Skip to main content
Top
Published in: Breast Cancer Research 2/2012

Open Access 01-04-2012 | Research article

Protein tyrosine phosphatase Meg2 dephosphorylates signal transducer and activator of transcription 3 and suppresses tumor growth in breast cancer

Authors: Fuqin Su, Fangli Ren, Yu Rong, Yangmeng Wang, Yongtao Geng, Yinyin Wang, Mengyao Feng, Yanfang Ju, Yi Li, Zhizhuang J Zhao, Kun Meng, Zhijie Chang

Published in: Breast Cancer Research | Issue 2/2012

Login to get access

Abstract

Introduction

Signal transducer and activator of transcription 3 (STAT3) is over-activated or phosphorylated in breast cancers. The hyper-phosphorylation of STAT3 was attributed to either up-regulated phosphorylation by several tyrosine-kinases or down-regulated activity of phosphatases. Although several factors have been identified to phosphorylate STAT3, it remains unclear how STAT3 is dephosphorylated by PTPMeg2. The aim of this study was to determine the role of PTPMeg2 as a phosphatase in regulation of the activity of STAT3 in breast cancers.

Methods

Immunoprecipitation assays were used to study the interaction of STAT3 with PTPMeg2. A series of biochemistry experiments were performed to evaluate the role of PTPMeg2 in the dephosphorylation of STAT3. Two breast cancer cell lines MCF7 (PTPMeg2 was depleted as it was endogenously high) and MDA-MB-231 (PTPMeg2 was overexpressed as it was endogenously low) were used to compare the level of phosphorylated STAT3 and the tumor growth ability in vitro and in vivo. Samples from breast carcinoma (n = 73) were subjected to a pair-wise Pearson correlation analysis for the correlation of levels of PTPMeg2 and phosphorylated STAT3.

Results

PTPMeg2 directly interacts with STAT3 and mediates its dephosphorylation in the cytoplasm. Over-expression of PTPMeg2 decreased tyrosine phosphorylation of STAT3 while depletion of PTPMeg2 increased its phosphorylation. The decreased tyrosine phosphorylation of STAT3 is coupled with suppression of STAT3 transcriptional activity and reduced tumor growth in vitro and in vivo. Levels of PTPMeg2 and phosphorylated STAT3 were inversely correlated in breast cancer tissues (P = 0.004).

Conclusions

PTPMeg2 is an important phosphatase for the dephosphorylation of STAT3 and plays a critical role in breast cancer development.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hirano T, Ishihara K, Hibi M: Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene. 2000, 19: 2548-2556. 10.1038/sj.onc.1203551.CrossRefPubMed Hirano T, Ishihara K, Hibi M: Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene. 2000, 19: 2548-2556. 10.1038/sj.onc.1203551.CrossRefPubMed
2.
go back to reference Wei L, Laurence A, O'Shea JJ: New insights into the roles of Stat5a/b and Stat3 in T cell development and differentiation. Semin Cell Dev Biol. 2008, 19: 394-400. 10.1016/j.semcdb.2008.07.011.CrossRefPubMedPubMedCentral Wei L, Laurence A, O'Shea JJ: New insights into the roles of Stat5a/b and Stat3 in T cell development and differentiation. Semin Cell Dev Biol. 2008, 19: 394-400. 10.1016/j.semcdb.2008.07.011.CrossRefPubMedPubMedCentral
4.
go back to reference Frank DA: STAT3 as a central mediator of neoplastic cellular transformation. Cancer Lett. 2007, 251: 199-210. 10.1016/j.canlet.2006.10.017.CrossRefPubMed Frank DA: STAT3 as a central mediator of neoplastic cellular transformation. Cancer Lett. 2007, 251: 199-210. 10.1016/j.canlet.2006.10.017.CrossRefPubMed
5.
go back to reference Inghirami G, Chiarle R, Simmons WJ, Piva R, Schlessinger K, Levy DE: New and old functions of STAT3: a pivotal target for individualized treatment of cancer. Cell Cycle. 2005, 4: 1131-1133. 10.4161/cc.4.9.1985.CrossRefPubMed Inghirami G, Chiarle R, Simmons WJ, Piva R, Schlessinger K, Levy DE: New and old functions of STAT3: a pivotal target for individualized treatment of cancer. Cell Cycle. 2005, 4: 1131-1133. 10.4161/cc.4.9.1985.CrossRefPubMed
6.
go back to reference den Hertog J, Ostman A, Bohmer FD: Protein tyrosine phosphatases: regulatory mechanisms. FEBS J. 2008, 275: 831-847. 10.1111/j.1742-4658.2008.06247.x.CrossRefPubMed den Hertog J, Ostman A, Bohmer FD: Protein tyrosine phosphatases: regulatory mechanisms. FEBS J. 2008, 275: 831-847. 10.1111/j.1742-4658.2008.06247.x.CrossRefPubMed
7.
go back to reference Aoki N, Matsuda T: A nuclear protein tyrosine phosphatase TC-PTP is a potential negative regulator of the PRL-mediated signaling pathway: dephosphorylation and deactivation of signal transducer and activator of transcription 5a and 5b by TC-PTP in nucleus. Mol Endocrinol. 2002, 16: 58-69. 10.1210/me.16.1.58.CrossRefPubMed Aoki N, Matsuda T: A nuclear protein tyrosine phosphatase TC-PTP is a potential negative regulator of the PRL-mediated signaling pathway: dephosphorylation and deactivation of signal transducer and activator of transcription 5a and 5b by TC-PTP in nucleus. Mol Endocrinol. 2002, 16: 58-69. 10.1210/me.16.1.58.CrossRefPubMed
8.
go back to reference Johnson KJ, Peck AR, Liu C, Tran TH, Utama FE, Sjolund AB, Schaber JD, Witkiewicz AK, Rui H: PTP1B Suppresses Prolactin Activation of Stat5 in Breast Cancer Cells. Am J Pathol. 2010 Johnson KJ, Peck AR, Liu C, Tran TH, Utama FE, Sjolund AB, Schaber JD, Witkiewicz AK, Rui H: PTP1B Suppresses Prolactin Activation of Stat5 in Breast Cancer Cells. Am J Pathol. 2010
9.
go back to reference Lu X, Malumbres R, Shields B, Jiang X, Sarosiek KA, Natkunam Y, Tiganis T, Lossos IS: PTP1B is a negative regulator of interleukin 4-induced STAT6 signaling. Blood. 2008, 112: 4098-4108. 10.1182/blood-2008-03-148726.CrossRefPubMedPubMedCentral Lu X, Malumbres R, Shields B, Jiang X, Sarosiek KA, Natkunam Y, Tiganis T, Lossos IS: PTP1B is a negative regulator of interleukin 4-induced STAT6 signaling. Blood. 2008, 112: 4098-4108. 10.1182/blood-2008-03-148726.CrossRefPubMedPubMedCentral
10.
go back to reference Tebbutt NC, Giraud AS, Inglese M, Jenkins B, Waring P, Clay FJ, Malki S, Alderman BM, Grail D, Hollande F, Heath JK, Ernst M: Reciprocal regulation of gastrointestinal homeostasis by SHP2 and STAT-mediated trefoil gene activation in gp130 mutant mice. Nat Med. 2002, 8: 1089-1097. 10.1038/nm763.CrossRefPubMed Tebbutt NC, Giraud AS, Inglese M, Jenkins B, Waring P, Clay FJ, Malki S, Alderman BM, Grail D, Hollande F, Heath JK, Ernst M: Reciprocal regulation of gastrointestinal homeostasis by SHP2 and STAT-mediated trefoil gene activation in gp130 mutant mice. Nat Med. 2002, 8: 1089-1097. 10.1038/nm763.CrossRefPubMed
11.
go back to reference Baron M, Davignon JL: Inhibition of IFN-gamma-induced STAT1 tyrosine phosphorylation by human CMV is mediated by SHP2. J Immunol. 2008, 181: 5530-5536.CrossRefPubMed Baron M, Davignon JL: Inhibition of IFN-gamma-induced STAT1 tyrosine phosphorylation by human CMV is mediated by SHP2. J Immunol. 2008, 181: 5530-5536.CrossRefPubMed
12.
go back to reference Tsai CC, Kai JI, Huang WC, Wang CY, Wang Y, Chen CL, Fang YT, Lin YS, Anderson R, Chen SH, Tsao CW, Lin CF: Glycogen synthase kinase-3beta facilitates IFN-gamma-induced STAT1 activation by regulating Src homology-2 domain-containing phosphatase 2. J Immunol. 2009, 183: 856-864. 10.4049/jimmunol.0804033.CrossRefPubMed Tsai CC, Kai JI, Huang WC, Wang CY, Wang Y, Chen CL, Fang YT, Lin YS, Anderson R, Chen SH, Tsao CW, Lin CF: Glycogen synthase kinase-3beta facilitates IFN-gamma-induced STAT1 activation by regulating Src homology-2 domain-containing phosphatase 2. J Immunol. 2009, 183: 856-864. 10.4049/jimmunol.0804033.CrossRefPubMed
13.
go back to reference ten Hoeve J, de Jesus Ibarra-Sanchez M, Fu Y, Zhu W, Tremblay M, David M, Shuai K: Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol Cell Biol. 2002, 22: 5662-5668. 10.1128/MCB.22.16.5662-5668.2002.CrossRefPubMedPubMedCentral ten Hoeve J, de Jesus Ibarra-Sanchez M, Fu Y, Zhu W, Tremblay M, David M, Shuai K: Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol Cell Biol. 2002, 22: 5662-5668. 10.1128/MCB.22.16.5662-5668.2002.CrossRefPubMedPubMedCentral
14.
go back to reference Meyer T, Hendry L, Begitt A, John S, Vinkemeier U: A single residue modulates tyrosine dephosphorylation, oligomerization, and nuclear accumulation of stat transcription factors. J Biol Chem. 2004, 279: 18998-19007. 10.1074/jbc.M400766200.CrossRefPubMed Meyer T, Hendry L, Begitt A, John S, Vinkemeier U: A single residue modulates tyrosine dephosphorylation, oligomerization, and nuclear accumulation of stat transcription factors. J Biol Chem. 2004, 279: 18998-19007. 10.1074/jbc.M400766200.CrossRefPubMed
15.
go back to reference Chughtai N, Schimchowitsch S, Lebrun JJ, Ali S: Prolactin induces SHP-2 association with Stat5, nuclear translocation, and binding to the beta-casein gene promoter in mammary cells. J Biol Chem. 2002, 277: 31107-31114. 10.1074/jbc.M200156200.CrossRefPubMed Chughtai N, Schimchowitsch S, Lebrun JJ, Ali S: Prolactin induces SHP-2 association with Stat5, nuclear translocation, and binding to the beta-casein gene promoter in mammary cells. J Biol Chem. 2002, 277: 31107-31114. 10.1074/jbc.M200156200.CrossRefPubMed
16.
go back to reference Lessard L, Stuible M, Tremblay ML: The two faces of PTP1B in cancer. Biochim Biophys Acta. 2010, 1804: 613-619.CrossRefPubMed Lessard L, Stuible M, Tremblay ML: The two faces of PTP1B in cancer. Biochim Biophys Acta. 2010, 1804: 613-619.CrossRefPubMed
17.
go back to reference Yi T, Lindner D: The role and target potential of protein tyrosine phosphatases in cancer. Curr Oncol Rep. 2008, 10: 114-121. 10.1007/s11912-008-0019-6.CrossRefPubMed Yi T, Lindner D: The role and target potential of protein tyrosine phosphatases in cancer. Curr Oncol Rep. 2008, 10: 114-121. 10.1007/s11912-008-0019-6.CrossRefPubMed
18.
go back to reference Cho CY, Koo SH, Wang Y, Callaway S, Hedrick S, Mak PA, Orth AP, Peters EC, Saez E, Montminy M, Schultz PG, Chanda SK: Identification of the tyrosine phosphatase PTP-MEG2 as an antagonist of hepatic insulin signaling. Cell Metab. 2006, 3: 367-378. 10.1016/j.cmet.2006.03.006.CrossRefPubMed Cho CY, Koo SH, Wang Y, Callaway S, Hedrick S, Mak PA, Orth AP, Peters EC, Saez E, Montminy M, Schultz PG, Chanda SK: Identification of the tyrosine phosphatase PTP-MEG2 as an antagonist of hepatic insulin signaling. Cell Metab. 2006, 3: 367-378. 10.1016/j.cmet.2006.03.006.CrossRefPubMed
19.
go back to reference Chen M, Sun JP, Liu J, Yu X: Research progress of several protein tyrosine phosphatases in diabetes. Sheng Li Xue Bao. 2010, 62: 179-189.PubMed Chen M, Sun JP, Liu J, Yu X: Research progress of several protein tyrosine phosphatases in diabetes. Sheng Li Xue Bao. 2010, 62: 179-189.PubMed
20.
go back to reference Yuan T, Wang Y, Zhao ZJ, Gu H: Protein-tyrosine phosphatase PTPN9 negatively regulates ErbB2 and epidermal growth factor receptor signaling in breast cancer cells. J Biol Chem. 2010, 285: 14861-14870. 10.1074/jbc.M109.099879.CrossRefPubMedPubMedCentral Yuan T, Wang Y, Zhao ZJ, Gu H: Protein-tyrosine phosphatase PTPN9 negatively regulates ErbB2 and epidermal growth factor receptor signaling in breast cancer cells. J Biol Chem. 2010, 285: 14861-14870. 10.1074/jbc.M109.099879.CrossRefPubMedPubMedCentral
21.
go back to reference Huynh H, Bottini N, Williams S, Cherepanov V, Musumeci L, Saito K, Bruckner S, Vachon E, Wang X, Kruger J, Chow CW, Pellecchia M, Monosov E, Greer PA, Trimble W, Downey GP, Mustelin T: Control of vesicle fusion by a tyrosine phosphatase. Nat Cell Biol. 2004, 6: 831-839. 10.1038/ncb1164.CrossRefPubMed Huynh H, Bottini N, Williams S, Cherepanov V, Musumeci L, Saito K, Bruckner S, Vachon E, Wang X, Kruger J, Chow CW, Pellecchia M, Monosov E, Greer PA, Trimble W, Downey GP, Mustelin T: Control of vesicle fusion by a tyrosine phosphatase. Nat Cell Biol. 2004, 6: 831-839. 10.1038/ncb1164.CrossRefPubMed
22.
go back to reference Wang Y, Vachon E, Zhang J, Cherepanov V, Kruger J, Li J, Saito K, Shannon P, Bottini N, Huynh H, Ni H, Yang H, McKerlie C, Quaggin S, Zhao ZJ, Marsden PA, Mustelin T, Siminovitch KA, Downey GP: Tyrosine phosphatase MEG2 modulates murine development and platelet and lymphocyte activation through secretory vesicle function. J Exp Med. 2005, 202: 1587-1597. 10.1084/jem.20051108.CrossRefPubMedPubMedCentral Wang Y, Vachon E, Zhang J, Cherepanov V, Kruger J, Li J, Saito K, Shannon P, Bottini N, Huynh H, Ni H, Yang H, McKerlie C, Quaggin S, Zhao ZJ, Marsden PA, Mustelin T, Siminovitch KA, Downey GP: Tyrosine phosphatase MEG2 modulates murine development and platelet and lymphocyte activation through secretory vesicle function. J Exp Med. 2005, 202: 1587-1597. 10.1084/jem.20051108.CrossRefPubMedPubMedCentral
23.
go back to reference Xu MJ, Sui X, Zhao R, Dai C, Krantz SB, Zhao ZJ: PTP-MEG2 is activated in polycythemia vera erythroid progenitor cells and is required for growth and expansion of erythroid cells. Blood. 2003, 102: 4354-4360. 10.1182/blood-2003-04-1308.CrossRefPubMed Xu MJ, Sui X, Zhao R, Dai C, Krantz SB, Zhao ZJ: PTP-MEG2 is activated in polycythemia vera erythroid progenitor cells and is required for growth and expansion of erythroid cells. Blood. 2003, 102: 4354-4360. 10.1182/blood-2003-04-1308.CrossRefPubMed
24.
go back to reference Furth PA, Nakles RE, Millman S, Diaz-Cruz ES, Cabrera MC: Signal transducer and activator of transcription 5 as a key signaling pathway in normal mammary gland developmental biology and breast cancer. Breast Cancer Res. 2011, 13: 220-10.1186/bcr2921.CrossRefPubMedPubMedCentral Furth PA, Nakles RE, Millman S, Diaz-Cruz ES, Cabrera MC: Signal transducer and activator of transcription 5 as a key signaling pathway in normal mammary gland developmental biology and breast cancer. Breast Cancer Res. 2011, 13: 220-10.1186/bcr2921.CrossRefPubMedPubMedCentral
25.
go back to reference Zhang T, Seow KT, Ong CT, Cao X: Interdomain interaction of Stat3 regulates its Src homology 2 domain-mediated receptor binding activity. J Biol Chem. 2002, 277: 17556-17563. 10.1074/jbc.M105525200.CrossRefPubMed Zhang T, Seow KT, Ong CT, Cao X: Interdomain interaction of Stat3 regulates its Src homology 2 domain-mediated receptor binding activity. J Biol Chem. 2002, 277: 17556-17563. 10.1074/jbc.M105525200.CrossRefPubMed
26.
go back to reference Wang F, Zhang H, Zhang X, Wang Y, Ren F, Zhai Y, Chang Z: Varp interacts with Rab38 and functions as its potential effector. Biochem Biophys Res Commun. 2008, 372: 162-167. 10.1016/j.bbrc.2008.05.017.CrossRefPubMed Wang F, Zhang H, Zhang X, Wang Y, Ren F, Zhai Y, Chang Z: Varp interacts with Rab38 and functions as its potential effector. Biochem Biophys Res Commun. 2008, 372: 162-167. 10.1016/j.bbrc.2008.05.017.CrossRefPubMed
27.
go back to reference Qi Y, Zhao R, Cao H, Sui X, Krantz SB, Zhao ZJ: Purification and characterization of protein tyrosine phosphatase PTP-MEG2. J Cell Biochem. 2002, 86: 79-89. 10.1002/jcb.10195.CrossRefPubMed Qi Y, Zhao R, Cao H, Sui X, Krantz SB, Zhao ZJ: Purification and characterization of protein tyrosine phosphatase PTP-MEG2. J Cell Biochem. 2002, 86: 79-89. 10.1002/jcb.10195.CrossRefPubMed
28.
go back to reference Zhou L, He XD, Cui QC, Zhou WX, Qu Q, Zhou RL, Rui JA, Yu JC: Expression of LAPTM4B-35: A novel marker of progression, invasiveness and poor prognosis of extrahepatic cholangiocarcinoma. Cancer Lett. 2008, 264: 209-217. 10.1016/j.canlet.2008.01.025.CrossRefPubMed Zhou L, He XD, Cui QC, Zhou WX, Qu Q, Zhou RL, Rui JA, Yu JC: Expression of LAPTM4B-35: A novel marker of progression, invasiveness and poor prognosis of extrahepatic cholangiocarcinoma. Cancer Lett. 2008, 264: 209-217. 10.1016/j.canlet.2008.01.025.CrossRefPubMed
29.
go back to reference Costantino L, Barlocco D: STAT 3 as a target for cancer drug discovery. Curr Med Chem. 2008, 15: 834-843. 10.2174/092986708783955464.CrossRefPubMed Costantino L, Barlocco D: STAT 3 as a target for cancer drug discovery. Curr Med Chem. 2008, 15: 834-843. 10.2174/092986708783955464.CrossRefPubMed
30.
go back to reference Julien SG, Dube N, Hardy S, Tremblay ML: Inside the human cancer tyrosine phosphatome. Nat Rev Cancer. 2010, 11: 35-49.CrossRef Julien SG, Dube N, Hardy S, Tremblay ML: Inside the human cancer tyrosine phosphatome. Nat Rev Cancer. 2010, 11: 35-49.CrossRef
31.
go back to reference Sun T, Aceto N, Meerbrey KL, Kessler JD, Zhou C, Migliaccio I, Nguyen DX, Pavlova NN, Botero M, Huang J, Bernardi RJ, Schmitt E, Hu G, Li MZ, Dephoure N, Gygi SP, Rao M, Creighton CJ, Hilsenbeck SG, Shaw CA, Muzny D, Gibbs RA, Wheeler DA, Osborne CK, Schiff R, Bentires-Alj M, Elledge SJ, Westbrook TF: Activation of Multiple Proto-oncogenic Tyrosine Kinases in Breast Cancer via Loss of the PTPN12 Phosphatase. Cell. 2011, 144: 703-718. 10.1016/j.cell.2011.02.003.CrossRefPubMed Sun T, Aceto N, Meerbrey KL, Kessler JD, Zhou C, Migliaccio I, Nguyen DX, Pavlova NN, Botero M, Huang J, Bernardi RJ, Schmitt E, Hu G, Li MZ, Dephoure N, Gygi SP, Rao M, Creighton CJ, Hilsenbeck SG, Shaw CA, Muzny D, Gibbs RA, Wheeler DA, Osborne CK, Schiff R, Bentires-Alj M, Elledge SJ, Westbrook TF: Activation of Multiple Proto-oncogenic Tyrosine Kinases in Breast Cancer via Loss of the PTPN12 Phosphatase. Cell. 2011, 144: 703-718. 10.1016/j.cell.2011.02.003.CrossRefPubMed
32.
go back to reference Fridberg M, Kjellstrom S, Anagnostaki L, Skogvall I, Mustelin T, Wiebe T, Persson JL, Dictor M, Wingren AG: Immunohistochemical analyses of phosphatases in childhood B-cell lymphoma: lower expression of PTEN and HePTP and higher number of positive cells for nuclear SHP2 in B-cell lymphoma cases compared to controls. Pediatr Hematol Oncol. 2008, 25: 528-540. 10.1080/08880010802237054.CrossRefPubMed Fridberg M, Kjellstrom S, Anagnostaki L, Skogvall I, Mustelin T, Wiebe T, Persson JL, Dictor M, Wingren AG: Immunohistochemical analyses of phosphatases in childhood B-cell lymphoma: lower expression of PTEN and HePTP and higher number of positive cells for nuclear SHP2 in B-cell lymphoma cases compared to controls. Pediatr Hematol Oncol. 2008, 25: 528-540. 10.1080/08880010802237054.CrossRefPubMed
33.
go back to reference Glondu-Lassis M, Dromard M, Lacroix-Triki M, Nirde P, Puech C, Knani D, Chalbos D, Freiss G: PTPL1/PTPN13 regulates breast cancer cell aggressiveness through direct inactivation of Src kinase. Cancer Res. 2010, 70: 5116-5126. 10.1158/0008-5472.CAN-09-4368.CrossRefPubMedPubMedCentral Glondu-Lassis M, Dromard M, Lacroix-Triki M, Nirde P, Puech C, Knani D, Chalbos D, Freiss G: PTPL1/PTPN13 regulates breast cancer cell aggressiveness through direct inactivation of Src kinase. Cancer Res. 2010, 70: 5116-5126. 10.1158/0008-5472.CAN-09-4368.CrossRefPubMedPubMedCentral
34.
go back to reference Dromard M, Bompard G, Glondu-Lassis M, Puech C, Chalbos D, Freiss G: The putative tumor suppressor gene PTPN13/PTPL1 induces apoptosis through insulin receptor substrate-1 dephosphorylation. Cancer Res. 2007, 67: 6806-6813. 10.1158/0008-5472.CAN-07-0513.CrossRefPubMed Dromard M, Bompard G, Glondu-Lassis M, Puech C, Chalbos D, Freiss G: The putative tumor suppressor gene PTPN13/PTPL1 induces apoptosis through insulin receptor substrate-1 dephosphorylation. Cancer Res. 2007, 67: 6806-6813. 10.1158/0008-5472.CAN-07-0513.CrossRefPubMed
Metadata
Title
Protein tyrosine phosphatase Meg2 dephosphorylates signal transducer and activator of transcription 3 and suppresses tumor growth in breast cancer
Authors
Fuqin Su
Fangli Ren
Yu Rong
Yangmeng Wang
Yongtao Geng
Yinyin Wang
Mengyao Feng
Yanfang Ju
Yi Li
Zhizhuang J Zhao
Kun Meng
Zhijie Chang
Publication date
01-04-2012
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 2/2012
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr3134

Other articles of this Issue 2/2012

Breast Cancer Research 2/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine