Skip to main content
Top
Published in: Metabolic Brain Disease 6/2017

01-12-2017 | Original Article

Protective effects of curcumin against rotenone-induced rat model of Parkinson’s disease: in vivo electrophysiological and behavioral study

Authors: L. V. Darbinyan, L. E. Hambardzumyan, K. V. Simonyan, V. A. Chavushyan, L. P. Manukyan, S. A. Badalyan, N. Khalaji, V. H. Sarkisian

Published in: Metabolic Brain Disease | Issue 6/2017

Login to get access

Abstract

Curcumin is a naturally occurring phenolic yellow chemical isolated from the rhizomes of the plant Curcuma longa (turmeric), and is a major component of the spice turmeric. Curcumin has protective effects against rotenone-induced neural damage in Parkinson’s disease (PD). The present study aims at providing new evidence for the validity of the rotenone rat model of PD by examining whether neuronal activity in the hippocampus is altered. Male albino rats were treated with rotenone injections (2.5 mg/ml intraperitoneally) for 21 days. We examined the effects of curcumin (200 mg/kg) on behavior and electrophysiology in a rat model of PD induced by rotenone. Motor activity was assessed by cylinder test. The electrical activity of neurons was measured in hippocampus. Rotenone causes significant reduction of neuronal activity. The results show that curcumin can improve the motor impairments and electrophysiological parameters and may be beneficial in the treatment of PD.
Literature
go back to reference Akram M, Shahab-uddin AA, Khan U, Hanna A et al (2010) Curcuma longa and curcumin: a review article. Rom J Biol – Plant Biol 55:65–70 Akram M, Shahab-uddin AA, Khan U, Hanna A et al (2010) Curcuma longa and curcumin: a review article. Rom J Biol – Plant Biol 55:65–70
go back to reference Almeida MF, Silva CM, D'Unhao AM, Ferrari MF (2016) Aged Lewis rats exposed to low and moderate doses of rotenone are a good model for studying the process of protein aggregation and its effects upon central nervous system cell physiology. Arq Neuropsiquiatr 74(9):737–744CrossRefPubMed Almeida MF, Silva CM, D'Unhao AM, Ferrari MF (2016) Aged Lewis rats exposed to low and moderate doses of rotenone are a good model for studying the process of protein aggregation and its effects upon central nervous system cell physiology. Arq Neuropsiquiatr 74(9):737–744CrossRefPubMed
go back to reference Arimura N, Kaibuchi K (2007) Neuronal polarity: from extracellular signals to intracellular mechanisms. Nat Rev Neurosci 8:194–205CrossRefPubMed Arimura N, Kaibuchi K (2007) Neuronal polarity: from extracellular signals to intracellular mechanisms. Nat Rev Neurosci 8:194–205CrossRefPubMed
go back to reference Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306CrossRefPubMed Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306CrossRefPubMed
go back to reference Blesa J, Juri C, Collantes M, Peñuelas I, Prieto E, Iglesias E et al (2010) Progression of dopaminergic depletion in a model of MPTP-induced Parkinsonism in non-human primates. An (18)F-DOPA and (11)C-DTBZ PET study. Neurobiol Dis 38:456–463CrossRefPubMed Blesa J, Juri C, Collantes M, Peñuelas I, Prieto E, Iglesias E et al (2010) Progression of dopaminergic depletion in a model of MPTP-induced Parkinsonism in non-human primates. An (18)F-DOPA and (11)C-DTBZ PET study. Neurobiol Dis 38:456–463CrossRefPubMed
go back to reference Cannon JR, Tapias V, Na HM, Honick AS, Drolet RE, Greenamyre JT (2009) A highly reproducible rotenone model of Parkinson’s disease. Neurobiol Dis 34:279–290CrossRefPubMedPubMedCentral Cannon JR, Tapias V, Na HM, Honick AS, Drolet RE, Greenamyre JT (2009) A highly reproducible rotenone model of Parkinson’s disease. Neurobiol Dis 34:279–290CrossRefPubMedPubMedCentral
go back to reference Chainani-Wu N (2003) Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J Altern Complement Med 9(1):161–168CrossRefPubMed Chainani-Wu N (2003) Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J Altern Complement Med 9(1):161–168CrossRefPubMed
go back to reference Chen J, Tang XQ, Zhi JL, Cui Y, Yu HM, Tang EH, Sun SN, Feng JQ, Chen PX (2006) Curcumin protects PC12 cells against 1-methyl-4-phenylpyridinium ion-induced apoptosis by bcl-2-mitochondria-ROS-iNOS pathway. Apoptosis 11:943–953CrossRefPubMed Chen J, Tang XQ, Zhi JL, Cui Y, Yu HM, Tang EH, Sun SN, Feng JQ, Chen PX (2006) Curcumin protects PC12 cells against 1-methyl-4-phenylpyridinium ion-induced apoptosis by bcl-2-mitochondria-ROS-iNOS pathway. Apoptosis 11:943–953CrossRefPubMed
go back to reference Chinta SJ, Ganesan A, Reis-Rodrigues P, Lithgow GJ, Andersen JK (2013) Anti-inflammatory role of the isoflavone diadzein in lipopolysaccharide-stimulated microglia: implications for Parkinson’s disease. Neurotox Res 23:145–153CrossRefPubMed Chinta SJ, Ganesan A, Reis-Rodrigues P, Lithgow GJ, Andersen JK (2013) Anti-inflammatory role of the isoflavone diadzein in lipopolysaccharide-stimulated microglia: implications for Parkinson’s disease. Neurotox Res 23:145–153CrossRefPubMed
go back to reference Choi G-Y, Kim H-B, Hwang E-S, Lee S, Kim M-J, Choi J-Y, Lee S-O, Kim S-S, Park J-H (2017) Curcumin alters neural plasticity and viability of intact hippocampal circuits and attenuates behavioral despair and COX-2 expression in chronically stressed rats. Mediat Inflamm 2017:6280925 Choi G-Y, Kim H-B, Hwang E-S, Lee S, Kim M-J, Choi J-Y, Lee S-O, Kim S-S, Park J-H (2017) Curcumin alters neural plasticity and viability of intact hippocampal circuits and attenuates behavioral despair and COX-2 expression in chronically stressed rats. Mediat Inflamm 2017:6280925
go back to reference Costa C, Belcastro V, Tozzi A et al (2008) Electrophysiology and pharmacology of striatal neuronal dysfunction induced by mitochondrial complex I inhibition. J Neurosci 28:8040–8052CrossRefPubMed Costa C, Belcastro V, Tozzi A et al (2008) Electrophysiology and pharmacology of striatal neuronal dysfunction induced by mitochondrial complex I inhibition. J Neurosci 28:8040–8052CrossRefPubMed
go back to reference Danbolt NC (2000) Sodium- and potassium-dependent amino acid transporters in brain plasma membrane. In: Bjorklund A, Hokfelt T, Ottersen OP, Strom-Mathisen J (eds) Handbook of chemical neuroanatomy. 18Glutamate. Elsevier; Amesterdam, Lausanne, New York, Oxford Shannon, Singapore, Tokyo, p 231–254 Danbolt NC (2000) Sodium- and potassium-dependent amino acid transporters in brain plasma membrane. In: Bjorklund A, Hokfelt T, Ottersen OP, Strom-Mathisen J (eds) Handbook of chemical neuroanatomy. 18Glutamate. Elsevier; Amesterdam, Lausanne, New York, Oxford Shannon, Singapore, Tokyo, p 231–254
go back to reference Darbinyan LV (2016) Effects of curcumin on hippocampal neural activity in rats. Med Sci Armenia 56(4):84–92 Darbinyan LV (2016) Effects of curcumin on hippocampal neural activity in rats. Med Sci Armenia 56(4):84–92
go back to reference Darbinyan LV, Hambardzumyan LE, Simonyan KV, Chavushyan VA, Manukyan LP, Badalyan SA, Sarkisian VH (2016) Activity of hippocampal neurons upon high frequency stimulation of substantia nigra in experimentally induced Parkinson’s disease in rats. Morphol 10(4):29–34 Darbinyan LV, Hambardzumyan LE, Simonyan KV, Chavushyan VA, Manukyan LP, Badalyan SA, Sarkisian VH (2016) Activity of hippocampal neurons upon high frequency stimulation of substantia nigra in experimentally induced Parkinson’s disease in rats. Morphol 10(4):29–34
go back to reference Darbinyan LV, Hambardzumyan LE, Simonyan KV, Chavushyan VA, Manukyan LP, Sarkisian VH (2017) Rotenone impairs hippocampal neuronal activity in a rat model of Parkinson’s disease. Pathophysiology 24(1):23–30CrossRefPubMed Darbinyan LV, Hambardzumyan LE, Simonyan KV, Chavushyan VA, Manukyan LP, Sarkisian VH (2017) Rotenone impairs hippocampal neuronal activity in a rat model of Parkinson’s disease. Pathophysiology 24(1):23–30CrossRefPubMed
go back to reference Diaz-Corrales FJ, Asanuma M, Mizayaki I, Miyoshi K, Ogawa N (2005) Rotenone induces aggregation of gamma-tubulin protein and subsequent disorganization of the centrosome: relevance to formation of inclusion bodies and neurodegeneration. Neuroscience 133:117–135CrossRefPubMed Diaz-Corrales FJ, Asanuma M, Mizayaki I, Miyoshi K, Ogawa N (2005) Rotenone induces aggregation of gamma-tubulin protein and subsequent disorganization of the centrosome: relevance to formation of inclusion bodies and neurodegeneration. Neuroscience 133:117–135CrossRefPubMed
go back to reference Donzanti BA, Yamamoto BK (1988) An improved and rapid HPLC-EC method for the isocratic separation of amino acid neurotransmitters from brain tissue and microdialysis perfusates. Life Sci 11:913–922CrossRef Donzanti BA, Yamamoto BK (1988) An improved and rapid HPLC-EC method for the isocratic separation of amino acid neurotransmitters from brain tissue and microdialysis perfusates. Life Sci 11:913–922CrossRef
go back to reference Eisenhofer G, Kopin IJ, Goldstein DS (2004) Leaky catecholamine stores: undue waste or a stress response coping mechanism? Ann N Y Acad Sci 1018:224–230CrossRefPubMed Eisenhofer G, Kopin IJ, Goldstein DS (2004) Leaky catecholamine stores: undue waste or a stress response coping mechanism? Ann N Y Acad Sci 1018:224–230CrossRefPubMed
go back to reference Filippov AV, Kotenkov SA, Munavirov B, Antzutkin ON (2014) Effect of curcumin on lateral diffusion of phosphatidylcholines in saturated and unsaturated bilayers. Langmuir 30(35):10686–10690CrossRefPubMed Filippov AV, Kotenkov SA, Munavirov B, Antzutkin ON (2014) Effect of curcumin on lateral diffusion of phosphatidylcholines in saturated and unsaturated bilayers. Langmuir 30(35):10686–10690CrossRefPubMed
go back to reference First M, Gil-Ad I, Taler M, Tarasenko I, Novak N, Weizman A (2011) The effects of fluoxetine treatment in a chronic mild stress rat model on depression-related behavior, brain neurotrophins and ERK expression. J Mol Neurosci 45(2):246–255CrossRefPubMed First M, Gil-Ad I, Taler M, Tarasenko I, Novak N, Weizman A (2011) The effects of fluoxetine treatment in a chronic mild stress rat model on depression-related behavior, brain neurotrophins and ERK expression. J Mol Neurosci 45(2):246–255CrossRefPubMed
go back to reference Gao HM, Hong JS, Zhang W, Liu B (2002) Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons. J Neurosci Off J Soc Neurosci 22:782–790 Gao HM, Hong JS, Zhang W, Liu B (2002) Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons. J Neurosci Off J Soc Neurosci 22:782–790
go back to reference Gilhotra N, Dhingra D (2010) GABAergic and nitriergic modulation by curcumin for its antianxiety-like activity in mice. Brain Res 1352:167–175CrossRefPubMed Gilhotra N, Dhingra D (2010) GABAergic and nitriergic modulation by curcumin for its antianxiety-like activity in mice. Brain Res 1352:167–175CrossRefPubMed
go back to reference Giri RK, Rajagopal V, Kalra VK (2004) Curcumin, the active constituent of turmeric, inhibits amyloid peptide-induced cytochemokine gene expression and CCR5-mediated chemotaxis of THP-1 monocytes by modulating early growth response-1 transcription factor. J Neurochem 91:1199–1210CrossRefPubMed Giri RK, Rajagopal V, Kalra VK (2004) Curcumin, the active constituent of turmeric, inhibits amyloid peptide-induced cytochemokine gene expression and CCR5-mediated chemotaxis of THP-1 monocytes by modulating early growth response-1 transcription factor. J Neurochem 91:1199–1210CrossRefPubMed
go back to reference Gubellini P, Eusebio A, Oueslati A, Melon C, Kerkerian-Le Goff L, Salin P (2006) Chronic high frequency stimulation of the sub-thalamic nucleus and L-DOPA treatment in experimental parkinsonism; effects of motor behaviour and striatal glutamate transmission. Eur J Neuro Sci 24:1802–1814CrossRef Gubellini P, Eusebio A, Oueslati A, Melon C, Kerkerian-Le Goff L, Salin P (2006) Chronic high frequency stimulation of the sub-thalamic nucleus and L-DOPA treatment in experimental parkinsonism; effects of motor behaviour and striatal glutamate transmission. Eur J Neuro Sci 24:1802–1814CrossRef
go back to reference Hall H, Reyes S, Landeck N, Bye C, Leanza G, Double K, Thompson L, Halliday G, Kirik D (2014) Hippocampal Lewy pathology and cholinergic dysfunction are associated with dementia in Parkinson’s disease. Brain 137(Pt 9):2493–2508CrossRefPubMed Hall H, Reyes S, Landeck N, Bye C, Leanza G, Double K, Thompson L, Halliday G, Kirik D (2014) Hippocampal Lewy pathology and cholinergic dysfunction are associated with dementia in Parkinson’s disease. Brain 137(Pt 9):2493–2508CrossRefPubMed
go back to reference Hoglinger GU, Feger J, Prigent A, Michel PP, Parain K, Champy P, Ruberg M, Oertel WH, Hirsch EC (2003) Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats. J Neurochem 84:491–502CrossRefPubMed Hoglinger GU, Feger J, Prigent A, Michel PP, Parain K, Champy P, Ruberg M, Oertel WH, Hirsch EC (2003) Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats. J Neurochem 84:491–502CrossRefPubMed
go back to reference Hu X, Huang F, Szymusiak M, Liu Y, Wang ZJ (2015) Curcumin attenuates opioid tolerance and dependence by inhibiting Ca2+/calmodulin-dependent protein kinase II α activity. J Pharmacol Exp Ther 352:420–428CrossRefPubMedPubMedCentral Hu X, Huang F, Szymusiak M, Liu Y, Wang ZJ (2015) Curcumin attenuates opioid tolerance and dependence by inhibiting Ca2+/calmodulin-dependent protein kinase II α activity. J Pharmacol Exp Ther 352:420–428CrossRefPubMedPubMedCentral
go back to reference Huang HC, Chang P, Lu SY, Zheng BW, Jiang ZF (2015) Protection of curcumin against amyloid-β-induced cell damage and death involves the prevention from NMDA receptor-mediated intracellular Ca2+ elevation. J Recept Signal Transduct Res 35(5):450–457CrossRefPubMed Huang HC, Chang P, Lu SY, Zheng BW, Jiang ZF (2015) Protection of curcumin against amyloid-β-induced cell damage and death involves the prevention from NMDA receptor-mediated intracellular Ca2+ elevation. J Recept Signal Transduct Res 35(5):450–457CrossRefPubMed
go back to reference Janezic S, Threlfell S, Dodson PD et al (2013) Deficits in dopaminergic transmission precede neuron loss and dysfunction in a new Parkinson model. Proc Natl Acad Sci U S A 110:E4016–E4025CrossRefPubMedPubMedCentral Janezic S, Threlfell S, Dodson PD et al (2013) Deficits in dopaminergic transmission precede neuron loss and dysfunction in a new Parkinson model. Proc Natl Acad Sci U S A 110:E4016–E4025CrossRefPubMedPubMedCentral
go back to reference Karlstetter M, Lippe E, Walczak Y, Moehle C, Aslanidis A, Mirza M, Langmann T (2011) Curcumin is a potent modulator of microglial gene expression and migration. J Neuroinflammation 8:125CrossRefPubMedPubMedCentral Karlstetter M, Lippe E, Walczak Y, Moehle C, Aslanidis A, Mirza M, Langmann T (2011) Curcumin is a potent modulator of microglial gene expression and migration. J Neuroinflammation 8:125CrossRefPubMedPubMedCentral
go back to reference Keating DJ (2008) Mitochondrial dysfunction, oxidative stress, regulation of exocytosis and their relevance to neurodegenerative diseases. J Neurochem 104:298–305PubMed Keating DJ (2008) Mitochondrial dysfunction, oxidative stress, regulation of exocytosis and their relevance to neurodegenerative diseases. J Neurochem 104:298–305PubMed
go back to reference Kehagia AA, Barker RA, Robbins TW (2010) Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson’s disease. Lancet Neurol 9:1200–1213CrossRefPubMed Kehagia AA, Barker RA, Robbins TW (2010) Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson’s disease. Lancet Neurol 9:1200–1213CrossRefPubMed
go back to reference Kim do Y, Vallejo J, Rho JM (2010) Ketones prevent synaptic dysfunction induced by mitochondrial respiratory complex inhibitors. J Neurochem 114:130–141PubMed Kim do Y, Vallejo J, Rho JM (2010) Ketones prevent synaptic dysfunction induced by mitochondrial respiratory complex inhibitors. J Neurochem 114:130–141PubMed
go back to reference Kim SJ, Son TG, Park HR et al (2008) Curcumin stimulates proliferation of embryonic neural progenitor cells and neurogenesis in the adult hippocampus. J Biol Chem 283(21):14497–14505CrossRefPubMedPubMedCentral Kim SJ, Son TG, Park HR et al (2008) Curcumin stimulates proliferation of embryonic neural progenitor cells and neurogenesis in the adult hippocampus. J Biol Chem 283(21):14497–14505CrossRefPubMedPubMedCentral
go back to reference Kulkarni SK, Akula KK (2012) Evaluation of antidepressant-like activity of novel water-soluble curcumin formulations and St. John’s wort in behavioral paradigms of despair. Deshpande J Pharmacol 89(1–2):83–90 Kulkarni SK, Akula KK (2012) Evaluation of antidepressant-like activity of novel water-soluble curcumin formulations and St. John’s wort in behavioral paradigms of despair. Deshpande J Pharmacol 89(1–2):83–90
go back to reference Lansbury PT, Brice A (2002) Genetics of Parkinson’s disease and biochemical studies of implicated gene products - commentary. Curr Opin Cell Biol 14:653–660CrossRefPubMed Lansbury PT, Brice A (2002) Genetics of Parkinson’s disease and biochemical studies of implicated gene products - commentary. Curr Opin Cell Biol 14:653–660CrossRefPubMed
go back to reference Lavoie S, Chen Y, Dalton TP, Gysin R, Cuénod M, Steullet P, Do KQ (2009) Curcumin, quercetin, and tBHQ modulate glutathione levels in astrocytes and neurons: importance of the glutamate cysteine ligase modifier subunit. J Neurochem 108:1410–1422CrossRefPubMed Lavoie S, Chen Y, Dalton TP, Gysin R, Cuénod M, Steullet P, Do KQ (2009) Curcumin, quercetin, and tBHQ modulate glutathione levels in astrocytes and neurons: importance of the glutamate cysteine ligase modifier subunit. J Neurochem 108:1410–1422CrossRefPubMed
go back to reference Li Z, Okamoto K, Hayashi Y, Sheng M (2004) The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119:873–887CrossRefPubMed Li Z, Okamoto K, Hayashi Y, Sheng M (2004) The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119:873–887CrossRefPubMed
go back to reference Liu Y, Wong TP, Aarts M (2007) NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci 27:2846–2857CrossRefPubMed Liu Y, Wong TP, Aarts M (2007) NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci 27:2846–2857CrossRefPubMed
go back to reference Liu Z, Yu Y, Li X, Ross CA, Smith WW (2011) Curcumin protects against A53T α-synuclein-induced toxicity in a PC12 inducible cell model for Parkinsonism. Pharmacol Res 63:439–444CrossRefPubMed Liu Z, Yu Y, Li X, Ross CA, Smith WW (2011) Curcumin protects against A53T α-synuclein-induced toxicity in a PC12 inducible cell model for Parkinsonism. Pharmacol Res 63:439–444CrossRefPubMed
go back to reference Liu Z, Li T, Yang D, Smith WW (2013) Curcumin protects against rotenone-induced neurotoxicity in cell and drosophila models of Parkinson’s disease. Advances in Parkinson’s Disease 2:18–27CrossRef Liu Z, Li T, Yang D, Smith WW (2013) Curcumin protects against rotenone-induced neurotoxicity in cell and drosophila models of Parkinson’s disease. Advances in Parkinson’s Disease 2:18–27CrossRef
go back to reference Marshall LE, Himes RH (1978) Rotenone inhibition of tubulin self-assembly. Biochim Biophys Acta 543:590–594CrossRefPubMed Marshall LE, Himes RH (1978) Rotenone inhibition of tubulin self-assembly. Biochim Biophys Acta 543:590–594CrossRefPubMed
go back to reference Matteucci A, Frank C, Domenici MR (2005) Curcumin treatment protects rat retinal neurons against excitotoxicity: effect on N-methyl-D-aspartate-induced intracellular Ca(2+) increase. Exp Brain Res 167:641–648CrossRefPubMed Matteucci A, Frank C, Domenici MR (2005) Curcumin treatment protects rat retinal neurons against excitotoxicity: effect on N-methyl-D-aspartate-induced intracellular Ca(2+) increase. Exp Brain Res 167:641–648CrossRefPubMed
go back to reference Matteucci A, Cammarota R, Paradisi S, Varano M, Balduzzi M, Leo L, Bellenchi GC, De Nuccio C, Carnovale-Scalzo G, Scorcia G, Frank C, Mallozzi C, Di Stasi AM, Visentin S, Malchiodi-Albedi F (2011) Curcumin protects against NMDA-induced toxicity: a possible role for NR2A subunit. Invest Ophthalmol Vis Sci 52(2):1070–1077CrossRefPubMed Matteucci A, Cammarota R, Paradisi S, Varano M, Balduzzi M, Leo L, Bellenchi GC, De Nuccio C, Carnovale-Scalzo G, Scorcia G, Frank C, Mallozzi C, Di Stasi AM, Visentin S, Malchiodi-Albedi F (2011) Curcumin protects against NMDA-induced toxicity: a possible role for NR2A subunit. Invest Ophthalmol Vis Sci 52(2):1070–1077CrossRefPubMed
go back to reference Meissner WG, Frasier M, Gasser T, Goetz CG, Lozano A, Piccini P, Obeso JA, Rascol O, Schapira A, Voon V, Weiner DM, Tison F, Bezard E (2011) Priorities in Parkinson’s disease research. Nat Rev Drug Discov 10:377–393CrossRefPubMed Meissner WG, Frasier M, Gasser T, Goetz CG, Lozano A, Piccini P, Obeso JA, Rascol O, Schapira A, Voon V, Weiner DM, Tison F, Bezard E (2011) Priorities in Parkinson’s disease research. Nat Rev Drug Discov 10:377–393CrossRefPubMed
go back to reference Monroy A, Lithgow GJ, Alavez S (2013) Curcumin and neurodegenerative diseases. BioFactors (Oxford, England) 39(1):122–132CrossRef Monroy A, Lithgow GJ, Alavez S (2013) Curcumin and neurodegenerative diseases. BioFactors (Oxford, England) 39(1):122–132CrossRef
go back to reference Moussa E-HC, Rae C, Bubb WA, Griffin JL, Deters NA, Balcar VJ (2007) Inhibitors of glutamate transport modulate distinct patterns in brain metabolism. J Neurosci Res 85:342–350CrossRefPubMed Moussa E-HC, Rae C, Bubb WA, Griffin JL, Deters NA, Balcar VJ (2007) Inhibitors of glutamate transport modulate distinct patterns in brain metabolism. J Neurosci Res 85:342–350CrossRefPubMed
go back to reference Moussa CE, Rusnak M, Hailu A, Sidhu A, Fricke ST (2008) Alterations of striatal glutamate transmission in rotenone-treated mice: MRI/MRS in vivo studies. Exp Neurol 209:224–233CrossRefPubMed Moussa CE, Rusnak M, Hailu A, Sidhu A, Fricke ST (2008) Alterations of striatal glutamate transmission in rotenone-treated mice: MRI/MRS in vivo studies. Exp Neurol 209:224–233CrossRefPubMed
go back to reference Mythri RB, Jagatha B, Pradhan N, Andersen J, Bharath MM (2007) Mitochondrial complex I inhibition in Parkinson’s disease: how can curcumin protect mitochondria? Antioxid Redox Signal 9(3):399–408CrossRefPubMed Mythri RB, Jagatha B, Pradhan N, Andersen J, Bharath MM (2007) Mitochondrial complex I inhibition in Parkinson’s disease: how can curcumin protect mitochondria? Antioxid Redox Signal 9(3):399–408CrossRefPubMed
go back to reference Ortiz-Ortiz MA, Morán JM, Ruiz-Mesa LM, Niso-Santano M, Bravo-SanPedro JM, Gómez-Sánchez R, González-Polo RA, Fuentes JM (2010) Curcumin exposure induces expression of the Parkinson’s disease-associated leucine-rich repeat kinase 2 (LRRK2) in rat mesencephalic cells. Neurosci Lett 468:120–124CrossRefPubMed Ortiz-Ortiz MA, Morán JM, Ruiz-Mesa LM, Niso-Santano M, Bravo-SanPedro JM, Gómez-Sánchez R, González-Polo RA, Fuentes JM (2010) Curcumin exposure induces expression of the Parkinson’s disease-associated leucine-rich repeat kinase 2 (LRRK2) in rat mesencephalic cells. Neurosci Lett 468:120–124CrossRefPubMed
go back to reference Ottersen OP, Strom-Mathisen J (2000) Handbook of chemical neuroanatomy. 18Glutamate. Elsevier, Amesterdam Ottersen OP, Strom-Mathisen J (2000) Handbook of chemical neuroanatomy. 18Glutamate. Elsevier, Amesterdam
go back to reference Patel BA, Arundell M, Parker KH, Yeoman MS, OHare D (2005) Simple and rapid determination of serotonin and catecholamines in biological tissue using high-performance liquid chromatography with electrochemical detection. J Chromatogr B 818(2):269–276CrossRef Patel BA, Arundell M, Parker KH, Yeoman MS, OHare D (2005) Simple and rapid determination of serotonin and catecholamines in biological tissue using high-performance liquid chromatography with electrochemical detection. J Chromatogr B 818(2):269–276CrossRef
go back to reference Paxinos G, Watson CH (2005) The rat brain in stereotaxic coordinates, 5th edn. Academic Press, New York, p 367 Paxinos G, Watson CH (2005) The rat brain in stereotaxic coordinates, 5th edn. Academic Press, New York, p 367
go back to reference Qualls Z et al (2014) Protective effects of curcumin against rotenone and salsolinol induced toxicity: implications for Parkinson’s disease. Neurotox Res 25:81–89CrossRefPubMedPubMedCentral Qualls Z et al (2014) Protective effects of curcumin against rotenone and salsolinol induced toxicity: implications for Parkinson’s disease. Neurotox Res 25:81–89CrossRefPubMedPubMedCentral
go back to reference Ren Y, Feng J (2007) Rotenone selectively kills serotonergic neurons through a microtubule-dependent mechanism. J Neurochem 103:303–311PubMed Ren Y, Feng J (2007) Rotenone selectively kills serotonergic neurons through a microtubule-dependent mechanism. J Neurochem 103:303–311PubMed
go back to reference Ren Y, Liu W, Jiang H, Jiang Q, Feng J (2005) Selective vulnerability of dopaminergic neurons to microtubule depolymerization. J Biol Chem 280:34105–34112CrossRefPubMed Ren Y, Liu W, Jiang H, Jiang Q, Feng J (2005) Selective vulnerability of dopaminergic neurons to microtubule depolymerization. J Biol Chem 280:34105–34112CrossRefPubMed
go back to reference Roberts PJ, Storm-Mathesin J, Johnson GAR (1981) Glutamate transmitter in the central nervous system. John Wiley and Sons, Chichester Roberts PJ, Storm-Mathesin J, Johnson GAR (1981) Glutamate transmitter in the central nervous system. John Wiley and Sons, Chichester
go back to reference Saybasili H, Yuksel M, Haklar G, Yalcin AS (2001) Effect of mitochondrial electron transport chain inhibitors on superoxide radical generation in rat hippocampal and striatal slices. Antioxid Redox Signal 3:1099–1104CrossRefPubMed Saybasili H, Yuksel M, Haklar G, Yalcin AS (2001) Effect of mitochondrial electron transport chain inhibitors on superoxide radical generation in rat hippocampal and striatal slices. Antioxid Redox Signal 3:1099–1104CrossRefPubMed
go back to reference Schallert T, Tillerson J (1999) Intervention strategies for degeneration of dopamine neurons in Parkinsonism: optimizing behavioral assessment of outcome. In: Emerich DF, Dean RL III, Sanberg PR (eds) Central nervous system diseases. Humana, Totowa, pp 131–151 Schallert T, Tillerson J (1999) Intervention strategies for degeneration of dopamine neurons in Parkinsonism: optimizing behavioral assessment of outcome. In: Emerich DF, Dean RL III, Sanberg PR (eds) Central nervous system diseases. Humana, Totowa, pp 131–151
go back to reference Schallert T, Fleming SM, Leasure JL, Tillerson JL, Bland ST (2000) CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, Parkinsonism and spinal cord injury. Neuropharmacology 39:777–787CrossRefPubMed Schallert T, Fleming SM, Leasure JL, Tillerson JL, Bland ST (2000) CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, Parkinsonism and spinal cord injury. Neuropharmacology 39:777–787CrossRefPubMed
go back to reference Schuh RA, Matthews CC, Fishman PS (2008) Interaction of mitochondrial respiratory inhibitors and excitotoxins potentiates cell death in hippocampal slice cultures. J Neurosci Res 86:3306–3313CrossRefPubMed Schuh RA, Matthews CC, Fishman PS (2008) Interaction of mitochondrial respiratory inhibitors and excitotoxins potentiates cell death in hippocampal slice cultures. J Neurosci Res 86:3306–3313CrossRefPubMed
go back to reference Sims NR, Pulsinelli WA (1987) Altered mitochondrial respiration in selectively vulnerable brain subregions following transient forebrain ischemia in the rat. J Neurochem 49:1367–1374CrossRefPubMed Sims NR, Pulsinelli WA (1987) Altered mitochondrial respiration in selectively vulnerable brain subregions following transient forebrain ischemia in the rat. J Neurochem 49:1367–1374CrossRefPubMed
go back to reference Son HJ, Lee JA, Shin N et al (2012) A novel compound PTIQ protects the nigral dopaminergic neurones in an animal model of Parkinson’s disease induced by MPTP. Brit J Pharmacol 165(7):2213–2227CrossRef Son HJ, Lee JA, Shin N et al (2012) A novel compound PTIQ protects the nigral dopaminergic neurones in an animal model of Parkinson’s disease induced by MPTP. Brit J Pharmacol 165(7):2213–2227CrossRef
go back to reference Sweet ES, Saunier-Rebori B, Yue Z, Blitzer RD (2015) The Parkinson’s disease-associated mutation LRRK2-G2019S impairs synaptic plasticity in mouse hippocampus. J Neurosci 35:11190–11195CrossRefPubMedPubMedCentral Sweet ES, Saunier-Rebori B, Yue Z, Blitzer RD (2015) The Parkinson’s disease-associated mutation LRRK2-G2019S impairs synaptic plasticity in mouse hippocampus. J Neurosci 35:11190–11195CrossRefPubMedPubMedCentral
go back to reference Talpade DJ, Greene JG, Higgins DS Jr, Greenamyre JT (2000) In vivo labeling of mitochondrial complex I (NADH:ubiquinone oxidoreductase) in rat brain using [(3)H]dihydrorotenone. J Neurochem 75(6):2611–2621CrossRefPubMed Talpade DJ, Greene JG, Higgins DS Jr, Greenamyre JT (2000) In vivo labeling of mitochondrial complex I (NADH:ubiquinone oxidoreductase) in rat brain using [(3)H]dihydrorotenone. J Neurochem 75(6):2611–2621CrossRefPubMed
go back to reference Ulusoy GK, Celik T, Kayir H, Gürsoy M, Isik AT, Uzbay TI (2011) Effects of pioglitazone and retinoic acid in a rotenone model of Parkinson’s disease. Brain Res Bull 85(6):380–384CrossRefPubMed Ulusoy GK, Celik T, Kayir H, Gürsoy M, Isik AT, Uzbay TI (2011) Effects of pioglitazone and retinoic acid in a rotenone model of Parkinson’s disease. Brain Res Bull 85(6):380–384CrossRefPubMed
go back to reference Wang J, Du XX, Jiang H, Xie JX (2009) Curcumin attenuates 6-hydroxydopamine-induced cytotoxicity by anti-oxidation and nuclear factor-kappa B modulation in MES23.5 cells. Biochem Pharmacol 78(2):178–183CrossRefPubMed Wang J, Du XX, Jiang H, Xie JX (2009) Curcumin attenuates 6-hydroxydopamine-induced cytotoxicity by anti-oxidation and nuclear factor-kappa B modulation in MES23.5 cells. Biochem Pharmacol 78(2):178–183CrossRefPubMed
go back to reference Wang MS, Boddapati S, Emadi S, Sierks MR (2010) Curcumin reduces α-synuclein induced cytotoxicity in Parkinson’s disease cell model. BMC Neurosci 11:57CrossRefPubMedPubMedCentral Wang MS, Boddapati S, Emadi S, Sierks MR (2010) Curcumin reduces α-synuclein induced cytotoxicity in Parkinson’s disease cell model. BMC Neurosci 11:57CrossRefPubMedPubMedCentral
go back to reference Wang J, Zhang YJ, Du S (2012) The protective effect of curcumin on Abeta induced aberrant cell cycle reentry on primary cultured rat cortical neurons. Eur Rev Med Pharmacol Sci 16:445–454PubMed Wang J, Zhang YJ, Du S (2012) The protective effect of curcumin on Abeta induced aberrant cell cycle reentry on primary cultured rat cortical neurons. Eur Rev Med Pharmacol Sci 16:445–454PubMed
go back to reference Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L, Aigner S, Hetzer C, Loher T, Vilar M, Campioni S, Tzitzilonis C, Soragni A, Jessberger S, Mira H, Consiglio A, Pham E, Masliah E, Gage FH, Riek R (2011) In vivo demonstration that α-synuclein oligomers are toxic. Proc Natl Acad Sci U S A 108:4194–4199CrossRefPubMedPubMedCentral Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L, Aigner S, Hetzer C, Loher T, Vilar M, Campioni S, Tzitzilonis C, Soragni A, Jessberger S, Mira H, Consiglio A, Pham E, Masliah E, Gage FH, Riek R (2011) In vivo demonstration that α-synuclein oligomers are toxic. Proc Natl Acad Sci U S A 108:4194–4199CrossRefPubMedPubMedCentral
go back to reference Wu YN, Johnson SW (2009) Rotenone reduces Mg2+− dependent block of NMDA currents in substantianigra dopamine neurons. Neurotoxicology 30:320–325CrossRefPubMed Wu YN, Johnson SW (2009) Rotenone reduces Mg2+− dependent block of NMDA currents in substantianigra dopamine neurons. Neurotoxicology 30:320–325CrossRefPubMed
go back to reference Xu G, Perez-Pinzon MA, Sick TJ (2003) Mitochondrial complex I inhibition produces selective damage to hippocampal subfield CA1 in organotypic slice cultures. Neurotox Res 5:529–538CrossRefPubMed Xu G, Perez-Pinzon MA, Sick TJ (2003) Mitochondrial complex I inhibition produces selective damage to hippocampal subfield CA1 in organotypic slice cultures. Neurotox Res 5:529–538CrossRefPubMed
go back to reference Ye J, Zhang Y (2012) Curcumin protects against intracellular amyloid toxicity in rat primary neurons. Int J Clin Exp Med 5:44–49PubMedPubMedCentral Ye J, Zhang Y (2012) Curcumin protects against intracellular amyloid toxicity in rat primary neurons. Int J Clin Exp Med 5:44–49PubMedPubMedCentral
go back to reference Yenkoyan K, Safaryan K, Chavushyan V, Meliksetyan I, Navasardyan G, Sarkissian J, Galoyan A, Aghajanov M (2011) Neuroprotective action of proline-rich polypeptide-1 in β -amyloid induced neurodegeneration in rats. Brain Res Bull 86:262–271CrossRefPubMed Yenkoyan K, Safaryan K, Chavushyan V, Meliksetyan I, Navasardyan G, Sarkissian J, Galoyan A, Aghajanov M (2011) Neuroprotective action of proline-rich polypeptide-1 in β -amyloid induced neurodegeneration in rats. Brain Res Bull 86:262–271CrossRefPubMed
go back to reference Yu S, Zheng W, Xin N, Chi ZH, Wang NQ, Nie YX, Feng WY, Wang ZY (2010) Curcumin prevents dopaminergic neuronal death through inhibition of the c-Jun N-terminal kinase pathway. Rejuvenation Res 13:55–64CrossRefPubMed Yu S, Zheng W, Xin N, Chi ZH, Wang NQ, Nie YX, Feng WY, Wang ZY (2010) Curcumin prevents dopaminergic neuronal death through inhibition of the c-Jun N-terminal kinase pathway. Rejuvenation Res 13:55–64CrossRefPubMed
go back to reference Zbarsky V, Datla KP, Parkar S, Rai DK, Aruoma OI, Dexter DT (2005) Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radic Res 39:10CrossRef Zbarsky V, Datla KP, Parkar S, Rai DK, Aruoma OI, Dexter DT (2005) Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radic Res 39:10CrossRef
go back to reference Zhou M, Baudry M (2006) Developmental changes in NMDA neurotoxicity reflect developmental changes in subunit composition of NMDA receptors. J Neurosci 26:2956–2963CrossRefPubMed Zhou M, Baudry M (2006) Developmental changes in NMDA neurotoxicity reflect developmental changes in subunit composition of NMDA receptors. J Neurosci 26:2956–2963CrossRefPubMed
go back to reference Zola-Morgan S, Squire RE, Amaral DG (1986) Human amnesia and medial temporal region: Enduring memory impairment following bilateral lesion limited to CA1 of the hippocampus. J Neurosci 6(10):2950–2967PubMed Zola-Morgan S, Squire RE, Amaral DG (1986) Human amnesia and medial temporal region: Enduring memory impairment following bilateral lesion limited to CA1 of the hippocampus. J Neurosci 6(10):2950–2967PubMed
Metadata
Title
Protective effects of curcumin against rotenone-induced rat model of Parkinson’s disease: in vivo electrophysiological and behavioral study
Authors
L. V. Darbinyan
L. E. Hambardzumyan
K. V. Simonyan
V. A. Chavushyan
L. P. Manukyan
S. A. Badalyan
N. Khalaji
V. H. Sarkisian
Publication date
01-12-2017
Publisher
Springer US
Published in
Metabolic Brain Disease / Issue 6/2017
Print ISSN: 0885-7490
Electronic ISSN: 1573-7365
DOI
https://doi.org/10.1007/s11011-017-0060-y

Other articles of this Issue 6/2017

Metabolic Brain Disease 6/2017 Go to the issue