Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2019

Open Access 01-12-2019 | Research

Proteoglycans involved in bidirectional communication between mast cells and hippocampal neurons

Authors: Juan Antonio Flores, María Pilar Ramírez-Ponce, María Ángeles Montes, Santiago Balseiro-Gómez, Jorge Acosta, Guillermo Álvarez de Toledo, Eva Alés

Published in: Journal of Neuroinflammation | Issue 1/2019

Login to get access

Abstract

Background

Mast cells (MCs) in the brain can respond to environmental cues and relay signals to neurons that may directly influence neuronal electrical activity, calcium signaling, and neurotransmission. MCs also express receptors for neurotransmitters and consequently can be activated by them. Here, we developed a coculture model of peritoneal MCs, incubated together with dissociated hippocampal neurons for the study of cellular mechanisms involved in the mast cell-neuron interactions.

Methods

Calcium imaging was used to simultaneously record changes in intracellular calcium [Ca2+]i in neurons and MCs. To provide insight into the contribution of MCs on neurotransmitter release in rat hippocampal neurons, we used analysis of FM dye release, evoked by a cocktail of mediators from MCs stimulated by heat.

Results

Bidirectional communication is set up between MCs and hippocampal neurons. Neuronal depolarization caused intracellular calcium [Ca2+]i oscillations in MCs that produced a quick response in neurons. Furthermore, activation of MCs with antigen or the secretagogue compound 48/80 also resulted in a neuronal [Ca2+]i response. Moreover, local application onto neurons of the MC mediator cocktail elicited Ca2+ transients and a synaptic release associated with FM dye destaining. Neuronal response was partially blocked by D-APV, a N-methyl-D-aspartate receptor (NMDAR) antagonist, and was inhibited when the cocktail was pre-digested with chondroitinase ABC, which induces enzymatic removal of proteoglycans of chondroitin sulfate (CS).

Conclusions

MC-hippocampal neuron interaction affects neuronal [Ca2+]i and exocytosis signaling through a NMDAR-dependent mechanism.
Literature
1.
go back to reference Steinman L. Elaborate interactions between the immune and nervous systems. Nat Immunol. 2004;5:575–81.CrossRef Steinman L. Elaborate interactions between the immune and nervous systems. Nat Immunol. 2004;5:575–81.CrossRef
2.
go back to reference Skaper SD, Facci L, Giusti P. Mast cells, glia and neuroinflammation: partners in crime? Immunology. 2014;141:314–27.CrossRef Skaper SD, Facci L, Giusti P. Mast cells, glia and neuroinflammation: partners in crime? Immunology. 2014;141:314–27.CrossRef
3.
go back to reference Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308:1314–8.CrossRef Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308:1314–8.CrossRef
4.
go back to reference Hanisch U-K, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 2007;10:1387–94.CrossRef Hanisch U-K, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 2007;10:1387–94.CrossRef
5.
go back to reference Silver R, Silverman AJ, Vitković L, Lederhendler II. Mast cells in the brain: evidence and functional significance. Trends Neurosci. 1996;19:25–31.CrossRef Silver R, Silverman AJ, Vitković L, Lederhendler II. Mast cells in the brain: evidence and functional significance. Trends Neurosci. 1996;19:25–31.CrossRef
6.
go back to reference Khalil M, Ronda J, Weintraub M, Jain K, Silver R, Silverman A-J. Brain mast cell relationship to neurovasculature during development. Brain Res. 2007;1171:18–29.CrossRef Khalil M, Ronda J, Weintraub M, Jain K, Silver R, Silverman A-J. Brain mast cell relationship to neurovasculature during development. Brain Res. 2007;1171:18–29.CrossRef
7.
go back to reference Hendrix S, Warnke K, Siebenhaar F, Peters EMJ, Nitsch R, Maurer M. The majority of brain mast cells in B10.PL mice is present in the hippocampal formation. Neurosci Lett. 2006;392:174–7.CrossRef Hendrix S, Warnke K, Siebenhaar F, Peters EMJ, Nitsch R, Maurer M. The majority of brain mast cells in B10.PL mice is present in the hippocampal formation. Neurosci Lett. 2006;392:174–7.CrossRef
8.
go back to reference Taiwo OB, Kovács KJ, Larson AA. Chronic daily intrathecal injections of a large volume of fluid increase mast cells in the thalamus of mice. Brain Res. 2005;1056:76–84.CrossRef Taiwo OB, Kovács KJ, Larson AA. Chronic daily intrathecal injections of a large volume of fluid increase mast cells in the thalamus of mice. Brain Res. 2005;1056:76–84.CrossRef
9.
go back to reference Wernersson S, Pejler G. Mast cell secretory granules: armed for battle. Nat Rev Immunol. 2014;14:478–94.CrossRef Wernersson S, Pejler G. Mast cell secretory granules: armed for battle. Nat Rev Immunol. 2014;14:478–94.CrossRef
10.
go back to reference Galli SJ, Nakae S, Tsai M. Mast cells in the development of adaptive immune responses. Nat Immunol. 2005;6:135–42.CrossRef Galli SJ, Nakae S, Tsai M. Mast cells in the development of adaptive immune responses. Nat Immunol. 2005;6:135–42.CrossRef
11.
go back to reference Zhang D, Spielmann A, Wang L, Ding G, Huang F, Gu Q, et al. Mast-cell degranulation induced by physical stimuli involves the activation of transient-receptor-potential channel TRPV2. Physiol Res. 2012;61:113–24.PubMed Zhang D, Spielmann A, Wang L, Ding G, Huang F, Gu Q, et al. Mast-cell degranulation induced by physical stimuli involves the activation of transient-receptor-potential channel TRPV2. Physiol Res. 2012;61:113–24.PubMed
12.
go back to reference Gurish MF, Austen KF. The diverse roles of mast cells. J Exp Med. 2001;194:F1–5.CrossRef Gurish MF, Austen KF. The diverse roles of mast cells. J Exp Med. 2001;194:F1–5.CrossRef
13.
go back to reference Theoharides TC, Alysandratos K-D, Angelidou A, Delivanis D-A, Sismanopoulos N, Zhang B, et al. Mast cells and inflammation. Biochim Biophys Acta Mol Basis Dis. 2012;1822:21–33.CrossRef Theoharides TC, Alysandratos K-D, Angelidou A, Delivanis D-A, Sismanopoulos N, Zhang B, et al. Mast cells and inflammation. Biochim Biophys Acta Mol Basis Dis. 2012;1822:21–33.CrossRef
14.
go back to reference Bienenstock J, Macqueen G, Sestini P, Marshall JS, Stead RH, Perdue MH. Mast cell/nerve interactions in vitro and in vivo. Am Rev Respir Dis. 1991;143:S55–8.CrossRef Bienenstock J, Macqueen G, Sestini P, Marshall JS, Stead RH, Perdue MH. Mast cell/nerve interactions in vitro and in vivo. Am Rev Respir Dis. 1991;143:S55–8.CrossRef
15.
go back to reference Suzuki R, Furuno T, McKay DM, Wolvers D, Teshima R, Nakanishi M, et al. Direct neurite-mast cell communication in vitro occurs via the neuropeptide substance P. J Immunol. 1999;163:2410–5.PubMed Suzuki R, Furuno T, McKay DM, Wolvers D, Teshima R, Nakanishi M, et al. Direct neurite-mast cell communication in vitro occurs via the neuropeptide substance P. J Immunol. 1999;163:2410–5.PubMed
16.
go back to reference van Diest SA, Stanisor OI, Boeckxstaens GE, de Jonge WJ, van den Wijngaard RM. Relevance of mast cell–nerve interactions in intestinal nociception. Biochim Biophys Acta Mol Basis Dis. 2012;1822:74–84.CrossRef van Diest SA, Stanisor OI, Boeckxstaens GE, de Jonge WJ, van den Wijngaard RM. Relevance of mast cell–nerve interactions in intestinal nociception. Biochim Biophys Acta Mol Basis Dis. 2012;1822:74–84.CrossRef
17.
go back to reference Stead RH, Dixon MF, Bramwell NH, Riddell RH, Bienenstock J. Mast cells are closely apposed to nerves in the human gastrointestinal mucosa. Gastroenterology. 1989;97:575–85.CrossRef Stead RH, Dixon MF, Bramwell NH, Riddell RH, Bienenstock J. Mast cells are closely apposed to nerves in the human gastrointestinal mucosa. Gastroenterology. 1989;97:575–85.CrossRef
18.
go back to reference Weinreich D, Undem BJ, Leal-Cardoso JH. Functional effects of mast cell activation in sympathetic ganglia. Ann N Y Acad Sci. 1992;664:293–308.CrossRef Weinreich D, Undem BJ, Leal-Cardoso JH. Functional effects of mast cell activation in sympathetic ganglia. Ann N Y Acad Sci. 1992;664:293–308.CrossRef
19.
go back to reference Kowalski ML, Kaliner MA. Neurogenic inflammation, vascular permeability, and mast cells. J Immunol. 1988;140:3905–11.PubMed Kowalski ML, Kaliner MA. Neurogenic inflammation, vascular permeability, and mast cells. J Immunol. 1988;140:3905–11.PubMed
20.
go back to reference Dvorak A, Monahan R, Osage J, Dickersin G. Mast-cell degranulation in crohn’s disease. Lancet. 1978;311:498.CrossRef Dvorak A, Monahan R, Osage J, Dickersin G. Mast-cell degranulation in crohn’s disease. Lancet. 1978;311:498.CrossRef
21.
go back to reference Raithel M, Winterkamp S, Pacurar A, Ulrich P, Hochberger J, Hahn EG. Release of mast cell tryptase from human colorectal mucosa in inflammatory bowel disease. Scand J Gastroenterol. 2001;36:174–9.CrossRef Raithel M, Winterkamp S, Pacurar A, Ulrich P, Hochberger J, Hahn EG. Release of mast cell tryptase from human colorectal mucosa in inflammatory bowel disease. Scand J Gastroenterol. 2001;36:174–9.CrossRef
22.
go back to reference Nautiyal KM, Ribeiro AC, Pfaff DW, Silver R. Brain mast cells link the immune system to anxiety-like behavior. Proc Natl Acad Sci U S A. 2008;105:18053.CrossRef Nautiyal KM, Ribeiro AC, Pfaff DW, Silver R. Brain mast cells link the immune system to anxiety-like behavior. Proc Natl Acad Sci U S A. 2008;105:18053.CrossRef
23.
go back to reference Shaik-Dasthagirisaheb Y, Conti P. The role of mast cells in Alzheimer’s disease. Adv Clin Exp Med. 2016;25:781–7.CrossRef Shaik-Dasthagirisaheb Y, Conti P. The role of mast cells in Alzheimer’s disease. Adv Clin Exp Med. 2016;25:781–7.CrossRef
24.
go back to reference Vliagoftis H, Befus AD. Rapidly changing perspectives about mast cells at mucosal surfaces. Immunol Rev. 2005;206:190–203.CrossRef Vliagoftis H, Befus AD. Rapidly changing perspectives about mast cells at mucosal surfaces. Immunol Rev. 2005;206:190–203.CrossRef
25.
go back to reference Janiszewski J, Bienenstock J, Blennerhassett MG. Activation of rat peritoneal mast cells in coculture with sympathetic neurons alters neuronal physiology. Brain Behav Immun. 1990;4:139–50.CrossRef Janiszewski J, Bienenstock J, Blennerhassett MG. Activation of rat peritoneal mast cells in coculture with sympathetic neurons alters neuronal physiology. Brain Behav Immun. 1990;4:139–50.CrossRef
26.
go back to reference Suzuki A, Suzuki R, Furuno T, Teshima R, Nakanishi M. Calcium response and FcepsilonRI expression in bone marrow-derived mast cells co-cultured with SCG neurites. Biol Pharm Bull. 2005;28:1963–5.CrossRef Suzuki A, Suzuki R, Furuno T, Teshima R, Nakanishi M. Calcium response and FcepsilonRI expression in bone marrow-derived mast cells co-cultured with SCG neurites. Biol Pharm Bull. 2005;28:1963–5.CrossRef
27.
go back to reference Cabeza JM, Acosta J, Alés E. Mechanisms of granule membrane recapture following exocytosis in intact mast cells. J Biol Chem. 2013;288:20293–305.CrossRef Cabeza JM, Acosta J, Alés E. Mechanisms of granule membrane recapture following exocytosis in intact mast cells. J Biol Chem. 2013;288:20293–305.CrossRef
28.
go back to reference Kovarova M. Isolation and characterization of mast cells in mouse models of allergic diseases. Methods Mol Biol. 2013:109–19. Kovarova M. Isolation and characterization of mast cells in mouse models of allergic diseases. Methods Mol Biol. 2013:109–19.
29.
go back to reference Ghasemi A, Zahediasl S. Normality tests for statistical analysis: a guide for non-statisticians. Int J Endocrinol Metab. 2012;10:486–9.CrossRef Ghasemi A, Zahediasl S. Normality tests for statistical analysis: a guide for non-statisticians. Int J Endocrinol Metab. 2012;10:486–9.CrossRef
30.
go back to reference Schemann M, Kugler EM, Buhner S, Eastwood C, Donovan J, Jiang W, et al. The mast cell degranulator compound 48/80 directly activates neurons. PLoS One. 2012;7:e52104.CrossRef Schemann M, Kugler EM, Buhner S, Eastwood C, Donovan J, Jiang W, et al. The mast cell degranulator compound 48/80 directly activates neurons. PLoS One. 2012;7:e52104.CrossRef
31.
go back to reference KATZ B, MILEDI R. The effect of calcium on acetylcholine release from motor nerve terminals. Proc R Soc London Ser B Biol Sci. 1965;161:496–503. KATZ B, MILEDI R. The effect of calcium on acetylcholine release from motor nerve terminals. Proc R Soc London Ser B Biol Sci. 1965;161:496–503.
32.
go back to reference Schneggenburger R, Neher E. Presynaptic calcium and control of vesicle fusion. Curr Opin Neurobiol. 2005;15:266–74.CrossRef Schneggenburger R, Neher E. Presynaptic calcium and control of vesicle fusion. Curr Opin Neurobiol. 2005;15:266–74.CrossRef
33.
go back to reference Hoopmann P, Rizzoli SO, Betz WJ. Imaging synaptic vesicle recycling by staining and destaining vesicles with FM dyes. Cold Spring Harb Protoc. 2012;2012:77–83.PubMed Hoopmann P, Rizzoli SO, Betz WJ. Imaging synaptic vesicle recycling by staining and destaining vesicles with FM dyes. Cold Spring Harb Protoc. 2012;2012:77–83.PubMed
34.
go back to reference Ryan TA. Presynaptic imaging techniques. Curr Opin Neurobiol. 2001;11:544–9.CrossRef Ryan TA. Presynaptic imaging techniques. Curr Opin Neurobiol. 2001;11:544–9.CrossRef
35.
go back to reference Chen C-C, Grimbaldeston MA, Tsai M, Weissman IL, Galli SJ. From The Cover: Identification of mast cell progenitors in adult mice. Proc Natl Acad Sci. 2005;102:11408–13.CrossRef Chen C-C, Grimbaldeston MA, Tsai M, Weissman IL, Galli SJ. From The Cover: Identification of mast cell progenitors in adult mice. Proc Natl Acad Sci. 2005;102:11408–13.CrossRef
36.
go back to reference Ramírez-Franco JJ, Munoz-Cuevas FJ, Luján R, Jurado S. Excitatory and inhibitory neurons in the hippocampus exhibit molecularly distinct large dense core vesicles. Front Cell Neurosci. 2016;10:202.CrossRef Ramírez-Franco JJ, Munoz-Cuevas FJ, Luján R, Jurado S. Excitatory and inhibitory neurons in the hippocampus exhibit molecularly distinct large dense core vesicles. Front Cell Neurosci. 2016;10:202.CrossRef
37.
go back to reference de Toledo GA, Fernández-Chacón R, Fernández JM. Release of secretory products during transient vesicle fusion. Nature. 1993;363:554–8.CrossRef de Toledo GA, Fernández-Chacón R, Fernández JM. Release of secretory products during transient vesicle fusion. Nature. 1993;363:554–8.CrossRef
38.
go back to reference Alés E, Tabares L, Poyato JM, Valero V, Lindau M, Alvarez de Toledo G. High calcium concentrations shift the mode of exocytosis to the kiss-and-runmechanism. Nat Cell Biol. 1999;1:40–4.CrossRef Alés E, Tabares L, Poyato JM, Valero V, Lindau M, Alvarez de Toledo G. High calcium concentrations shift the mode of exocytosis to the kiss-and-runmechanism. Nat Cell Biol. 1999;1:40–4.CrossRef
39.
go back to reference Segovia M, Alés E, Montes AM, Bonifas I, Jemal I, Lindau M, et al. Push-and-pull regulation of the fusion pore by synaptotagmin-7. Proc Natl Acad Sci U S A. 2010;107:19032–7.CrossRef Segovia M, Alés E, Montes AM, Bonifas I, Jemal I, Lindau M, et al. Push-and-pull regulation of the fusion pore by synaptotagmin-7. Proc Natl Acad Sci U S A. 2010;107:19032–7.CrossRef
40.
go back to reference Fulop T, Radabaugh S, Smith C. Activity-dependent differential transmitter release in mouse adrenal chromaffin cells. J Neurosci. 2005;25:7324–32.CrossRef Fulop T, Radabaugh S, Smith C. Activity-dependent differential transmitter release in mouse adrenal chromaffin cells. J Neurosci. 2005;25:7324–32.CrossRef
41.
go back to reference Nautiyal KM, Dailey CA, Jahn JL, Rodriquez E, Son NH, Sweedler JV, et al. Serotonin of mast cell origin contributes to hippocampal function. Eur J Neurosci. 2012;36:2347–59.CrossRef Nautiyal KM, Dailey CA, Jahn JL, Rodriquez E, Son NH, Sweedler JV, et al. Serotonin of mast cell origin contributes to hippocampal function. Eur J Neurosci. 2012;36:2347–59.CrossRef
42.
go back to reference Cirulli F, Pistillo L, de Acetis L, Alleva E, Aloe L. Increased number of mast cells in the central nervous system of adult male mice following chronic subordination stress. Brain Behav Immun. 1998;12:123–33.CrossRef Cirulli F, Pistillo L, de Acetis L, Alleva E, Aloe L. Increased number of mast cells in the central nervous system of adult male mice following chronic subordination stress. Brain Behav Immun. 1998;12:123–33.CrossRef
43.
go back to reference Asarian L, Yousefzadeh E, Silverman A-J, Silver R. Stimuli from conspecifics influence brain mast cell population in male rats. Horm Behav. 2002;42:1–12.CrossRef Asarian L, Yousefzadeh E, Silverman A-J, Silver R. Stimuli from conspecifics influence brain mast cell population in male rats. Horm Behav. 2002;42:1–12.CrossRef
44.
go back to reference Anand P, Singh B, Jaggi AS, Singh N. Mast cells: an expanding pathophysiological role from allergy to other disorders. Naunyn Schmiedebergs Arch Pharmacol. 2012;385:657–70.CrossRef Anand P, Singh B, Jaggi AS, Singh N. Mast cells: an expanding pathophysiological role from allergy to other disorders. Naunyn Schmiedebergs Arch Pharmacol. 2012;385:657–70.CrossRef
45.
go back to reference Neher E, Sakaba T. Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron Cell Press. 2008;59:861–72. Neher E, Sakaba T. Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron Cell Press. 2008;59:861–72.
46.
go back to reference Fernández-Alfonso T, Ryan TA. The kinetics of synaptic vesicle pool depletion at CNS synaptic terminals. Neuron. 2004;41:943–53.CrossRef Fernández-Alfonso T, Ryan TA. The kinetics of synaptic vesicle pool depletion at CNS synaptic terminals. Neuron. 2004;41:943–53.CrossRef
47.
go back to reference Cohen D, Segal M. Network bursts in hippocampal microcultures are terminated by exhaustion of vesicle pools. J Neurophysiol. 2011;106:2314–21.CrossRef Cohen D, Segal M. Network bursts in hippocampal microcultures are terminated by exhaustion of vesicle pools. J Neurophysiol. 2011;106:2314–21.CrossRef
48.
go back to reference Forsythe P. Mast cells in neuroimmune interactions. Trends Neurosci. 2018. Forsythe P. Mast cells in neuroimmune interactions. Trends Neurosci. 2018.
49.
go back to reference Buhner S, Barki N, Greiter W, Giesbertz P, Demir IE, Ceyhan GO, et al. Calcium imaging of nerve-mast cell signaling in the human intestine. Front Physiol. 2017;8:971.CrossRef Buhner S, Barki N, Greiter W, Giesbertz P, Demir IE, Ceyhan GO, et al. Calcium imaging of nerve-mast cell signaling in the human intestine. Front Physiol. 2017;8:971.CrossRef
50.
go back to reference Miettinen R, Freund TF. Neuropeptide Y-containing interneurons in the hippocampus receive synaptic input from median raphe and Gabaergic septal afferents. Neuropeptides. 1992;22:185–93.CrossRef Miettinen R, Freund TF. Neuropeptide Y-containing interneurons in the hippocampus receive synaptic input from median raphe and Gabaergic septal afferents. Neuropeptides. 1992;22:185–93.CrossRef
51.
go back to reference Gordon JR, Galli SJ. Release of both preformed and newly synthesized tumor necrosis factor alpha (TNF-alpha)/cachectin by mouse mast cells stimulated via the Fc epsilon RI. A mechanism for the sustained action of mast cell-derived TNF-alpha during IgE-dependent biological responses. J Exp Med. 1991;174:103–7.CrossRef Gordon JR, Galli SJ. Release of both preformed and newly synthesized tumor necrosis factor alpha (TNF-alpha)/cachectin by mouse mast cells stimulated via the Fc epsilon RI. A mechanism for the sustained action of mast cell-derived TNF-alpha during IgE-dependent biological responses. J Exp Med. 1991;174:103–7.CrossRef
52.
go back to reference Grützkau A, Krüger-Krasagakes S, Baumeister H, Schwarz C, Kögel H, Welker P, et al. Synthesis, storage, and release of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) by human mast cells: implications for the biological significance of VEGF206. Mol Biol Cell. 1998;9:875–84.CrossRef Grützkau A, Krüger-Krasagakes S, Baumeister H, Schwarz C, Kögel H, Welker P, et al. Synthesis, storage, and release of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) by human mast cells: implications for the biological significance of VEGF206. Mol Biol Cell. 1998;9:875–84.CrossRef
53.
go back to reference Caraffa A, Conti C, D Ovidio C, Gallenga CE, Tettamanti L, Mastrangelo F, et al. New concepts in neuroinflammation: mast cells pro-inflammatory and anti-inflammatory cytokine mediators. J Biol Regul Homeost Agents. 2018;32(3):449–454. Caraffa A, Conti C, D Ovidio C, Gallenga CE, Tettamanti L, Mastrangelo F, et al. New concepts in neuroinflammation: mast cells pro-inflammatory and anti-inflammatory cytokine mediators. J Biol Regul Homeost Agents. 2018;32(3):449–454.
54.
go back to reference Wasserman SI. Mediators of immediate hypersensitivity. J Allergy Clin Immunol. 1983;72:101–15.CrossRef Wasserman SI. Mediators of immediate hypersensitivity. J Allergy Clin Immunol. 1983;72:101–15.CrossRef
55.
go back to reference Lever R, Smailbegovic A, Riffo-Vasquez Y, Gray E, Hogwood J, Francis SM, et al. Biochemical and functional characterization of glycosaminoglycans released from degranulating rat peritoneal mast cells: insights into the physiological role of endogenous heparin. Pulm Pharmacol Ther. 2016;41:96–102.CrossRef Lever R, Smailbegovic A, Riffo-Vasquez Y, Gray E, Hogwood J, Francis SM, et al. Biochemical and functional characterization of glycosaminoglycans released from degranulating rat peritoneal mast cells: insights into the physiological role of endogenous heparin. Pulm Pharmacol Ther. 2016;41:96–102.CrossRef
56.
go back to reference Maroto M, Fernández-Morales J-C, Padín JF, González JC, Hernández-Guijo JM, Montell E, et al. Chondroitin sulfate, a major component of the perineuronal net, elicits inward currents, cell depolarization, and calcium transients by acting on AMPA and kainate receptors of hippocampal neurons. J Neurochem. 2013;125:205–13.CrossRef Maroto M, Fernández-Morales J-C, Padín JF, González JC, Hernández-Guijo JM, Montell E, et al. Chondroitin sulfate, a major component of the perineuronal net, elicits inward currents, cell depolarization, and calcium transients by acting on AMPA and kainate receptors of hippocampal neurons. J Neurochem. 2013;125:205–13.CrossRef
57.
go back to reference Albiñana E, Gutierrez-Luengo J, Hernández-Juarez N, Baraibar AM, Montell E, Vergés J, et al. Chondroitin sulfate induces depression of synaptic transmission and modulation of neuronal plasticity in rat hippocampal slices. Neural Plast. 2015;2015:463854.CrossRef Albiñana E, Gutierrez-Luengo J, Hernández-Juarez N, Baraibar AM, Montell E, Vergés J, et al. Chondroitin sulfate induces depression of synaptic transmission and modulation of neuronal plasticity in rat hippocampal slices. Neural Plast. 2015;2015:463854.CrossRef
58.
go back to reference Bekkers JM. Enhancement by histamine of NMDA-mediated synaptic transmission in the hippocampus. Science. 1993;261:104–6.CrossRef Bekkers JM. Enhancement by histamine of NMDA-mediated synaptic transmission in the hippocampus. Science. 1993;261:104–6.CrossRef
59.
go back to reference Skaper SD, Facci L, Kee WJ, Strijbos PJ. Potentiation by histamine of synaptically mediated excitotoxicity in cultured hippocampal neurones: a possible role for mast cells. J Neurochem. 2001;76:47–55.CrossRef Skaper SD, Facci L, Kee WJ, Strijbos PJ. Potentiation by histamine of synaptically mediated excitotoxicity in cultured hippocampal neurones: a possible role for mast cells. J Neurochem. 2001;76:47–55.CrossRef
60.
go back to reference Kritas SK, Gallenga CE, D Ovidio C, Ronconi G, Caraffa A, Toniato E, et al. Impact of mold on mast cell-cytokine immune response. J Biol Regul Homeost. 2018;32(4):763–8. Kritas SK, Gallenga CE, D Ovidio C, Ronconi G, Caraffa A, Toniato E, et al. Impact of mold on mast cell-cytokine immune response. J Biol Regul Homeost. 2018;32(4):763–8.
61.
go back to reference Gallenga CE, Pandolfi F, Caraffa A, Kritas SK, Ronconi G, Toniato E, et al. Interleukin-1 family cytokines and mast cells: activation and inhibition. J Biol Regul Homeost Agents. 2019;33(1):1–6.PubMed Gallenga CE, Pandolfi F, Caraffa A, Kritas SK, Ronconi G, Toniato E, et al. Interleukin-1 family cytokines and mast cells: activation and inhibition. J Biol Regul Homeost Agents. 2019;33(1):1–6.PubMed
62.
go back to reference Hendriksen E, van Bergeijk D, Oosting RS, Redegeld FA. Mast cells in neuroinflammation and brain disorders. Neurosci Biobehav Rev. 2017;79:119–33.CrossRef Hendriksen E, van Bergeijk D, Oosting RS, Redegeld FA. Mast cells in neuroinflammation and brain disorders. Neurosci Biobehav Rev. 2017;79:119–33.CrossRef
63.
go back to reference Niederhoffer N, Levy R, Sick E, Andre P, Coupin G, Lombard Y, et al. Amyloid β peptides trigger CD47-dependent mast cell secretory and phagocytic responses. Int J Immunopathol Pharmacol. 2009;22:473–83.CrossRef Niederhoffer N, Levy R, Sick E, Andre P, Coupin G, Lombard Y, et al. Amyloid β peptides trigger CD47-dependent mast cell secretory and phagocytic responses. Int J Immunopathol Pharmacol. 2009;22:473–83.CrossRef
Metadata
Title
Proteoglycans involved in bidirectional communication between mast cells and hippocampal neurons
Authors
Juan Antonio Flores
María Pilar Ramírez-Ponce
María Ángeles Montes
Santiago Balseiro-Gómez
Jorge Acosta
Guillermo Álvarez de Toledo
Eva Alés
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2019
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-019-1504-6

Other articles of this Issue 1/2019

Journal of Neuroinflammation 1/2019 Go to the issue