Skip to main content
Top
Published in: Inflammation 6/2018

01-12-2018 | ORIGINAL ARTICLE

Protective Effect of Tubastatin A in CLP-Induced Lethal Sepsis

Authors: Qiufang Deng, Ting Zhao, Baihong Pan, Isabel S. Dennahy, Xiuzhen Duan, Aaron M. Williams, Baoling Liu, Nan Lin, Umar F. Bhatti, Eric Chen, Hasan B. Alam, Yongqing Li

Published in: Inflammation | Issue 6/2018

Login to get access

Abstract

We have found earlier that Tubastatin A (TubA), a selective inhibitor of histone deacetylase 6 (HDAC6), improves survival in a mouse model of lethal cecal ligation and puncture (CLP)-induced sepsis. However, the underlying mechanisms have not been fully established. This study sought to test the hypothesis that TubA could affect both lung and splenic functions. C57BL/6J mice were subjected to CLP, and randomized to receive either TubA (70 mg/kg) dissolved in dimethyl sulfoxide (DMSO), or DMSO alone, 1 h following CLP. Sham animals acted as control. Twenty-four hours later, lung tissue was harvested for pathological examination, and splenic tissue was harvested for bacterial colonization. In a parallel study, the spleen was collected 48 h following CLP, and single cell suspension was prepared. Splenocytes then underwent flow cytometry to analyze the immune cell population. RAW264.7 macrophages were treated with lipopolysaccharide (LPS) with or without the presence of TubA (10 μM) at 37 °C for 3 h to assess the effect on macrophage phagocytosis. We found that acute lung injury secondary to lethal sepsis was attenuated by TubA. Treatment with TubA restored the percentage of B lymphocytes, and significantly increased percentages of innate immune cells and macrophages compared to the vehicle-treated CLP group. Moreover, TubA significantly decreased the bacterial load in the spleen, and improved the phagocytic ability of RAW264.7 murine macrophages in vitro. Such findings may help to explain the beneficial effects of TubA treatment in a model of lethal sepsis, as previously reported.
Literature
1.
go back to reference Hicks, P., D.J. Cooper, and Australian, New Zealand Intensive Care Society B, Clinical Trials Group Executive C. 2008. The Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Critical Care and Resuscitation 10 (1): 8.PubMed Hicks, P., D.J. Cooper, and Australian, New Zealand Intensive Care Society B, Clinical Trials Group Executive C. 2008. The Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Critical Care and Resuscitation 10 (1): 8.PubMed
2.
go back to reference Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M. Coopersmith, R.S. Hotchkiss, M.M. Levy, J.C. Marshall, G.S. Martin, S.M. Opal, G.D. Rubenfeld, T. van der Poll, J.L. Vincent, and D.C. Angus. 2016. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA : the journal of the American Medical Association. 315 (8): 801–810.CrossRef Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M. Coopersmith, R.S. Hotchkiss, M.M. Levy, J.C. Marshall, G.S. Martin, S.M. Opal, G.D. Rubenfeld, T. van der Poll, J.L. Vincent, and D.C. Angus. 2016. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA : the journal of the American Medical Association. 315 (8): 801–810.CrossRef
3.
go back to reference Shankar-Hari, M., G.S. Phillips, M.L. Levy, C.W. Seymour, V.X. Liu, C.S. Deutschman, D.C. Angus, G.D. Rubenfeld, M. Singer, and for the Sepsis Definitions Task Force. 2016. Developing a new definition and assessing new clinical criteria for septic shock: for the third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA : the journal of the American Medical Association. 315 (8): 775–787.CrossRef Shankar-Hari, M., G.S. Phillips, M.L. Levy, C.W. Seymour, V.X. Liu, C.S. Deutschman, D.C. Angus, G.D. Rubenfeld, M. Singer, and for the Sepsis Definitions Task Force. 2016. Developing a new definition and assessing new clinical criteria for septic shock: for the third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA : the journal of the American Medical Association. 315 (8): 775–787.CrossRef
4.
go back to reference Daviaud, F., D. Grimaldi, A. Dechartres, J. Charpentier, G. Geri, N. Marin, J.D. Chiche, A. Cariou, J.P. Mira, and F. Pène. 2015. Timing and causes of death in septic shock. Annals of Intensive Care 5 (1): 16.CrossRef Daviaud, F., D. Grimaldi, A. Dechartres, J. Charpentier, G. Geri, N. Marin, J.D. Chiche, A. Cariou, J.P. Mira, and F. Pène. 2015. Timing and causes of death in septic shock. Annals of Intensive Care 5 (1): 16.CrossRef
5.
go back to reference Varisco, B.M. 2011. The pharmacology of acute lung injury in sepsis. Advances in Pharmacological Sciences 2011: 254619.CrossRef Varisco, B.M. 2011. The pharmacology of acute lung injury in sepsis. Advances in Pharmacological Sciences 2011: 254619.CrossRef
6.
go back to reference Luan, Y.Y., Y.M. Yao, X.Z. Xiao, and Z.Y. Sheng. 2015. Insights into the apoptotic death of immune cells in sepsis. Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research. 35 (1): 17–22.CrossRef Luan, Y.Y., Y.M. Yao, X.Z. Xiao, and Z.Y. Sheng. 2015. Insights into the apoptotic death of immune cells in sepsis. Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research. 35 (1): 17–22.CrossRef
7.
go back to reference Mortaz, E., M.R. Masjedi, P.J. Barnes, and I.M. Adcock. 2011. Epigenetics and chromatin remodeling play a role in lung disease. Tanaffos. 10 (4): 7–16.PubMedPubMedCentral Mortaz, E., M.R. Masjedi, P.J. Barnes, and I.M. Adcock. 2011. Epigenetics and chromatin remodeling play a role in lung disease. Tanaffos. 10 (4): 7–16.PubMedPubMedCentral
8.
go back to reference Zhang, X., Z. Yuan, Y. Zhang, S. Yong, A. Salas-Burgos, J. Koomen, N. Olashaw, J.T. Parsons, X.J. Yang, S.R. Dent, T.P. Yao, W.S. Lane, and E. Seto. 2007. HDAC6 modulates cell motility by altering the acetylation level of cortactin. Molecular Cell 27 (2): 197–213.CrossRef Zhang, X., Z. Yuan, Y. Zhang, S. Yong, A. Salas-Burgos, J. Koomen, N. Olashaw, J.T. Parsons, X.J. Yang, S.R. Dent, T.P. Yao, W.S. Lane, and E. Seto. 2007. HDAC6 modulates cell motility by altering the acetylation level of cortactin. Molecular Cell 27 (2): 197–213.CrossRef
9.
go back to reference Hubbert, C., A. Guardiola, R. Shao, Y. Kawaguchi, A. Ito, A. Nixon, M. Yoshida, X.F. Wang, and T.P. Yao. 2002. HDAC6 is a microtubule-associated deacetylase. Nature 417 (6887): 455–458.CrossRef Hubbert, C., A. Guardiola, R. Shao, Y. Kawaguchi, A. Ito, A. Nixon, M. Yoshida, X.F. Wang, and T.P. Yao. 2002. HDAC6 is a microtubule-associated deacetylase. Nature 417 (6887): 455–458.CrossRef
10.
go back to reference Ai, J., Y. Wang, J.A. Dar, J. Liu, L. Liu, J.B. Nelson, and Z. Wang. 2009. HDAC6 regulates androgen receptor hypersensitivity and nuclear localization via modulating Hsp90 acetylation in castration-resistant prostate cancer. Molecular Endocrinology 23 (12): 1963–1972.CrossRef Ai, J., Y. Wang, J.A. Dar, J. Liu, L. Liu, J.B. Nelson, and Z. Wang. 2009. HDAC6 regulates androgen receptor hypersensitivity and nuclear localization via modulating Hsp90 acetylation in castration-resistant prostate cancer. Molecular Endocrinology 23 (12): 1963–1972.CrossRef
11.
go back to reference Hackanson, B., L. Rimmele, M. Benkisser, M. Abdelkarim, M. Fliegauf, M. Jung, et al. 2012. HDAC6 as a target for antileukemic drugs in acute myeloid leukemia. Leukemia research. 36 (8): 1055–1062.CrossRef Hackanson, B., L. Rimmele, M. Benkisser, M. Abdelkarim, M. Fliegauf, M. Jung, et al. 2012. HDAC6 as a target for antileukemic drugs in acute myeloid leukemia. Leukemia research. 36 (8): 1055–1062.CrossRef
12.
go back to reference Hideshima, T., J. Qi, R.M. Paranal, W. Tang, E. Greenberg, N. West, M.E. Colling, G. Estiu, R. Mazitschek, J.A. Perry, H. Ohguchi, F. Cottini, N. Mimura, G. Görgün, Y.T. Tai, P.G. Richardson, R.D. Carrasco, O. Wiest, S.L. Schreiber, K.C. Anderson, and J.E. Bradner. 2016. Discovery of selective small-molecule HDAC6 inhibitor for overcoming proteasome inhibitor resistance in multiple myeloma. Proceedings of the National Academy of Sciences of the United States of America 113 (46): 13162–13167.CrossRef Hideshima, T., J. Qi, R.M. Paranal, W. Tang, E. Greenberg, N. West, M.E. Colling, G. Estiu, R. Mazitschek, J.A. Perry, H. Ohguchi, F. Cottini, N. Mimura, G. Görgün, Y.T. Tai, P.G. Richardson, R.D. Carrasco, O. Wiest, S.L. Schreiber, K.C. Anderson, and J.E. Bradner. 2016. Discovery of selective small-molecule HDAC6 inhibitor for overcoming proteasome inhibitor resistance in multiple myeloma. Proceedings of the National Academy of Sciences of the United States of America 113 (46): 13162–13167.CrossRef
13.
go back to reference Medler, T.R., J.M. Craig, A.A. Fiorillo, Y.B. Feeney, J.C. Harrell, and C.V. Clevenger. 2016. HDAC6 deacetylates HMGN2 to regulate Stat5a activity and breast cancer growth. Molecular Cancer Research 14 (10): 994–1008.CrossRef Medler, T.R., J.M. Craig, A.A. Fiorillo, Y.B. Feeney, J.C. Harrell, and C.V. Clevenger. 2016. HDAC6 deacetylates HMGN2 to regulate Stat5a activity and breast cancer growth. Molecular Cancer Research 14 (10): 994–1008.CrossRef
14.
go back to reference Lemon, D.D., T.R. Horn, M.A. Cavasin, M.Y. Jeong, K.W. Haubold, C.S. Long, D.C. Irwin, S.A. McCune, E. Chung, L.A. Leinwand, and T.A. McKinsey. 2011. Cardiac HDAC6 catalytic activity is induced in response to chronic hypertension. Journal of Molecular and Cellular Cardiology 51 (1): 41–50.CrossRef Lemon, D.D., T.R. Horn, M.A. Cavasin, M.Y. Jeong, K.W. Haubold, C.S. Long, D.C. Irwin, S.A. McCune, E. Chung, L.A. Leinwand, and T.A. McKinsey. 2011. Cardiac HDAC6 catalytic activity is induced in response to chronic hypertension. Journal of Molecular and Cellular Cardiology 51 (1): 41–50.CrossRef
15.
go back to reference Rivieccio, M.A., C. Brochier, D.E. Willis, B.A. Walker, M.A. D’Annibale, K. McLaughlin, A. Siddiq, A.P. Kozikowski, S.R. Jaffrey, J.L. Twiss, R.R. Ratan, and B. Langley. 2009. HDAC6 is a target for protection and regeneration following injury in the nervous system. Proceedings of the National Academy of Sciences of the United States of America 106 (46): 19599–19604.CrossRef Rivieccio, M.A., C. Brochier, D.E. Willis, B.A. Walker, M.A. D’Annibale, K. McLaughlin, A. Siddiq, A.P. Kozikowski, S.R. Jaffrey, J.L. Twiss, R.R. Ratan, and B. Langley. 2009. HDAC6 is a target for protection and regeneration following injury in the nervous system. Proceedings of the National Academy of Sciences of the United States of America 106 (46): 19599–19604.CrossRef
16.
go back to reference Li, Y., T. Zhao, B. Liu, I. Halaweish, R. Mazitschek, X. Duan, and H.B. Alam. 2015. Inhibition of histone deacetylase 6 improves long-term survival in a lethal septic model. The journal of trauma and acute care surgery. 78 (2): 378–385.CrossRef Li, Y., T. Zhao, B. Liu, I. Halaweish, R. Mazitschek, X. Duan, and H.B. Alam. 2015. Inhibition of histone deacetylase 6 improves long-term survival in a lethal septic model. The journal of trauma and acute care surgery. 78 (2): 378–385.CrossRef
17.
go back to reference Zhao T, Li Y, Liu B, Pan B, Cheng X, Georgoff P, et al. Inhibition of histone deacetylase 6 restores innate immune cells in the bone marrow in a lethal septic model. The journal of trauma and acute care surgery. 2016;80(1):34-40; discussion -1.CrossRef Zhao T, Li Y, Liu B, Pan B, Cheng X, Georgoff P, et al. Inhibition of histone deacetylase 6 restores innate immune cells in the bone marrow in a lethal septic model. The journal of trauma and acute care surgery. 2016;80(1):34-40; discussion -1.CrossRef
18.
go back to reference Zhao, T., B. Pan, H.B. Alam, B. Liu, R.T. Bronson, Q. Deng, E. Wu, and Y. Li. 2016. Protective effect of Cl-amidine against CLP-induced lethal septic shock in mice. Scientific Reports 6: 36696.CrossRef Zhao, T., B. Pan, H.B. Alam, B. Liu, R.T. Bronson, Q. Deng, E. Wu, and Y. Li. 2016. Protective effect of Cl-amidine against CLP-induced lethal septic shock in mice. Scientific Reports 6: 36696.CrossRef
19.
go back to reference Liu, Z., Y. Li, W. Chong, D.K. Deperalta, X. Duan, B. Liu, I. Halaweish, P. Zhou, and H.B. Alam. 2014. Creating a prosurvival phenotype through a histone deacetylase inhibitor in a lethal two-hit model. Shock 41 (2): 104–108.CrossRef Liu, Z., Y. Li, W. Chong, D.K. Deperalta, X. Duan, B. Liu, I. Halaweish, P. Zhou, and H.B. Alam. 2014. Creating a prosurvival phenotype through a histone deacetylase inhibitor in a lethal two-hit model. Shock 41 (2): 104–108.CrossRef
20.
go back to reference Kim, K., Y. Li, G. Jin, W. Chong, B. Liu, J. Lu, K. Lee, M. deMoya, G.C. Velmahos, and H.B. Alam. 2012. Effect of valproic acid on acute lung injury in a rodent model of intestinal ischemia reperfusion. Resuscitation 83 (2): 243–248.CrossRef Kim, K., Y. Li, G. Jin, W. Chong, B. Liu, J. Lu, K. Lee, M. deMoya, G.C. Velmahos, and H.B. Alam. 2012. Effect of valproic acid on acute lung injury in a rodent model of intestinal ischemia reperfusion. Resuscitation 83 (2): 243–248.CrossRef
21.
go back to reference Thangavel, J., S. Samanta, S. Rajasingh, B. Barani, Y.T. Xuan, B. Dawn, and J. Rajasingh. 2015. Epigenetic modifiers reduce inflammation and modulate macrophage phenotype during endotoxemia-induced acute lung injury. Journal of Cell Science 128 (16): 3094–3105.CrossRef Thangavel, J., S. Samanta, S. Rajasingh, B. Barani, Y.T. Xuan, B. Dawn, and J. Rajasingh. 2015. Epigenetic modifiers reduce inflammation and modulate macrophage phenotype during endotoxemia-induced acute lung injury. Journal of Cell Science 128 (16): 3094–3105.CrossRef
22.
go back to reference Yu, J., Z. Ma, S. Shetty, M. Ma, and J. Fu. 2016. Selective HDAC6 inhibition prevents TNF-alpha-induced lung endothelial cell barrier disruption and endotoxin-induced pulmonary edema. American journal of physiology Lung cellular and molecular physiology. 311 (1): L39–L47.CrossRef Yu, J., Z. Ma, S. Shetty, M. Ma, and J. Fu. 2016. Selective HDAC6 inhibition prevents TNF-alpha-induced lung endothelial cell barrier disruption and endotoxin-induced pulmonary edema. American journal of physiology Lung cellular and molecular physiology. 311 (1): L39–L47.CrossRef
23.
go back to reference Shukla, P., G.M. Rao, G. Pandey, S. Sharma, N. Mittapelly, R. Shegokar, and P.R. Mishra. 2014. Therapeutic interventions in sepsis: current and anticipated pharmacological agents. British Journal of Pharmacology 171 (22): 5011–5031.PubMedPubMedCentral Shukla, P., G.M. Rao, G. Pandey, S. Sharma, N. Mittapelly, R. Shegokar, and P.R. Mishra. 2014. Therapeutic interventions in sepsis: current and anticipated pharmacological agents. British Journal of Pharmacology 171 (22): 5011–5031.PubMedPubMedCentral
24.
go back to reference Boomer, J.S., To K, K.C. Chang, O. Takasu, D.F. Osborne, A.H. Walton, et al. 2011. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA : the journal of the American Medical Association. 306 (23): 2594–2605.CrossRef Boomer, J.S., To K, K.C. Chang, O. Takasu, D.F. Osborne, A.H. Walton, et al. 2011. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA : the journal of the American Medical Association. 306 (23): 2594–2605.CrossRef
25.
go back to reference Ariffin JK, das Gupta K, Kapetanovic R, Iyer A, Reid RC, Fairlie DP, et al. Histone deacetylase inhibitors promote mitochondrial reactive oxygen species production and bacterial clearance by human macrophages. Antimicrobial Agents and Chemotherapy 2015;60(3):1521–1529.CrossRef Ariffin JK, das Gupta K, Kapetanovic R, Iyer A, Reid RC, Fairlie DP, et al. Histone deacetylase inhibitors promote mitochondrial reactive oxygen species production and bacterial clearance by human macrophages. Antimicrobial Agents and Chemotherapy 2015;60(3):1521–1529.CrossRef
26.
go back to reference Borges da Silva H, Fonseca R, Pereira RM, Cassado Ados A, Alvarez JM, D’Imperio Lima MR. Splenic macrophage subsets and their function during blood-borne infections. Frontiers in immunology. 2015;6:480. Borges da Silva H, Fonseca R, Pereira RM, Cassado Ados A, Alvarez JM, D’Imperio Lima MR. Splenic macrophage subsets and their function during blood-borne infections. Frontiers in immunology. 2015;6:480.
27.
go back to reference Roger T LJ, Le Roy D, Goy G, Mombelli M, Koessler T, Ding XC, Chanson AL, Reymond MK, Miconnet I, Schrenzel J, François P, Calandra T. Histone deacetylase inhibitors impair innate immune responses to Toll-like receptor agonists and to infection.pdf. Blood 2011;117:1205–1217.CrossRef Roger T LJ, Le Roy D, Goy G, Mombelli M, Koessler T, Ding XC, Chanson AL, Reymond MK, Miconnet I, Schrenzel J, François P, Calandra T. Histone deacetylase inhibitors impair innate immune responses to Toll-like receptor agonists and to infection.pdf. Blood 2011;117:1205–1217.CrossRef
28.
go back to reference Chen, Y., R.L. Pan, X.L. Zhang, J.Z. Shao, L.X. Xiang, X.J. Dong, and G.R. Zhang. 2009. Induction of hepatic differentiation of mouse bone marrow stromal stem cells by the histone deacetylase inhibitor VPA. Journal of Cellular and Molecular Medicine 13 (8B): 2582–2592.CrossRef Chen, Y., R.L. Pan, X.L. Zhang, J.Z. Shao, L.X. Xiang, X.J. Dong, and G.R. Zhang. 2009. Induction of hepatic differentiation of mouse bone marrow stromal stem cells by the histone deacetylase inhibitor VPA. Journal of Cellular and Molecular Medicine 13 (8B): 2582–2592.CrossRef
29.
go back to reference Ali, D., H. Alshammari, R. Vishnubalaji, E.P. Chalisserry, R. Hamam, M. Alfayez, et al. 2016. CUDC-907 promotes bone marrow adipocytic differentiation through inhibition of histone deacetylase and regulation of cell cycle. Stem Cells and Development. Ali, D., H. Alshammari, R. Vishnubalaji, E.P. Chalisserry, R. Hamam, M. Alfayez, et al. 2016. CUDC-907 promotes bone marrow adipocytic differentiation through inhibition of histone deacetylase and regulation of cell cycle. Stem Cells and Development.
30.
go back to reference Yan, B., S. Xie, Z. Liu, J. Ran, Y. Li, J. Wang, Y. Yang, J. Zhou, D. Li, and M. Liu. 2014. HDAC6 deacetylase activity is critical for lipopolysaccharide-induced activation of macrophages. PLoS One 9 (10): e110718.CrossRef Yan, B., S. Xie, Z. Liu, J. Ran, Y. Li, J. Wang, Y. Yang, J. Zhou, D. Li, and M. Liu. 2014. HDAC6 deacetylase activity is critical for lipopolysaccharide-induced activation of macrophages. PLoS One 9 (10): e110718.CrossRef
Metadata
Title
Protective Effect of Tubastatin A in CLP-Induced Lethal Sepsis
Authors
Qiufang Deng
Ting Zhao
Baihong Pan
Isabel S. Dennahy
Xiuzhen Duan
Aaron M. Williams
Baoling Liu
Nan Lin
Umar F. Bhatti
Eric Chen
Hasan B. Alam
Yongqing Li
Publication date
01-12-2018
Publisher
Springer US
Published in
Inflammation / Issue 6/2018
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0853-0

Other articles of this Issue 6/2018

Inflammation 6/2018 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine