Skip to main content
Top
Published in: International Journal of Hematology 5/2018

01-05-2018 | Original Article

Protective effect of a newly developed fucose-deficient recombinant antithrombin against histone-induced endothelial damage

Authors: Toshiaki Iba, Tatsuhiko Hirota, Koichi Sato, Isao Nagaoka

Published in: International Journal of Hematology | Issue 5/2018

Login to get access

Abstracts

Antithrombin is expected to modulate both prothrombotic and proinflammatory reactions in sepsis; vascular endothelium is the primary target. In the present study, we sought to evaluate the protective effects of a newly developed fucose-deficient recombinant antithrombin. Endothelial cells were treated in vitro with histone H4 to induce cellular damage. Low to high doses of either plasma-derived antithrombin or recombinant thrombomodulin were used as treatment interventions. Morphological change, apoptotic rate, cell viability, cell injury, and syndecan-4 level in the medium were evaluated. Immunofluorescent staining with anti-syndecan-4 was also performed. Both types of antithrombin reduced cellular damage and apoptotic cell death. Both plasma-derived and recombinant antithrombin improved cell viability and reduced cellular injury when administered at a physiological concentration or higher. Syndecan-4 staining became evident after treatment with histone H4, and both antithrombins suppressed the staining intensity at similar levels. The syndecan-4 level in the medium was significantly decreased by both antithrombins. None of the indicators showed a significant difference between plasma-derived and recombinant antithrombin. In conclusion, both recombinant and plasma-derived antithrombin can protect vascular endothelial cells. Recombinant antithrombin may represent a useful new therapeutic agent for sepsis-associated vascular damage.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bucur SZ, Levy JH, Despotis GJ, Spiess BD, Hillyer CD. Uses of antithrombin III concentrate in congenital and acquired deficiency states. Transfusion. 1998;38:481–98.CrossRefPubMed Bucur SZ, Levy JH, Despotis GJ, Spiess BD, Hillyer CD. Uses of antithrombin III concentrate in congenital and acquired deficiency states. Transfusion. 1998;38:481–98.CrossRefPubMed
2.
go back to reference Quinsey NS, Greedy AL, Bottomley SP, Whisstock JC, Pike RN. Antithrombin: in control of coagulation. Int J Biochem Cell Biol. 2004;36:386–9.CrossRefPubMed Quinsey NS, Greedy AL, Bottomley SP, Whisstock JC, Pike RN. Antithrombin: in control of coagulation. Int J Biochem Cell Biol. 2004;36:386–9.CrossRefPubMed
3.
go back to reference Levy JH, Sniecinski RM, Welsby IJ, Levi M. Antithrombin: anti-inflammatory properties and clinical applications. Thromb Haemost. 2016;115:712–28.CrossRefPubMed Levy JH, Sniecinski RM, Welsby IJ, Levi M. Antithrombin: anti-inflammatory properties and clinical applications. Thromb Haemost. 2016;115:712–28.CrossRefPubMed
4.
go back to reference Iba T, Thachil J. Present and future of anticoagulant therapy using antithrombin and thrombomodulin for sepsis-associated disseminated intravascular coagulation: a perspective from Japan. Int J Hematol. 2016;103:253–61.CrossRefPubMed Iba T, Thachil J. Present and future of anticoagulant therapy using antithrombin and thrombomodulin for sepsis-associated disseminated intravascular coagulation: a perspective from Japan. Int J Hematol. 2016;103:253–61.CrossRefPubMed
5.
go back to reference Franzén LE, Svensson S, Larm O. Structural studies on the carbohydrate portion of human antithrombin III. J Biol Chem. 1980;255:5090–3.PubMed Franzén LE, Svensson S, Larm O. Structural studies on the carbohydrate portion of human antithrombin III. J Biol Chem. 1980;255:5090–3.PubMed
6.
go back to reference Mizuochi T, Fujii J, Kurachi K, Kobata A. Structural studies of the carbohydrate moiety of human antithrombin III. Arch Biochem Biophys. 1980;203:458–65.CrossRefPubMed Mizuochi T, Fujii J, Kurachi K, Kobata A. Structural studies of the carbohydrate moiety of human antithrombin III. Arch Biochem Biophys. 1980;203:458–65.CrossRefPubMed
7.
go back to reference Brennan SO, George PM, Jordan RE. Physiological variant of antithrombin-III lacks carbohydrate sidechain at Asn 135. FEBS Lett. 1987;219:431–6.CrossRefPubMed Brennan SO, George PM, Jordan RE. Physiological variant of antithrombin-III lacks carbohydrate sidechain at Asn 135. FEBS Lett. 1987;219:431–6.CrossRefPubMed
8.
go back to reference Turk B, Brieditis I, Bock SC, Olson ST, Björk I. The oligosaccharide side chain on Asn-135 of alpha-antithrombin, absent in beta-antithrombin, decreases the heparin affinity of the inhibitor by affecting the heparin-induced conformational change. Biochemistry. 1997;36:6682–91.CrossRefPubMed Turk B, Brieditis I, Bock SC, Olson ST, Björk I. The oligosaccharide side chain on Asn-135 of alpha-antithrombin, absent in beta-antithrombin, decreases the heparin affinity of the inhibitor by affecting the heparin-induced conformational change. Biochemistry. 1997;36:6682–91.CrossRefPubMed
9.
go back to reference McCoy AJ, Pei XY, Skinner R, Abrahams JP, Carrell RW. Structure of beta-antithrombin and the effect of glycosylation on antithrombin’s heparin affinity and activity. J Mol Biol. 2003;326:823–33.CrossRefPubMed McCoy AJ, Pei XY, Skinner R, Abrahams JP, Carrell RW. Structure of beta-antithrombin and the effect of glycosylation on antithrombin’s heparin affinity and activity. J Mol Biol. 2003;326:823–33.CrossRefPubMed
10.
go back to reference Martínez-Martínez I, Navarro-Fernández J, Østergaard A, Gutiérrez-Gallego R, Padilla J, Bohdan N, et al. Amelioration of the severity of heparin binding antithrombin mutations by posttranslational mosaicism. Blood. 2012;120:900–4.CrossRefPubMed Martínez-Martínez I, Navarro-Fernández J, Østergaard A, Gutiérrez-Gallego R, Padilla J, Bohdan N, et al. Amelioration of the severity of heparin binding antithrombin mutations by posttranslational mosaicism. Blood. 2012;120:900–4.CrossRefPubMed
11.
go back to reference Fan B, Crews BC, Turko IV, Choay J, Zettlmeissl G, Gettins P. Heterogeneity of recombinant human antithrombin III expressed in baby hamster kidney cells. Effect of glycosylation differences on heparin binding and structure. J Biol Chem. 1993;268:17588–96.PubMed Fan B, Crews BC, Turko IV, Choay J, Zettlmeissl G, Gettins P. Heterogeneity of recombinant human antithrombin III expressed in baby hamster kidney cells. Effect of glycosylation differences on heparin binding and structure. J Biol Chem. 1993;268:17588–96.PubMed
12.
go back to reference Garone L, Edmunds T, Hanson E, Bernasconi R, Huntington JA, Meagher JL, et al. Antithrombin-heparin affinity reduced by fucosylation of carbohydrate at asparagine 155. Biochemistry. 1996;35:8881–9.CrossRefPubMed Garone L, Edmunds T, Hanson E, Bernasconi R, Huntington JA, Meagher JL, et al. Antithrombin-heparin affinity reduced by fucosylation of carbohydrate at asparagine 155. Biochemistry. 1996;35:8881–9.CrossRefPubMed
13.
go back to reference Olson ST, Frances-Chmura AM, Swanson R, Björk I, Zettlmeissl G. Effect of individual carbohydrate chains of recombinant antithrombin on heparin affinity and on the generation of glycoforms differing in heparin affinity. Arch Biochem Biophys. 1997;341:212–21.CrossRefPubMed Olson ST, Frances-Chmura AM, Swanson R, Björk I, Zettlmeissl G. Effect of individual carbohydrate chains of recombinant antithrombin on heparin affinity and on the generation of glycoforms differing in heparin affinity. Arch Biochem Biophys. 1997;341:212–21.CrossRefPubMed
14.
go back to reference Yamane-Ohnuki N, Kinoshita S, Inoue-Urakubo M, Kusunoki M, Iida S, Nakano R, et al. Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng. 2004;87:614–22.CrossRefPubMed Yamane-Ohnuki N, Kinoshita S, Inoue-Urakubo M, Kusunoki M, Iida S, Nakano R, et al. Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng. 2004;87:614–22.CrossRefPubMed
15.
go back to reference Stanley P, Chaney W. Control of carbohydrate processing: the lec1A CHO mutation results in partial loss of N-acetylglucosaminyltransferase I activity. Mol Cell Biol. 1985;5:1204–11.CrossRefPubMedPubMedCentral Stanley P, Chaney W. Control of carbohydrate processing: the lec1A CHO mutation results in partial loss of N-acetylglucosaminyltransferase I activity. Mol Cell Biol. 1985;5:1204–11.CrossRefPubMedPubMedCentral
16.
go back to reference Yamada T, Kanda Y, Takayama M, Hashimoto A, Sugihara T, Satoh-Kubota A, et al. Comparison of biological activities of human antithrombins with high-mannose or complex-type nonfucosylated N-linked oligosaccharides. Glycobiology. 2016;26:482–92.CrossRefPubMedPubMedCentral Yamada T, Kanda Y, Takayama M, Hashimoto A, Sugihara T, Satoh-Kubota A, et al. Comparison of biological activities of human antithrombins with high-mannose or complex-type nonfucosylated N-linked oligosaccharides. Glycobiology. 2016;26:482–92.CrossRefPubMedPubMedCentral
17.
go back to reference Wada H, Asakura H, Okamoto K, Iba T, Uchiyama T, Kawasugi K, et al. Expert consensus for the treatment of disseminated intravascular coagulation in Japan. Thromb Res. 2010;125:6–11.CrossRefPubMed Wada H, Asakura H, Okamoto K, Iba T, Uchiyama T, Kawasugi K, et al. Expert consensus for the treatment of disseminated intravascular coagulation in Japan. Thromb Res. 2010;125:6–11.CrossRefPubMed
18.
go back to reference Ishiyama M, Tominaga H, Shiga M, Sasamoto K, Ohkura Y, Ueno K. A combined assay of cell viability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol Pharm Bull. 1996;19:1518–20.CrossRefPubMed Ishiyama M, Tominaga H, Shiga M, Sasamoto K, Ohkura Y, Ueno K. A combined assay of cell viability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol Pharm Bull. 1996;19:1518–20.CrossRefPubMed
19.
go back to reference Hirose M, Kameyama S, Ohi H. Characterization of N-linked oligosaccharides attached to recombinant human antithrombin expressed in the yeast Pichia pastoris. Yeast. 2002;19:1191–202.CrossRefPubMed Hirose M, Kameyama S, Ohi H. Characterization of N-linked oligosaccharides attached to recombinant human antithrombin expressed in the yeast Pichia pastoris. Yeast. 2002;19:1191–202.CrossRefPubMed
20.
go back to reference Schouten M, Wiersinga WJ, Levi M, van Der PT. Inflammation, endothelium, and coagulation in sepsis. J Leukoc Biol. 2008;83:536–45.CrossRefPubMed Schouten M, Wiersinga WJ, Levi M, van Der PT. Inflammation, endothelium, and coagulation in sepsis. J Leukoc Biol. 2008;83:536–45.CrossRefPubMed
21.
go back to reference Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng. 2007;9:121–67.CrossRefPubMed Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng. 2007;9:121–67.CrossRefPubMed
22.
go back to reference Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch. 2007;454:345–59.CrossRefPubMedPubMedCentral Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch. 2007;454:345–59.CrossRefPubMedPubMedCentral
23.
go back to reference Ishiguro K, Kadomatsu K, Kojima T, Muramatsu H, Iwase M, Yoshikai Y, et al. Syndecan-4 deficiency leads to high mortality of lipopolysaccharide-injected mice. J Biol Chem. 2001;276:47483–8.CrossRefPubMed Ishiguro K, Kadomatsu K, Kojima T, Muramatsu H, Iwase M, Yoshikai Y, et al. Syndecan-4 deficiency leads to high mortality of lipopolysaccharide-injected mice. J Biol Chem. 2001;276:47483–8.CrossRefPubMed
24.
go back to reference Chaaban H, Keshari RS, Silasi-Mansat R, Popescu NI, Mehta-D’Souza P, Lim YP, et al. Inter-α inhibitor protein and its associated glycosaminoglycans protect against histone-induced injury. Blood. 2015;125:2286–96.CrossRefPubMedPubMedCentral Chaaban H, Keshari RS, Silasi-Mansat R, Popescu NI, Mehta-D’Souza P, Lim YP, et al. Inter-α inhibitor protein and its associated glycosaminoglycans protect against histone-induced injury. Blood. 2015;125:2286–96.CrossRefPubMedPubMedCentral
25.
go back to reference Chappell D, Jacob M, Hofmann-Kiefer K, Rehm M, Welsch U, Conzen P, et al. Antithrombin reduces shedding of the endothelial glycocalyx following ischaemia/reperfusion. Cardiovasc Res. 2009;83:388–96.CrossRefPubMed Chappell D, Jacob M, Hofmann-Kiefer K, Rehm M, Welsch U, Conzen P, et al. Antithrombin reduces shedding of the endothelial glycocalyx following ischaemia/reperfusion. Cardiovasc Res. 2009;83:388–96.CrossRefPubMed
26.
go back to reference Kaneider NC, Förster E, Mosheimer B, Sturn DH, Wiedermann CJ. Syndecan-4-dependent signaling in the inhibition of endotoxin-induced endothelial adherence of neutrophils by antithrombin. Thromb Haemost. 2003;90:1150–7.PubMed Kaneider NC, Förster E, Mosheimer B, Sturn DH, Wiedermann CJ. Syndecan-4-dependent signaling in the inhibition of endotoxin-induced endothelial adherence of neutrophils by antithrombin. Thromb Haemost. 2003;90:1150–7.PubMed
27.
go back to reference Becker BF, Chappell D, Bruegger D, Annecke T, Jacob M. Therapeutic strategies targeting the endothelial glycocalyx: acute deficits, but great potential. Cardiovasc Res. 2010;87:300–10.CrossRefPubMed Becker BF, Chappell D, Bruegger D, Annecke T, Jacob M. Therapeutic strategies targeting the endothelial glycocalyx: acute deficits, but great potential. Cardiovasc Res. 2010;87:300–10.CrossRefPubMed
28.
go back to reference Longley RL, Woods A, Fleetwood A, Cowling GJ, Gallagher JT, Couchman JR. Control of morphology, cytoskeleton and migration by syndecan-4. J Cell Sci. 1999;112:3421–31.PubMed Longley RL, Woods A, Fleetwood A, Cowling GJ, Gallagher JT, Couchman JR. Control of morphology, cytoskeleton and migration by syndecan-4. J Cell Sci. 1999;112:3421–31.PubMed
29.
go back to reference Woods A, Couchman JR. Syndecan 4 heparan sulfate proteoglycan is a selectively enriched and widespread focal adhesion component. Mol Biol Cell. 1994;5:183–92.CrossRefPubMedPubMedCentral Woods A, Couchman JR. Syndecan 4 heparan sulfate proteoglycan is a selectively enriched and widespread focal adhesion component. Mol Biol Cell. 1994;5:183–92.CrossRefPubMedPubMedCentral
30.
31.
go back to reference Iba T. Glycocalyx regulates the intravascular hemostasis. Juntendo Med J. 2016;62:444–9.CrossRef Iba T. Glycocalyx regulates the intravascular hemostasis. Juntendo Med J. 2016;62:444–9.CrossRef
32.
go back to reference De Jong MC, Walstra CM. Immunofluorescent localization of antithrombin III in human skin. Br J Dermatol. 1982;106:281–5.CrossRefPubMed De Jong MC, Walstra CM. Immunofluorescent localization of antithrombin III in human skin. Br J Dermatol. 1982;106:281–5.CrossRefPubMed
Metadata
Title
Protective effect of a newly developed fucose-deficient recombinant antithrombin against histone-induced endothelial damage
Authors
Toshiaki Iba
Tatsuhiko Hirota
Koichi Sato
Isao Nagaoka
Publication date
01-05-2018
Publisher
Springer Japan
Published in
International Journal of Hematology / Issue 5/2018
Print ISSN: 0925-5710
Electronic ISSN: 1865-3774
DOI
https://doi.org/10.1007/s12185-018-2402-x

Other articles of this Issue 5/2018

International Journal of Hematology 5/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine