Skip to main content
Top
Published in: Journal of Bone and Mineral Metabolism 1/2009

01-01-2009 | Original Article

Protective protein/cathepsin A down-regulates osteoclastogenesis by associating with and degrading NF-κB p50/p65

Authors: Masaaki Masuhara, Takuya Sato, Naoto Hada, Yoshiyuki Hakeda

Published in: Journal of Bone and Mineral Metabolism | Issue 1/2009

Login to get access

Abstract

Disruption of the cooperative function balance between osteoblasts and osteoclasts causes various bone disorders, some of which are attributed to abnormal osteoclast recruitment. Osteoclast differentiation is dependent on the receptor activator of nuclear factor (NF)-κB ligand (RANKL) as well as the macrophage colony-stimulating factor. The osteoclast formation induced by cytokines requires activation of NF-κB, AP-1 and nuclear factor of activated T cells c1. However, osteoclasts are not the only cell types that express these transcription factors, suggesting that some unknown molecules specific for osteoclasts may associate with the transcription factors. Here, we explored the possibility of molecules binding directly to NF-κB and cloned protective protein/cathepsin A (PPCA) by yeast two-hybrid screening using a cDNA library of osteoclast precursors. Forced expression of PPCA with p50/p65 in HEK293 cells decreased both the level of p50/p65 proteins and the transcriptional activity. Abundant PPCA was detected in the lysosomes of the transfected HEK293 cells, but a small amount of this enzyme was also present in the cytosolic fraction. In addition, over-expression of PPCA caused the disappearance of p50/p65 in both the lysosomal and cytosolic fractions. PPCA was expressed throughout osteoclastogenesis, and the expression was slightly up-regulated by RANKL signaling. Knockdown of PPCA in osteoclast precursors with PPCA siRNA stimulated binding of nuclear proteins to oligonucleotides containing an NF-κB binding motif and increased osteoclastogenesis. Our present results indicate a novel role for PPCA in osteoclastogenesis via down-regulation of NF-κB activity and suggest a new function for PPCA as an NF-κB-degrading enzyme in addition to its known multifunctional properties.
Literature
1.
go back to reference Felix R, Cecchini M, Hofstetter W, Elford P, Stutzer A, Fleisch H (1990) Impairment of macrophage colony-stimulating factor production and lack of resident bone marrow macrophages in the osteopetrotic op/op mouse. J Bone Miner Res 5:781–789PubMedCrossRef Felix R, Cecchini M, Hofstetter W, Elford P, Stutzer A, Fleisch H (1990) Impairment of macrophage colony-stimulating factor production and lack of resident bone marrow macrophages in the osteopetrotic op/op mouse. J Bone Miner Res 5:781–789PubMedCrossRef
2.
go back to reference Kodama H, Yamasaki A, Nose M, Niida S, Ohgame Y, Abe M, Kumegawa M, Suda T (1991) Congenital osteoclast deficiency in osteopetrotic (op/op) mice is cured by injections of macrophage colony-stimulating factor. J Exp Med 173:269–272PubMedCrossRef Kodama H, Yamasaki A, Nose M, Niida S, Ohgame Y, Abe M, Kumegawa M, Suda T (1991) Congenital osteoclast deficiency in osteopetrotic (op/op) mice is cured by injections of macrophage colony-stimulating factor. J Exp Med 173:269–272PubMedCrossRef
3.
go back to reference Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:3597–3602PubMedCrossRef Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:3597–3602PubMedCrossRef
4.
go back to reference Lacey D, Timms E, Tan H, Kelley M, Dunstan C, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian Y, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle W (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176PubMedCrossRef Lacey D, Timms E, Tan H, Kelley M, Dunstan C, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian Y, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle W (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176PubMedCrossRef
5.
go back to reference Kong Y, Yoshida H, Sarosi I, Tan H, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos A, Van G, Itie A, Khoo W, Wakeham A, Dunstan C, Lacey D, Mak T, Boyle W, Penninger J (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323PubMedCrossRef Kong Y, Yoshida H, Sarosi I, Tan H, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos A, Van G, Itie A, Khoo W, Wakeham A, Dunstan C, Lacey D, Mak T, Boyle W, Penninger J (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323PubMedCrossRef
6.
go back to reference Franzoso G, Carlson L, Xing L, Poljak L, Shores E, Brown K, Leonardi A, Tran T, Boyce B, Siebenlist U (1997) Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev 11:3482–3496PubMedCrossRef Franzoso G, Carlson L, Xing L, Poljak L, Shores E, Brown K, Leonardi A, Tran T, Boyce B, Siebenlist U (1997) Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev 11:3482–3496PubMedCrossRef
7.
go back to reference Darnay B, Haridas V, Ni J, Moore P, Aggarwal B (1998) Characterization of the intracellular domain of receptor activator of NF-kappaB (RANK)Interaction with tumor necrosis factor receptor-associated factors and activation of NF-kappaB and c-Jun N-terminal kinase. J Biol Chem 273:20551–20555PubMedCrossRef Darnay B, Haridas V, Ni J, Moore P, Aggarwal B (1998) Characterization of the intracellular domain of receptor activator of NF-kappaB (RANK)Interaction with tumor necrosis factor receptor-associated factors and activation of NF-kappaB and c-Jun N-terminal kinase. J Biol Chem 273:20551–20555PubMedCrossRef
8.
go back to reference Matsuo K, Owens J, Tonko M, Elliott C, Chambers T, Wagner E (2000) Fosl1 is a transcriptional target of c-Fos during osteoclast differentiation. Nat Genet 24:184–187PubMedCrossRef Matsuo K, Owens J, Tonko M, Elliott C, Chambers T, Wagner E (2000) Fosl1 is a transcriptional target of c-Fos during osteoclast differentiation. Nat Genet 24:184–187PubMedCrossRef
9.
go back to reference Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner E, Mak T, Kodama T, Taniguchi T (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3:889–901PubMedCrossRef Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner E, Mak T, Kodama T, Taniguchi T (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3:889–901PubMedCrossRef
10.
go back to reference Asagiri M, Takayanagi H (2007) The molecular understanding of osteoclast differentiation. Bone 40:251–264PubMedCrossRef Asagiri M, Takayanagi H (2007) The molecular understanding of osteoclast differentiation. Bone 40:251–264PubMedCrossRef
11.
go back to reference Ishida N, Hayashi K, Hoshijima M, Ogawa T, Koga S, Miyatake Y, Kumegawa M, Kimura T, Takeya T (2002) Large scale gene expression analysis of osteoclastogenesis in vitro and elucidation of NFAT2 as a key regulator. J Biol Chem 277:41147–41156PubMedCrossRef Ishida N, Hayashi K, Hoshijima M, Ogawa T, Koga S, Miyatake Y, Kumegawa M, Kimura T, Takeya T (2002) Large scale gene expression analysis of osteoclastogenesis in vitro and elucidation of NFAT2 as a key regulator. J Biol Chem 277:41147–41156PubMedCrossRef
12.
go back to reference Koga T, Inui M, Inoue K, Kim S, Suematsu A, Kobayashi E, Iwata T, Ohnishi H, Matozaki T, Kodama T, Taniguchi T, Takayanagi H, Takai T (2004) Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428:758–763PubMedCrossRef Koga T, Inui M, Inoue K, Kim S, Suematsu A, Kobayashi E, Iwata T, Ohnishi H, Matozaki T, Kodama T, Taniguchi T, Takayanagi H, Takai T (2004) Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428:758–763PubMedCrossRef
13.
go back to reference Asagiri M, Sato K, Usami T, Ochi S, Nishina H, Yoshida H, Morita I, Wagner E, Mak T, Serfling E, Takayanagi H (2005) Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med 202:1261–1269PubMedCrossRef Asagiri M, Sato K, Usami T, Ochi S, Nishina H, Yoshida H, Morita I, Wagner E, Mak T, Serfling E, Takayanagi H (2005) Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med 202:1261–1269PubMedCrossRef
14.
go back to reference Jackman H, Tan F, Tamei H, Beurling-Harbury C, Li X, Skidgel R, Erdös E (1990) A peptidase in human platelets that deamidates tachykinins. Probable identity with the lysosomal “protective protein”. J Biol Chem 265:11265–11272PubMed Jackman H, Tan F, Tamei H, Beurling-Harbury C, Li X, Skidgel R, Erdös E (1990) A peptidase in human platelets that deamidates tachykinins. Probable identity with the lysosomal “protective protein”. J Biol Chem 265:11265–11272PubMed
15.
go back to reference Jackman H, Morris P, Deddish P, Skidgel R, Erdös E (1992) Inactivation of endothelin I by deamidase (lysosomal protective protein). J Biol Chem 267:2872–2875PubMed Jackman H, Morris P, Deddish P, Skidgel R, Erdös E (1992) Inactivation of endothelin I by deamidase (lysosomal protective protein). J Biol Chem 267:2872–2875PubMed
16.
go back to reference Hanna W, Turbov J, Jackman H, Tan F, Froelich C (1994) Dominant chymotrypsin-like esterase activity in human lymphocyte granules is mediated by the serine carboxypeptidase called cathepsin A-like protective protein. J Immunol 153:4663–4672PubMed Hanna W, Turbov J, Jackman H, Tan F, Froelich C (1994) Dominant chymotrypsin-like esterase activity in human lymphocyte granules is mediated by the serine carboxypeptidase called cathepsin A-like protective protein. J Immunol 153:4663–4672PubMed
17.
go back to reference Verheijen F, Palmeri S, Hoogeveen A, Galjaard H (1985) Human placental neuraminidase. Activation, stabilization and association with beta-galactosidase and its protective protein. Eur J Biochem 149:315–321PubMedCrossRef Verheijen F, Palmeri S, Hoogeveen A, Galjaard H (1985) Human placental neuraminidase. Activation, stabilization and association with beta-galactosidase and its protective protein. Eur J Biochem 149:315–321PubMedCrossRef
18.
go back to reference D’Agrosa R, Hubbes M, Zhang S, Shankaran R, Callahan J (1992) Characteristics of the beta-galactosidase-carboxypeptidase complex in GM1-gangliosidosis and beta-galactosialidosis fibroblasts. Biochem J 285(Pt 3):833–838PubMed D’Agrosa R, Hubbes M, Zhang S, Shankaran R, Callahan J (1992) Characteristics of the beta-galactosidase-carboxypeptidase complex in GM1-gangliosidosis and beta-galactosialidosis fibroblasts. Biochem J 285(Pt 3):833–838PubMed
19.
go back to reference d’Azzo A, Andria G, Striscuiglio P, Galjaard H (2001) Metabolic and molecular bases of inherited disease, 8th edn. New York, pp 3811–3826 d’Azzo A, Andria G, Striscuiglio P, Galjaard H (2001) Metabolic and molecular bases of inherited disease, 8th edn. New York, pp 3811–3826
20.
go back to reference van der Spoel A, Bonten E, d’Azzo A (1998) Transport of human lysosomal neuraminidase to mature lysosomes requires protective protein/cathepsin A. EMBO J 17:1588–1597PubMedCrossRef van der Spoel A, Bonten E, d’Azzo A (1998) Transport of human lysosomal neuraminidase to mature lysosomes requires protective protein/cathepsin A. EMBO J 17:1588–1597PubMedCrossRef
21.
go back to reference Bonten E, Wang D, Toy J, Mann L, Mignardot A, Yogalingam G, d’Azzo A (2004) Targeting macrophages with baculovirus-produced lysosomal enzymes: implications for enzyme replacement therapy of the glycoprotein storage disorder galactosialidosis. FASEB J 18:971–973PubMed Bonten E, Wang D, Toy J, Mann L, Mignardot A, Yogalingam G, d’Azzo A (2004) Targeting macrophages with baculovirus-produced lysosomal enzymes: implications for enzyme replacement therapy of the glycoprotein storage disorder galactosialidosis. FASEB J 18:971–973PubMed
22.
go back to reference Tatano Y, Takeuchi N, Kuwahara J, Sakuraba H, Takahashi T, Takada G, Itoh K (2006) Elastogenesis in cultured dermal fibroblasts from patients with lysosomal beta-galactosidase, protective protein/cathepsin A and neuraminidase-1 deficiencies. J Med Invest 53:103–112PubMedCrossRef Tatano Y, Takeuchi N, Kuwahara J, Sakuraba H, Takahashi T, Takada G, Itoh K (2006) Elastogenesis in cultured dermal fibroblasts from patients with lysosomal beta-galactosidase, protective protein/cathepsin A and neuraminidase-1 deficiencies. J Med Invest 53:103–112PubMedCrossRef
23.
go back to reference Matsuda K (1976) Studies on cathepsins of rat liver lysosomes. III. Hydrolysis of peptides, and inactivation of angiotensin and bradykinin by cathepsin A. J Biochem 80:659–669PubMed Matsuda K (1976) Studies on cathepsins of rat liver lysosomes. III. Hydrolysis of peptides, and inactivation of angiotensin and bradykinin by cathepsin A. J Biochem 80:659–669PubMed
24.
go back to reference Itoh K, Oyanagi K, Takahashi H, Sato T, Hashizume Y, Shimmoto M, Sakuraba H (2000) Endothelin-1 in the brain of patients with galactosialidosis: its abnormal increase and distribution pattern. Ann Neurol 47:122–126PubMedCrossRef Itoh K, Oyanagi K, Takahashi H, Sato T, Hashizume Y, Shimmoto M, Sakuraba H (2000) Endothelin-1 in the brain of patients with galactosialidosis: its abnormal increase and distribution pattern. Ann Neurol 47:122–126PubMedCrossRef
25.
go back to reference Jimi E, Ikebe T, Takahashi N, Hirata M, Suda T, Koga T (1996) Interleukin-1 alpha activates an NF-kappaB-like factor in osteoclast-like cells. J Biol Chem 271:4605–4608PubMedCrossRef Jimi E, Ikebe T, Takahashi N, Hirata M, Suda T, Koga T (1996) Interleukin-1 alpha activates an NF-kappaB-like factor in osteoclast-like cells. J Biol Chem 271:4605–4608PubMedCrossRef
26.
go back to reference Jimi E, Nakamura I, Ikebe T, Akiyama S, Takahashi N, Suda T (1998) Activation of NF-kappaB is involved in the survival of osteoclasts promoted by interleukin-1. J Biol Chem 273:8799–8805PubMedCrossRef Jimi E, Nakamura I, Ikebe T, Akiyama S, Takahashi N, Suda T (1998) Activation of NF-kappaB is involved in the survival of osteoclasts promoted by interleukin-1. J Biol Chem 273:8799–8805PubMedCrossRef
27.
go back to reference Wei S, Teitelbaum S, Wang M, Ross F (2001) Receptor activator of nuclear factor-kappa b ligand activates nuclear factor-kappa b in osteoclast precursors. Endocrinology 142:1290–1295PubMedCrossRef Wei S, Teitelbaum S, Wang M, Ross F (2001) Receptor activator of nuclear factor-kappa b ligand activates nuclear factor-kappa b in osteoclast precursors. Endocrinology 142:1290–1295PubMedCrossRef
28.
go back to reference Iotsova V, Caamaño J, Loy J, Yang Y, Lewin A, Bravo R (1997) Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat Med 3:1285–1289PubMedCrossRef Iotsova V, Caamaño J, Loy J, Yang Y, Lewin A, Bravo R (1997) Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat Med 3:1285–1289PubMedCrossRef
29.
go back to reference Kobayashi N, Kadono Y, Naito A, Matsumoto K, Yamamoto T, Tanaka S, Inoue J (2001) Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. EMBO J 20:1271–1280PubMedCrossRef Kobayashi N, Kadono Y, Naito A, Matsumoto K, Yamamoto T, Tanaka S, Inoue J (2001) Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. EMBO J 20:1271–1280PubMedCrossRef
30.
go back to reference Hayashi T, Kaneda T, Toyama Y, Kumegawa M, Hakeda Y (2002) Regulation of receptor activator of NF-kappa B ligand-induced osteoclastogenesis by endogenous interferon-beta (INF-beta) and suppressors of cytokine signaling (SOCS). The possible counteracting role of SOCSs- in IFN-beta-inhibited osteoclast formation. J Biol Chem 277:27880–27886PubMedCrossRef Hayashi T, Kaneda T, Toyama Y, Kumegawa M, Hakeda Y (2002) Regulation of receptor activator of NF-kappa B ligand-induced osteoclastogenesis by endogenous interferon-beta (INF-beta) and suppressors of cytokine signaling (SOCS). The possible counteracting role of SOCSs- in IFN-beta-inhibited osteoclast formation. J Biol Chem 277:27880–27886PubMedCrossRef
31.
go back to reference Sato T, Watanabe K, Masuhara M, Hada N, Hakeda Y (2007) Production of IL-7 is increased in ovariectomized mice, but not RANKL mRNA expression by osteoblasts/stromal cells in bone, and IL-7 enhances generation of osteoclast precursors in vitro. J Bone Miner Metab 25:19–27PubMedCrossRef Sato T, Watanabe K, Masuhara M, Hada N, Hakeda Y (2007) Production of IL-7 is increased in ovariectomized mice, but not RANKL mRNA expression by osteoblasts/stromal cells in bone, and IL-7 enhances generation of osteoclast precursors in vitro. J Bone Miner Metab 25:19–27PubMedCrossRef
32.
go back to reference Katunuma N (1997) Mechanism and regulation of bone resorption by osteoclasts. Curr Top Cell Regul 35:179–192PubMedCrossRef Katunuma N (1997) Mechanism and regulation of bone resorption by osteoclasts. Curr Top Cell Regul 35:179–192PubMedCrossRef
33.
go back to reference Tezuka K, Tezuka Y, Maejima A, Sato T, Nemoto K, Kamioka H, Hakeda Y, Kumegawa M (1994) Molecular cloning of a possible cysteine proteinase predominantly expressed in osteoclasts. J Biol Chem 269:1106–1109PubMed Tezuka K, Tezuka Y, Maejima A, Sato T, Nemoto K, Kamioka H, Hakeda Y, Kumegawa M (1994) Molecular cloning of a possible cysteine proteinase predominantly expressed in osteoclasts. J Biol Chem 269:1106–1109PubMed
34.
go back to reference Takuma A, Kaneda T, Sato T, Ninomiya S, Kumegawa M, Hakeda Y (2003) Dexamethasone enhances osteoclast formation synergistically with transforming growth factor-beta by stimulating the priming of osteoclast progenitors for differentiation into osteoclasts. J Biol Chem 278:44667–44674PubMedCrossRef Takuma A, Kaneda T, Sato T, Ninomiya S, Kumegawa M, Hakeda Y (2003) Dexamethasone enhances osteoclast formation synergistically with transforming growth factor-beta by stimulating the priming of osteoclast progenitors for differentiation into osteoclasts. J Biol Chem 278:44667–44674PubMedCrossRef
35.
go back to reference Tjelle T, Brech A, Juvet L, Griffiths G, Berg T (1996) Isolation and characterization of early endosomes, late endosomes and terminal lysosomes: their role in protein degradation. J Cell Sci 109(Pt 12):2905–2914PubMed Tjelle T, Brech A, Juvet L, Griffiths G, Berg T (1996) Isolation and characterization of early endosomes, late endosomes and terminal lysosomes: their role in protein degradation. J Cell Sci 109(Pt 12):2905–2914PubMed
36.
go back to reference Ishibashi A, Tsuboi R, Shinmei M (1984) beta-Galactosidase and neuraminidase deficiency associated with angiokeratoma corporis diffusum. Arch Dermatol 120:1344–1346PubMedCrossRef Ishibashi A, Tsuboi R, Shinmei M (1984) beta-Galactosidase and neuraminidase deficiency associated with angiokeratoma corporis diffusum. Arch Dermatol 120:1344–1346PubMedCrossRef
37.
go back to reference Yamano T, Shimada M, Sugino H, Dezawa T, Koike M, Okada S, Yabuuchi H (1985) Ultrastructural study on a severe infantile sialidosis (beta-galactosidase-alpha-neuraminidase deficiency). Neuropediatrics 16:109–112PubMedCrossRef Yamano T, Shimada M, Sugino H, Dezawa T, Koike M, Okada S, Yabuuchi H (1985) Ultrastructural study on a severe infantile sialidosis (beta-galactosidase-alpha-neuraminidase deficiency). Neuropediatrics 16:109–112PubMedCrossRef
38.
go back to reference Nordborg C, Kyllerman M, Conradi N, Mansson J (1997) Early-infantile galactosialidosis with multiple brain infarctions: morphological, neuropathological and neurochemical findings. Acta Neuropathol 93:24–33PubMedCrossRef Nordborg C, Kyllerman M, Conradi N, Mansson J (1997) Early-infantile galactosialidosis with multiple brain infarctions: morphological, neuropathological and neurochemical findings. Acta Neuropathol 93:24–33PubMedCrossRef
39.
go back to reference Cuervo A, Mann L, Bonten E, d’Azzo A, Dice J (2003) Cathepsin A regulates chaperone-mediated autophagy through cleavage of the lysosomal receptor. EMBO J 22:47–59PubMedCrossRef Cuervo A, Mann L, Bonten E, d’Azzo A, Dice J (2003) Cathepsin A regulates chaperone-mediated autophagy through cleavage of the lysosomal receptor. EMBO J 22:47–59PubMedCrossRef
40.
go back to reference Bidere N, Lorenzo H, Carmona S, Laforge M, Harper F, Dumont C, Senik A (2003) Cathepsin D triggers Bax activation, resulting in selective apoptosis-inducing factor (AIF) relocation in T lymphocytes entering the early commitment phase to apoptosis. J Biol Chem 278:31401–31411PubMedCrossRef Bidere N, Lorenzo H, Carmona S, Laforge M, Harper F, Dumont C, Senik A (2003) Cathepsin D triggers Bax activation, resulting in selective apoptosis-inducing factor (AIF) relocation in T lymphocytes entering the early commitment phase to apoptosis. J Biol Chem 278:31401–31411PubMedCrossRef
41.
go back to reference Chen W, Li N, Chen T, Han Y, Li C, Wang Y, He W, Zhang L, Wan T, Cao X (2005) The lysosome-associated apoptosis-inducing protein containing the pleckstrin homology (PH) and FYVE domains (LAPF), representative of a novel family of PH and FYVE domain-containing proteins, induces caspase-independent apoptosis via the lysosomal-mitochondrial pathway. J Biol Chem 280:40985–40995PubMedCrossRef Chen W, Li N, Chen T, Han Y, Li C, Wang Y, He W, Zhang L, Wan T, Cao X (2005) The lysosome-associated apoptosis-inducing protein containing the pleckstrin homology (PH) and FYVE domains (LAPF), representative of a novel family of PH and FYVE domain-containing proteins, induces caspase-independent apoptosis via the lysosomal-mitochondrial pathway. J Biol Chem 280:40985–40995PubMedCrossRef
42.
go back to reference Taha T, Kitatani K, Bielawski J, Cho W, Hannun Y, Obeid L (2005) Tumor necrosis factor induces the loss of sphingosine kinase-1 by a cathepsin B-dependent mechanism. J Biol Chem 280:17196–17202PubMedCrossRef Taha T, Kitatani K, Bielawski J, Cho W, Hannun Y, Obeid L (2005) Tumor necrosis factor induces the loss of sphingosine kinase-1 by a cathepsin B-dependent mechanism. J Biol Chem 280:17196–17202PubMedCrossRef
43.
go back to reference Bulynko Y, Hsing L, Mason R, Tremethick D, Grigoryev S (2006) Cathepsin L stabilizes the histone modification landscape on the Y chromosome and pericentromeric heterochromatin. Mol Cell Biol 26:4172–4184PubMedCrossRef Bulynko Y, Hsing L, Mason R, Tremethick D, Grigoryev S (2006) Cathepsin L stabilizes the histone modification landscape on the Y chromosome and pericentromeric heterochromatin. Mol Cell Biol 26:4172–4184PubMedCrossRef
44.
go back to reference Kerssen D, Hambruch E, Klaas W, Platta H, de Kruijff B, Erdmann R, Kunau W, Schliebs W (2006) Membrane association of the cycling peroxisome import receptor Pex5p. J Biol Chem 281:27003–27015PubMedCrossRef Kerssen D, Hambruch E, Klaas W, Platta H, de Kruijff B, Erdmann R, Kunau W, Schliebs W (2006) Membrane association of the cycling peroxisome import receptor Pex5p. J Biol Chem 281:27003–27015PubMedCrossRef
45.
go back to reference Leon C, Nandan D, Lopez M, Moeenrezakhanlou A, Reiner N (2006) Annexin V associates with the IFN-gamma receptor and regulates IFN-gamma signaling. J Immunol 176:5934–5942PubMed Leon C, Nandan D, Lopez M, Moeenrezakhanlou A, Reiner N (2006) Annexin V associates with the IFN-gamma receptor and regulates IFN-gamma signaling. J Immunol 176:5934–5942PubMed
46.
go back to reference Xing L, Bushnell T, Carlson L, Tai Z, Tondravi M, Siebenlist U, Young F, Boyce B (2002) NF-kappaB p50 and p52 expression is not required for RANK-expressing osteoclast progenitor formation but is essential for RANK- and cytokine-mediated osteoclastogenesis. J Bone Miner Res 17:1200–1210PubMedCrossRef Xing L, Bushnell T, Carlson L, Tai Z, Tondravi M, Siebenlist U, Young F, Boyce B (2002) NF-kappaB p50 and p52 expression is not required for RANK-expressing osteoclast progenitor formation but is essential for RANK- and cytokine-mediated osteoclastogenesis. J Bone Miner Res 17:1200–1210PubMedCrossRef
47.
go back to reference Ruocco M, Maeda S, Park J, Lawrence T, Hsu L, Cao Y, Schett G, Wagner E, Karin M (2005) IκB kinase (IKK)β, but not IKKa is a critical mediator of osteoclast survival and is required for inflammation-induced bone loss. J Exp Med 201:1677–1687PubMedCrossRef Ruocco M, Maeda S, Park J, Lawrence T, Hsu L, Cao Y, Schett G, Wagner E, Karin M (2005) IκB kinase (IKK)β, but not IKKa is a critical mediator of osteoclast survival and is required for inflammation-induced bone loss. J Exp Med 201:1677–1687PubMedCrossRef
48.
go back to reference Novack D, Yin L, Hagen-Stapleton A, Schreiber R, Goeddel D, Ross F, Teitelbaum S (2003) The IkappaB function of NF-kappaB2 p100 controls stimulated osteoclastogenesis. J Exp Med 198:771–781PubMedCrossRef Novack D, Yin L, Hagen-Stapleton A, Schreiber R, Goeddel D, Ross F, Teitelbaum S (2003) The IkappaB function of NF-kappaB2 p100 controls stimulated osteoclastogenesis. J Exp Med 198:771–781PubMedCrossRef
49.
go back to reference Aya K, Alhawagri M, Hagen-Stapleton A, Kitaura H, Kanagawa O, Novack D (2005) NF-(kappa)B-inducing kinase controls lymphocyte and osteoclast activities in inflammatory arthritis. J Clin Invest 115:1848–1854PubMedCrossRef Aya K, Alhawagri M, Hagen-Stapleton A, Kitaura H, Kanagawa O, Novack D (2005) NF-(kappa)B-inducing kinase controls lymphocyte and osteoclast activities in inflammatory arthritis. J Clin Invest 115:1848–1854PubMedCrossRef
50.
go back to reference Cuervo A, Hu W, Lim B, Dice J (1998) IkappaB is a substrate for a selective pathway of lysosomal proteolysis. Mol Biol Cell 9:1995–2010PubMed Cuervo A, Hu W, Lim B, Dice J (1998) IkappaB is a substrate for a selective pathway of lysosomal proteolysis. Mol Biol Cell 9:1995–2010PubMed
Metadata
Title
Protective protein/cathepsin A down-regulates osteoclastogenesis by associating with and degrading NF-κB p50/p65
Authors
Masaaki Masuhara
Takuya Sato
Naoto Hada
Yoshiyuki Hakeda
Publication date
01-01-2009
Publisher
Springer Japan
Published in
Journal of Bone and Mineral Metabolism / Issue 1/2009
Print ISSN: 0914-8779
Electronic ISSN: 1435-5604
DOI
https://doi.org/10.1007/s00774-008-0017-7

Other articles of this Issue 1/2009

Journal of Bone and Mineral Metabolism 1/2009 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine