft tumor models. Cancer Res. 2009;69(24):9330–6.CrossRefPubMed Scheuer W, Friess T, Burtscher H, Bossenmaier B, Endl J, Hasmann M. Strongly enhanced antitumor activity of trastuzumab and pertuzumab combination treatment on HER2-positive human xenograft tumor models. Cancer Res. 2009;69(24):9330–6.CrossRefPubMed
18.
go back to reference Yamashita-Kashima Y, Iijima S, Yorozu K, Furugaki K, Kurasawa M, Ohta M, Fujimoto-Ouchi K. Pertuzumab in combination with trastuzumab shows significantly enhanced antitumor activity in HER2-positive human gastric cancer xenograft models. Clin Cancer Res. 2011;17(15):5060–70.CrossRefPubMed Yamashita-Kashima Y, Iijima S, Yorozu K, Furugaki K, Kurasawa M, Ohta M, Fujimoto-Ouchi K. Pertuzumab in combination with trastuzumab shows significantly enhanced antitumor activity in HER2-positive human gastric cancer xenograft models. Clin Cancer Res. 2011;17(15):5060–70.CrossRefPubMed
19.
go back to reference Takai N, Jain A, Kawamata N, Popoviciu LM, Said JW, Whittaker S, Miyakawa I, Agus DB, Koeffler HP. 2C4, a monoclonal antibody against HER2, disrupts the HER kinase signaling pathway and inhibits ovarian carcinoma cell growth. Cancer. 2005;104(12):2701–8.CrossRefPubMed Takai N, Jain A, Kawamata N, Popoviciu LM, Said JW, Whittaker S, Miyakawa I, Agus DB, Koeffler HP. 2C4, a monoclonal antibody against HER2, disrupts the HER kinase signaling pathway and inhibits ovarian carcinoma cell growth. Cancer. 2005;104(12):2701–8.CrossRefPubMed
20.
go back to reference Phillips GD, Fields CT, Li G, Dowbenko D, Schaefer G, Miller K, Andre F, Burris HA 3rd, Albain KS, Harbeck N, et al. Dual targeting of HER2-positive cancer with trastuzumab emtansine and pertuzumab: critical role for neuregulin blockade in antitumor response to combination therapy. Clin Cancer Res. 2014;20(2):456–68.CrossRefPubMed Phillips GD, Fields CT, Li G, Dowbenko D, Schaefer G, Miller K, Andre F, Burris HA 3rd, Albain KS, Harbeck N, et al. Dual targeting of HER2-positive cancer with trastuzumab emtansine and pertuzumab: critical role for neuregulin blockade in antitumor response to combination therapy. Clin Cancer Res. 2014;20(2):456–68.CrossRefPubMed
21.
go back to reference Richard S, Selle F, Lotz JP, Khalil A, Gligorov J, Soares DG. Pertuzumab and trastuzumab: the rationale way to synergy. An Acad Bras Cienc. 2016;88(Suppl 1):565–77.CrossRefPubMed Richard S, Selle F, Lotz JP, Khalil A, Gligorov J, Soares DG. Pertuzumab and trastuzumab: the rationale way to synergy. An Acad Bras Cienc. 2016;88(Suppl 1):565–77.CrossRefPubMed
22.
go back to reference Fuentes G, Scaltriti M, Baselga J, Verma CS. Synergy between trastuzumab and pertuzumab for human epidermal growth factor 2 (Her2) from colocalization: an in silico based mechanism. Breast Cancer Res. 2011;13(3):R54.CrossRefPubMedPubMedCentral Fuentes G, Scaltriti M, Baselga J, Verma CS. Synergy between trastuzumab and pertuzumab for human epidermal growth factor 2 (Her2) from colocalization: an in silico based mechanism. Breast Cancer Res. 2011;13(3):R54.CrossRefPubMedPubMedCentral
24.
go back to reference Jarnum S, Bockermann R, Runstrom A, Winstedt L, Kjellman C. The bacterial enzyme IdeS cleaves the IgG-type of B cell receptor (BCR), abolishes BCR-mediated cell signaling, and inhibits memory B Cell activation. J Immunol. 2015;195(12):5592–601.CrossRefPubMedPubMedCentral Jarnum S, Bockermann R, Runstrom A, Winstedt L, Kjellman C. The bacterial enzyme IdeS cleaves the IgG-type of B cell receptor (BCR), abolishes BCR-mediated cell signaling, and inhibits memory B Cell activation. J Immunol. 2015;195(12):5592–601.CrossRefPubMedPubMedCentral
25.
go back to reference Vincents B, von Pawel-Rammingen U, Bjorck L, Abrahamson M. Enzymatic characterization of the streptococcal endopeptidase, IdeS, reveals that it is a cysteine protease with strict specificity for IgG cleavage due to exosite binding. Biochemistry. 2004;43(49):15540–9.CrossRefPubMed Vincents B, von Pawel-Rammingen U, Bjorck L, Abrahamson M. Enzymatic characterization of the streptococcal endopeptidase, IdeS, reveals that it is a cysteine protease with strict specificity for IgG cleavage due to exosite binding. Biochemistry. 2004;43(49):15540–9.CrossRefPubMed
26.
go back to reference Wenig K, Chatwell L, von Pawel-Rammingen U, Bjorck L, Huber R, Sondermann P. Structure of the streptococcal endopeptidase IdeS, a cysteine proteinase with strict specificity for IgG. Proc Natl Acad Sci U S A. 2004;101(50):17371–6.CrossRefPubMedPubMedCentral Wenig K, Chatwell L, von Pawel-Rammingen U, Bjorck L, Huber R, Sondermann P. Structure of the streptococcal endopeptidase IdeS, a cysteine proteinase with strict specificity for IgG. Proc Natl Acad Sci U S A. 2004;101(50):17371–6.CrossRefPubMedPubMedCentral
27.
go back to reference Ruppel J, Brady A, Elliott R, Leddy C, Palencia M, Coleman D, Couch JA, Wakshull E. Preexisting antibodies to an F(ab')2 antibody therapeutic and novel method for immunogenicity assessment. J Immunol Res. 2016;2016:2921758.CrossRefPubMedPubMedCentral Ruppel J, Brady A, Elliott R, Leddy C, Palencia M, Coleman D, Couch JA, Wakshull E. Preexisting antibodies to an F(ab')2 antibody therapeutic and novel method for immunogenicity assessment. J Immunol Res. 2016;2016:2921758.CrossRefPubMedPubMedCentral
Metadata
Title
Proteolytic single hinge cleavage of pertuzumab impairs its Fc effector function and antitumor activity in vitro and in vivo
Authors
Hao-Ching Hsiao
Xuejun Fan
Robert E. Jordan
Ningyan Zhang
Zhiqiang An
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/2018
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/s13058-018-0972-4

Other articles of this Issue 1/2018

Breast Cancer Research 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine