Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2020

Open Access 01-12-2020 | Research article

Proteasome inhibitors reduce thrombospondin-1 release in human dysferlin-deficient myotubes

Authors: Esther Fernández-Simón, Cinta Lleixà, Xavier Suarez-Calvet, Jordi Diaz-Manera, Isabel Illa, Eduard Gallardo, Noemí de Luna

Published in: BMC Musculoskeletal Disorders | Issue 1/2020

Login to get access

Abstract

Background

Dysferlinopathies are a group of muscle disorders causing muscle weakness and absence or low levels of dysferlin, a type-II transmembrane protein and the causative gene of these dystrophies. Dysferlin is implicated in vesicle fusion, trafficking, and membrane repair. Muscle biopsy of patients with dysferlinopathy is characterized by the presence of inflammatory infiltrates. Studies in the muscle of both human and mouse models of dysferlinopathy suggest dysferlin deficient muscle plays a role in this inflammation by releasing thrombospondin-1. It has also been reported that vitamin D3 treatment enhances dysferlin expression. The ubiquitin-proteasome system recognizes and removes proteins that fail to fold or assemble properly and previous studies suggest that its inhibition could have a therapeutic effect in muscle dystrophies. Here we assessed whether inhibition of the ubiquitin proteasome system prevented degradation of dysferlin in immortalized myoblasts from a patients with two missense mutations in exon 44.

Methods

To assess proteasome inhibition we treated dysferlin deficient myotubes with EB1089, a vitamin D3 analog, oprozomib and ixazomib. Western blot was performed to analyze the effect of these treatments on the recovery of dysferlin and myogenin expression. TSP-1 was quantified using the enzyme-linked immunosorbent assay to analyze the effect of these drugs on its release. A membrane repair assay was designed to assess the ability of treated myotubes to recover after membrane injury and fusion index was also measured with the different treatments. Data were analyzed using a one-way ANOVA test followed by Tukey post hoc test and analysis of variance. A p ≤ 0.05 was considered statistically significant.

Results

Treatment with proteasome inhibitors and EB1089 resulted in a trend towards an increase in dysferlin and myogenin expression. Furthermore, EB1089 and proteasome inhibitors reduced the release of TSP-1 in myotubes. However, no effect was observed on the repair of muscle membrane after injury.

Conclusions

Our findings indicate that the ubiquitin-proteasome system might not be the main mechanism of mutant dysferlin degradation. However, its inhibition could help to improve muscle inflammation by reducing TSP-1 release.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bashir R, Strachan T, Keers S, Stephenson A, Mahjneh I, Marconi G, et al. A gene for autosomal recessive limb-girdle muscular dystrophy maps to chromosome 2p. Hum Mol Genet. 1994;3(3):455–7.CrossRef Bashir R, Strachan T, Keers S, Stephenson A, Mahjneh I, Marconi G, et al. A gene for autosomal recessive limb-girdle muscular dystrophy maps to chromosome 2p. Hum Mol Genet. 1994;3(3):455–7.CrossRef
2.
go back to reference Bashir R, Keers S, Strachan T, Passos-Bueno R, Zatz M, Weissenbach J, et al. Genetic and physical mapping at the limb-girdle muscular dystrophy locus (LGMD2B) on chromosome 2p. Genomics. 1996;33(1):46–52.CrossRef Bashir R, Keers S, Strachan T, Passos-Bueno R, Zatz M, Weissenbach J, et al. Genetic and physical mapping at the limb-girdle muscular dystrophy locus (LGMD2B) on chromosome 2p. Genomics. 1996;33(1):46–52.CrossRef
3.
go back to reference Bejaoui K, Hirabayashi K, Hentati F, Haines JL, Hamida C. Ben, Belal S, et al. linkage of Miyoshi myopathy (distal autosomal recessive muscular dystrophy) locus to chromosome 2p12-14. Neurology. 1995;45(4):768–72.CrossRef Bejaoui K, Hirabayashi K, Hentati F, Haines JL, Hamida C. Ben, Belal S, et al. linkage of Miyoshi myopathy (distal autosomal recessive muscular dystrophy) locus to chromosome 2p12-14. Neurology. 1995;45(4):768–72.CrossRef
4.
go back to reference Illa I, Serrano-Munuera C, Gallardo E, Lasa A, Rojas-Garca R, Palmer J, et al. Distal anterior compartment myopathy: a dysferlin mutation causing a new muscular dystrophy phenotype. Ann Neurol. 2001;49(1):130–4.CrossRef Illa I, Serrano-Munuera C, Gallardo E, Lasa A, Rojas-Garca R, Palmer J, et al. Distal anterior compartment myopathy: a dysferlin mutation causing a new muscular dystrophy phenotype. Ann Neurol. 2001;49(1):130–4.CrossRef
5.
go back to reference Malcher J, Heidt L, Goyenvalle A, Escobar H, Marg A, Beley C, et al. Exon Skipping in a Dysf-Missense Mutant Mouse Model. Mol Ther Nucleic Acids. 2018;13:198–207. Malcher J, Heidt L, Goyenvalle A, Escobar H, Marg A, Beley C, et al. Exon Skipping in a Dysf-Missense Mutant Mouse Model. Mol Ther Nucleic Acids. 2018;13:198–207.
6.
go back to reference Lee JJA, Maruyama R, Duddy W, Sakurai H, Yokota T. Identification of novel antisense-mediated exon skipping targets in DYSF for therapeutic treatment of Dysferlinopathy. Mol Ther Nucleic Acids. 2018;13:596–604.CrossRef Lee JJA, Maruyama R, Duddy W, Sakurai H, Yokota T. Identification of novel antisense-mediated exon skipping targets in DYSF for therapeutic treatment of Dysferlinopathy. Mol Ther Nucleic Acids. 2018;13:596–604.CrossRef
8.
go back to reference De Luna N, Díaz-Manera J, Paradas C, Iturriaga C, Rojas-García R, Araque J, et al. 1α,25(OH)(2)-vitamin D3 increases dysferlin expression in vitro and in a human clinical trial. Mol Ther. 2012;20(10):1988–97.CrossRef De Luna N, Díaz-Manera J, Paradas C, Iturriaga C, Rojas-García R, Araque J, et al. 1α,25(OH)(2)-vitamin D3 increases dysferlin expression in vitro and in a human clinical trial. Mol Ther. 2012;20(10):1988–97.CrossRef
9.
go back to reference Woolger N, Bournazos A, Sophocleous RA, Evesson FJ, Lek A, Driemer B, et al. Proteolysis reveals dysferlin conformation in situ limited proteolysis as a tool to probe the tertiary conformation of dysferlin and structural consequences of patient missense variant L344P. J Biol Chem. 2017;292(45):18577–91.CrossRef Woolger N, Bournazos A, Sophocleous RA, Evesson FJ, Lek A, Driemer B, et al. Proteolysis reveals dysferlin conformation in situ limited proteolysis as a tool to probe the tertiary conformation of dysferlin and structural consequences of patient missense variant L344P. J Biol Chem. 2017;292(45):18577–91.CrossRef
10.
go back to reference Anderson LV, Davison K, Moss JA, Young C, Cullen MJ, Walsh J, et al. Dysferlin is a plasma membrane protein and is expressed early in human development. Hum Mol Genet. 1999;8(5):855–61.CrossRef Anderson LV, Davison K, Moss JA, Young C, Cullen MJ, Walsh J, et al. Dysferlin is a plasma membrane protein and is expressed early in human development. Hum Mol Genet. 1999;8(5):855–61.CrossRef
11.
go back to reference Kerr JP, Ward CW, Bloch RJ. Dysferlin at transverse tubules regulates Ca (2+) homeostasis in skeletal muscle. Front Physiol. 2014;5:89.CrossRef Kerr JP, Ward CW, Bloch RJ. Dysferlin at transverse tubules regulates Ca (2+) homeostasis in skeletal muscle. Front Physiol. 2014;5:89.CrossRef
12.
go back to reference Abdullah N, Padmanarayana M, Marty NJ, Johnson CP. Quantitation of the calcium and membrane binding properties of the C2 domains of Dysferlin. Biophysj. 2014;106:382–9.CrossRef Abdullah N, Padmanarayana M, Marty NJ, Johnson CP. Quantitation of the calcium and membrane binding properties of the C2 domains of Dysferlin. Biophysj. 2014;106:382–9.CrossRef
13.
go back to reference Lukyanenko V, Muriel JM, Bloch RJ. Coupling of excitation to Ca2+ release is modulated by dysferlin. J Physiol. 2017;595(15):5191–207.CrossRef Lukyanenko V, Muriel JM, Bloch RJ. Coupling of excitation to Ca2+ release is modulated by dysferlin. J Physiol. 2017;595(15):5191–207.CrossRef
14.
go back to reference De Luna N, Gallardo E, Soriano M, Dominguez-Perles R, De La Torre C, Rojas-García R, et al. Absence of dysferlin alters myogenin expression and delays human muscle differentiation “in vitro.”. J Biol Chem. 2006;281(25):17092–8.CrossRef De Luna N, Gallardo E, Soriano M, Dominguez-Perles R, De La Torre C, Rojas-García R, et al. Absence of dysferlin alters myogenin expression and delays human muscle differentiation “in vitro.”. J Biol Chem. 2006;281(25):17092–8.CrossRef
15.
go back to reference De Luna N, Gallardo E, Sonnet C, Chazaud B, Dominguez-Perles R, Suarez-Calvet X, et al. Role of Thrombospondin 1 in macrophage inflammation in Dysferlin myopathy. J Neuropathol Exp Neurol. 2010;69(6):643–53.CrossRef De Luna N, Gallardo E, Sonnet C, Chazaud B, Dominguez-Perles R, Suarez-Calvet X, et al. Role of Thrombospondin 1 in macrophage inflammation in Dysferlin myopathy. J Neuropathol Exp Neurol. 2010;69(6):643–53.CrossRef
16.
go back to reference Urao N, Mirza RE, Corbiere TF, Hollander Z, Borchers CH, Koh TJ. Thrombospondin-1 and disease progression in dysferlinopathy. Hum Mol Genet. 2017;26(24):4951–60.CrossRef Urao N, Mirza RE, Corbiere TF, Hollander Z, Borchers CH, Koh TJ. Thrombospondin-1 and disease progression in dysferlinopathy. Hum Mol Genet. 2017;26(24):4951–60.CrossRef
17.
go back to reference Konstantinova IM, Tsimokha AS, Mittenberg AG. Role of Proteasomes in Cellular Regulation. Int Rev Cell Mol Biol. 2008;267:59–124 Academic Press.CrossRef Konstantinova IM, Tsimokha AS, Mittenberg AG. Role of Proteasomes in Cellular Regulation. Int Rev Cell Mol Biol. 2008;267:59–124 Academic Press.CrossRef
18.
go back to reference Ciechanover A. EMBO MEMBER’S REVIEW The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J. 1998;17(24):7151–60. Ciechanover A. EMBO MEMBER’S REVIEW The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J. 1998;17(24):7151–60.
19.
go back to reference Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: Destruction for the sake of construction. Physiol Rev. 2002;82:373–428 American Physiological Society.CrossRef Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: Destruction for the sake of construction. Physiol Rev. 2002;82:373–428 American Physiological Society.CrossRef
20.
go back to reference Bonuccelli G, Sotgia F, Schubert W, Park DS, Frank PG, Woodman SE, et al. Proteasome inhibitor (MG-132) treatment of mdx mice rescues the expression and membrane localization of dystrophin and dystrophin-associated proteins. Am J Pathol. 2003;163(4):1663–75.CrossRef Bonuccelli G, Sotgia F, Schubert W, Park DS, Frank PG, Woodman SE, et al. Proteasome inhibitor (MG-132) treatment of mdx mice rescues the expression and membrane localization of dystrophin and dystrophin-associated proteins. Am J Pathol. 2003;163(4):1663–75.CrossRef
21.
go back to reference Assereto S, Stringara S, Sotgia F, Bonuccelli G, Broccolini A, Pedemonte M, et al. Pharmacological rescue of the dystrophin-glycoprotein complex in Duchenne and Becker skeletal muscle explants by proteasome inhibitor treatment. Am J Physiol Physiol. 2006;290(2):C577–82.CrossRef Assereto S, Stringara S, Sotgia F, Bonuccelli G, Broccolini A, Pedemonte M, et al. Pharmacological rescue of the dystrophin-glycoprotein complex in Duchenne and Becker skeletal muscle explants by proteasome inhibitor treatment. Am J Physiol Physiol. 2006;290(2):C577–82.CrossRef
22.
go back to reference Gazzerro E, Assereto S, Bonetto A, Sotgia F, Scarfì S, Pistorio A, et al. Therapeutic potential of proteasome inhibition in Duchenne and Becker muscular dystrophies. Am J Pathol. 2010;176(4):1863–77.CrossRef Gazzerro E, Assereto S, Bonetto A, Sotgia F, Scarfì S, Pistorio A, et al. Therapeutic potential of proteasome inhibition in Duchenne and Becker muscular dystrophies. Am J Pathol. 2010;176(4):1863–77.CrossRef
23.
go back to reference Lu L, Qiu J, Liu S, Luo W. Vitamin D3 analogue EB1089 inhibits the proliferation of human laryngeal squamous carcinoma cells via p57. Mol Cancer Ther. 2008;7(5):1268–74.CrossRef Lu L, Qiu J, Liu S, Luo W. Vitamin D3 analogue EB1089 inhibits the proliferation of human laryngeal squamous carcinoma cells via p57. Mol Cancer Ther. 2008;7(5):1268–74.CrossRef
24.
go back to reference Gallardo E, de Luna N, Diaz-Manera J, Rojas-García R, Gonzalez-Quereda L, Flix B, et al. Comparison of dysferlin expression in human skeletal muscle with that in monocytes for the diagnosis of dysferlin myopathy. PLoS One. 2011;6(12):e29061. Gallardo E, de Luna N, Diaz-Manera J, Rojas-García R, Gonzalez-Quereda L, Flix B, et al. Comparison of dysferlin expression in human skeletal muscle with that in monocytes for the diagnosis of dysferlin myopathy. PLoS One. 2011;6(12):e29061.
25.
go back to reference Mamchaoui K, Trollet C, Bigot A, Negroni E, Chaouch S, Wolff A, et al. Immortalized pathological human myoblasts: towards a universal tool for the study of neuromuscular disorders. Skelet Muscle. 2011;1:1(1).CrossRef Mamchaoui K, Trollet C, Bigot A, Negroni E, Chaouch S, Wolff A, et al. Immortalized pathological human myoblasts: towards a universal tool for the study of neuromuscular disorders. Skelet Muscle. 2011;1:1(1).CrossRef
26.
go back to reference De Luna N, Suarez-Calvet X, Garicano M, Fernandez-Simon E, Rojas-García R, Diaz-Manera J, et al. Effect of MAPK inhibition on the differentiation of a Rhabdomyosarcoma cell line combined with CRISPR/Cas9 technology: an in vitro model of human muscle diseases. J Neuropathol Exp Neurol. 2018;77(10):964–72.CrossRef De Luna N, Suarez-Calvet X, Garicano M, Fernandez-Simon E, Rojas-García R, Diaz-Manera J, et al. Effect of MAPK inhibition on the differentiation of a Rhabdomyosarcoma cell line combined with CRISPR/Cas9 technology: an in vitro model of human muscle diseases. J Neuropathol Exp Neurol. 2018;77(10):964–72.CrossRef
27.
go back to reference Malik JK, Schwarz LR, Wiebel FJ. Assessment of membrane damage in continuous cultures of mammalian cells. Chem Biol Interact. 1983;45(1):29–42.CrossRef Malik JK, Schwarz LR, Wiebel FJ. Assessment of membrane damage in continuous cultures of mammalian cells. Chem Biol Interact. 1983;45(1):29–42.CrossRef
28.
go back to reference Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82.CrossRef Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82.CrossRef
29.
go back to reference Selcen D, Stilling G, Engel AG. The earliest pathologic alterations in dysferlinopathy. Neurology. 2001;56(11):1472–81.CrossRef Selcen D, Stilling G, Engel AG. The earliest pathologic alterations in dysferlinopathy. Neurology. 2001;56(11):1472–81.CrossRef
30.
go back to reference Han R, Campbell KP. Dysferlin and muscle membrane repair. Curr Opin Cell Biol. 2007;19:409–16 NIH Public Access.CrossRef Han R, Campbell KP. Dysferlin and muscle membrane repair. Curr Opin Cell Biol. 2007;19:409–16 NIH Public Access.CrossRef
31.
go back to reference Fujita E, Kouroku Y, Isoai A, Kumagai H, Misutani A, Matsuda C, et al. Two endoplasmic reticulum-associated degradation (ERAD) systems for the novel variant of the mutant dysferlin: ubiquitin/proteasome ERAD(I) and autophagy/lysosome ERAD (II). Hum Mol Genet. 2007;16(6):618–29.CrossRef Fujita E, Kouroku Y, Isoai A, Kumagai H, Misutani A, Matsuda C, et al. Two endoplasmic reticulum-associated degradation (ERAD) systems for the novel variant of the mutant dysferlin: ubiquitin/proteasome ERAD(I) and autophagy/lysosome ERAD (II). Hum Mol Genet. 2007;16(6):618–29.CrossRef
32.
go back to reference Irazoqui AP, Heim NB, Boland RL, Buitrago CG. 1α,25 dihydroxi-vitamin D3 modulates CDK4 and CDK6 expression and localization. Biochem Biophys Res Commun. 2015;459(1):137–42.CrossRef Irazoqui AP, Heim NB, Boland RL, Buitrago CG. 1α,25 dihydroxi-vitamin D3 modulates CDK4 and CDK6 expression and localization. Biochem Biophys Res Commun. 2015;459(1):137–42.CrossRef
33.
go back to reference Van Der Meijden K, Bravenboer N, Dirks NF, Heijboer AC, Den Heijer M, De Wit GMJ, et al. Effects of 1,25(OH) 2 D 3 and 25(OH) D 3 on C2C12 myoblast proliferation, differentiation, and Myotube hypertrophy. J Cell Physiol. 2016;231:2517–28.CrossRef Van Der Meijden K, Bravenboer N, Dirks NF, Heijboer AC, Den Heijer M, De Wit GMJ, et al. Effects of 1,25(OH) 2 D 3 and 25(OH) D 3 on C2C12 myoblast proliferation, differentiation, and Myotube hypertrophy. J Cell Physiol. 2016;231:2517–28.CrossRef
34.
go back to reference Sydney JEG, South Wales N. Westmead Hospital, Sydney, New South Wales 2145, Australia; and St Vincent’s Clinical School. Aust Endocrinology. 2010;2052:347–57. Sydney JEG, South Wales N. Westmead Hospital, Sydney, New South Wales 2145, Australia; and St Vincent’s Clinical School. Aust Endocrinology. 2010;2052:347–57.
35.
go back to reference Endo I, Inoue D, Mitsui T, Umaki Y, Akaike M, Yoshizawa T, et al. Deletion of Vitamin D Receptor Gene in Mice Results in Abnormal Skeletal Muscle Development with Deregulated Expression of Myoregulatory Transcription Factors. Endocrinology. 2003;144(12):5138–44. Endo I, Inoue D, Mitsui T, Umaki Y, Akaike M, Yoshizawa T, et al. Deletion of Vitamin D Receptor Gene in Mice Results in Abnormal Skeletal Muscle Development with Deregulated Expression of Myoregulatory Transcription Factors. Endocrinology. 2003;144(12):5138–44.
36.
go back to reference Wagatsuma A, Sakuma K. Vitamin D signaling in Myogenesis: potential for treatment of sarcopenia. Biomed Res Int. 2014;2014:121254.CrossRef Wagatsuma A, Sakuma K. Vitamin D signaling in Myogenesis: potential for treatment of sarcopenia. Biomed Res Int. 2014;2014:121254.CrossRef
37.
go back to reference Lopez-Dee Z, Pidcock K, Gutierrez LS. Thrombospondin-1: multiple paths to inflammation. Mediat Inflamm. 2011;2011:296069.CrossRef Lopez-Dee Z, Pidcock K, Gutierrez LS. Thrombospondin-1: multiple paths to inflammation. Mediat Inflamm. 2011;2011:296069.CrossRef
38.
go back to reference Amarasekera AT, Assadi-Khansari B, Liu S, Black M, Dymmott G, Rogers NM, et al. Vitamin D supplementation lowers thrombospondin-1 levels and blood pressure in healthy adults. PLoS One. 2017;12(5):e0174435.CrossRef Amarasekera AT, Assadi-Khansari B, Liu S, Black M, Dymmott G, Rogers NM, et al. Vitamin D supplementation lowers thrombospondin-1 levels and blood pressure in healthy adults. PLoS One. 2017;12(5):e0174435.CrossRef
39.
go back to reference García-Quiroz J, Rivas-Suárez M, García-Becerra R, Barrera D, Martínez-Reza I, Ordaz-Rosado D, et al. Calcitriol reduces thrombospondin-1 and increases vascular endothelial growth factor in breast cancer cells: implications for tumor angiogenesis. J Steroid Biochem Mol Biol. 2014;144:215–22.CrossRef García-Quiroz J, Rivas-Suárez M, García-Becerra R, Barrera D, Martínez-Reza I, Ordaz-Rosado D, et al. Calcitriol reduces thrombospondin-1 and increases vascular endothelial growth factor in breast cancer cells: implications for tumor angiogenesis. J Steroid Biochem Mol Biol. 2014;144:215–22.CrossRef
40.
go back to reference Verbrugge SE, Scheper RJ, Lems WF, de Gruijl TD, Jansen G. Proteasome inhibitors as experimental therapeutics of autoimmune diseases. Arthritis Res Ther. 2015;17(1):17.CrossRef Verbrugge SE, Scheper RJ, Lems WF, de Gruijl TD, Jansen G. Proteasome inhibitors as experimental therapeutics of autoimmune diseases. Arthritis Res Ther. 2015;17(1):17.CrossRef
41.
go back to reference Mariano A, Henning A, Han R. Dysferlin-deficient muscular dystrophy and innate immune activation. FEBS J. 2013;280(17):4165–76.CrossRef Mariano A, Henning A, Han R. Dysferlin-deficient muscular dystrophy and innate immune activation. FEBS J. 2013;280(17):4165–76.CrossRef
Metadata
Title
Proteasome inhibitors reduce thrombospondin-1 release in human dysferlin-deficient myotubes
Authors
Esther Fernández-Simón
Cinta Lleixà
Xavier Suarez-Calvet
Jordi Diaz-Manera
Isabel Illa
Eduard Gallardo
Noemí de Luna
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2020
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-020-03756-7

Other articles of this Issue 1/2020

BMC Musculoskeletal Disorders 1/2020 Go to the issue