Skip to main content
Top
Published in: Molecular Cancer 1/2014

Open Access 01-12-2014 | Research

Prostate tumor OVerexpressed-1 (PTOV1) down-regulates HES1 and HEY1 notch targets genes and promotes prostate cancer progression

Authors: Lide Alaña, Marta Sesé, Verónica Cánovas, Yolanda Punyal, Yolanda Fernández, Ibane Abasolo, Inés de Torres, Cristina Ruiz, Lluís Espinosa, Anna Bigas, Santiago Ramón y Cajal, Pedro L Fernández, Florenci Serras, Montserrat Corominas, Timothy M Thomson, Rosanna Paciucci

Published in: Molecular Cancer | Issue 1/2014

Login to get access

Abstract

Background

PTOV1 is an adaptor protein with functions in diverse processes, including gene transcription and protein translation, whose overexpression is associated with a higher proliferation index and tumor grade in prostate cancer (PC) and other neoplasms. Here we report its interaction with the Notch pathway and its involvement in PC progression.

Methods

Stable PTOV1 knockdown or overexpression were performed by lentiviral transduction. Protein interactions were analyzed by co-immunoprecipitation, pull-down and/or immunofluorescence. Endogenous gene expression was analyzed by real time RT-PCR and/or Western blotting. Exogenous promoter activities were studied by luciferase assays. Gene promoter interactions were analyzed by chromatin immunoprecipitation assays (ChIP). In vivo studies were performed in the Drosophila melanogaster wing, the SCID-Beige mouse model, and human prostate cancer tissues and metastasis. The Excel package was used for statistical analysis.

Results

Knockdown of PTOV1 in prostate epithelial cells and HaCaT skin keratinocytes caused the upregulation, and overexpression of PTOV1 the downregulation, of the Notch target genes HEY1 and HES1, suggesting that PTOV1 counteracts Notch signaling. Under conditions of inactive Notch signaling, endogenous PTOV1 associated with the HEY1 and HES1 promoters, together with components of the Notch repressor complex. Conversely, expression of active Notch1 provoked the dismissal of PTOV1 from these promoters. The antagonist role of PTOV1 on Notch activity was corroborated in the Drosophila melanogaster wing, where human PTOV1 exacerbated Notch deletion mutant phenotypes and suppressed the effects of constitutively active Notch. PTOV1 was required for optimal in vitro invasiveness and anchorage-independent growth of PC-3 cells, activities counteracted by Notch, and for their efficient growth and metastatic spread in vivo. In prostate tumors, the overexpression of PTOV1 was associated with decreased expression of HEY1 and HES1, and this correlation was significant in metastatic lesions.

Conclusions

High levels of the adaptor protein PTOV1 counteract the transcriptional activity of Notch. Our evidences link the pro-oncogenic and pro-metastatic effects of PTOV1 in prostate cancer to its inhibitory activity on Notch signaling and are supportive of a tumor suppressor role of Notch in prostate cancer progression.
Appendix
Available only for authorised users
Literature
1.
go back to reference Benedit P, Paciucci R, Thomson TM, Valeri M, Nadal M, Caceres C, de Torres I, Estivill X, Lozano JJ, Morote J, Reventos J: PTOV1, a novel protein overexpressed in prostate cancer containing a new class of protein homology blocks. Oncogene. 2001, 20 (12): 1455-1464. 10.1038/sj.onc.1204233CrossRefPubMed Benedit P, Paciucci R, Thomson TM, Valeri M, Nadal M, Caceres C, de Torres I, Estivill X, Lozano JJ, Morote J, Reventos J: PTOV1, a novel protein overexpressed in prostate cancer containing a new class of protein homology blocks. Oncogene. 2001, 20 (12): 1455-1464. 10.1038/sj.onc.1204233CrossRefPubMed
2.
go back to reference Welsh JB, Sapinoso LM, Su AI, Kern SG, Wang-Rodriguez J, Moskaluk CA, Frierson HF, Hampton GM: Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res. 2001, 61 (16): 5974-5978.PubMed Welsh JB, Sapinoso LM, Su AI, Kern SG, Wang-Rodriguez J, Moskaluk CA, Frierson HF, Hampton GM: Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res. 2001, 61 (16): 5974-5978.PubMed
3.
go back to reference Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K, Ferrari M, Egevad L, Rayford W, Bergerheim U, Ekman P, DeMarzo AM, Tibshirani R, Botstein D, Brown PO, Brooks JD, Pollack JR: Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci U S A. 2004, 101 (3): 811-816. 10.1073/pnas.0304146101PubMedCentralCrossRefPubMed Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K, Ferrari M, Egevad L, Rayford W, Bergerheim U, Ekman P, DeMarzo AM, Tibshirani R, Botstein D, Brown PO, Brooks JD, Pollack JR: Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci U S A. 2004, 101 (3): 811-816. 10.1073/pnas.0304146101PubMedCentralCrossRefPubMed
4.
go back to reference Santamaria A, Fernandez PL, Farre X, Benedit P, Reventos J, Morote J, Paciucci R, Thomson TM: PTOV-1, a novel protein overexpressed in prostate cancer, shuttles between the cytoplasm and the nucleus and promotes entry into the S phase of the cell division cycle. Am J Pathol. 2003, 162 (3): 897-905. 10.1016/S0002-9440(10)63885-0PubMedCentralCrossRefPubMed Santamaria A, Fernandez PL, Farre X, Benedit P, Reventos J, Morote J, Paciucci R, Thomson TM: PTOV-1, a novel protein overexpressed in prostate cancer, shuttles between the cytoplasm and the nucleus and promotes entry into the S phase of the cell division cycle. Am J Pathol. 2003, 162 (3): 897-905. 10.1016/S0002-9440(10)63885-0PubMedCentralCrossRefPubMed
5.
go back to reference Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang CH, Angelo M, Ladd C, Reich M, Latulippe E, Mesirov JP, Poggio T, Gerald W, Loda M, Lander ES, Golub TR: Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci U S A. 2001, 98 (26): 15149-15154. 10.1073/pnas.211566398PubMedCentralCrossRefPubMed Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang CH, Angelo M, Ladd C, Reich M, Latulippe E, Mesirov JP, Poggio T, Gerald W, Loda M, Lander ES, Golub TR: Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci U S A. 2001, 98 (26): 15149-15154. 10.1073/pnas.211566398PubMedCentralCrossRefPubMed
6.
go back to reference Fernandez S, Mosquera JL, Alana L, Sanchez-Pla A, Morote J, Ramon YCS, Reventos J, de Torres I, Paciucci R: PTOV1 is overexpressed in human high-grade malignant tumors. Virchows Arch. 2011, 458 (3): 323-330. 10.1007/s00428-010-1018-1CrossRefPubMed Fernandez S, Mosquera JL, Alana L, Sanchez-Pla A, Morote J, Ramon YCS, Reventos J, de Torres I, Paciucci R: PTOV1 is overexpressed in human high-grade malignant tumors. Virchows Arch. 2011, 458 (3): 323-330. 10.1007/s00428-010-1018-1CrossRefPubMed
7.
go back to reference Mazzucchelli R, Scarpelli M, Barbisan F, Santinelli A, Lopez-Beltran A, Cheng L, Montironi R: Immunohistochemical expression of prostate tumour overexpressed 1 (PTOV1) in atypical adenomatous hyperplasia (AAH) of the prostate: additional evidence linking (AAH) to adenocarcinoma. Cell Oncol (Dordrecht). 2013, 36: 37-42. 10.1007/s13402-012-0111-7.CrossRef Mazzucchelli R, Scarpelli M, Barbisan F, Santinelli A, Lopez-Beltran A, Cheng L, Montironi R: Immunohistochemical expression of prostate tumour overexpressed 1 (PTOV1) in atypical adenomatous hyperplasia (AAH) of the prostate: additional evidence linking (AAH) to adenocarcinoma. Cell Oncol (Dordrecht). 2013, 36: 37-42. 10.1007/s13402-012-0111-7.CrossRef
8.
go back to reference Morote J, Fernandez S, Alana L, Iglesias C, Planas J, Reventos J, Ramon YCS, Paciucci R, de Torres IM: PTOV1 expression predicts prostate cancer in men with isolated high-grade prostatic intraepithelial neoplasia in needle biopsy. Clin Cancer Res. 2008, 14 (9): 2617-2622. 10.1158/1078-0432.CCR-07-4987CrossRefPubMed Morote J, Fernandez S, Alana L, Iglesias C, Planas J, Reventos J, Ramon YCS, Paciucci R, de Torres IM: PTOV1 expression predicts prostate cancer in men with isolated high-grade prostatic intraepithelial neoplasia in needle biopsy. Clin Cancer Res. 2008, 14 (9): 2617-2622. 10.1158/1078-0432.CCR-07-4987CrossRefPubMed
9.
go back to reference Mittler G, Stuhler T, Santolin L, Uhlmann T, Kremmer E, Lottspeich F, Berti L, Meisterernst M: A novel docking site on Mediator is critical for activation by VP16 in mammalian cells. EMBO J. 2003, 22 (24): 6494-6504. 10.1093/emboj/cdg619PubMedCentralCrossRefPubMed Mittler G, Stuhler T, Santolin L, Uhlmann T, Kremmer E, Lottspeich F, Berti L, Meisterernst M: A novel docking site on Mediator is critical for activation by VP16 in mammalian cells. EMBO J. 2003, 22 (24): 6494-6504. 10.1093/emboj/cdg619PubMedCentralCrossRefPubMed
10.
go back to reference Yang F, DeBeaumont R, Zhou S, Naar AM: The activator-recruited cofactor/Mediator coactivator subunit ARC92 is a functionally important target of the VP16 transcriptional activator. Proc Natl Acad Sci U S A. 2004, 101 (8): 2339-2344. 10.1073/pnas.0308676100PubMedCentralCrossRefPubMed Yang F, DeBeaumont R, Zhou S, Naar AM: The activator-recruited cofactor/Mediator coactivator subunit ARC92 is a functionally important target of the VP16 transcriptional activator. Proc Natl Acad Sci U S A. 2004, 101 (8): 2339-2344. 10.1073/pnas.0308676100PubMedCentralCrossRefPubMed
11.
go back to reference Vojnic E, Mourao A, Seizl M, Simon B, Wenzeck L, Lariviere L, Baumli S, Baumgart K, Meisterernst M, Sattler M, Cramer P: Structure and VP16 binding of the Mediator Med25 activator interaction domain. Nat Struct Mol Biol. 2011, 18 (4): 404-409. 10.1038/nsmb.1997CrossRefPubMed Vojnic E, Mourao A, Seizl M, Simon B, Wenzeck L, Lariviere L, Baumli S, Baumgart K, Meisterernst M, Sattler M, Cramer P: Structure and VP16 binding of the Mediator Med25 activator interaction domain. Nat Struct Mol Biol. 2011, 18 (4): 404-409. 10.1038/nsmb.1997CrossRefPubMed
12.
go back to reference Milbradt AG, Kulkarni M, Yi T, Takeuchi K, Sun ZY, Luna RE, Selenko P, Naar AM, Wagner G: Structure of the VP16 transactivator target in the Mediator. Nat Struct Mol Biol. 2011, 18 (4): 410-415. 10.1038/nsmb.1999PubMedCentralCrossRefPubMed Milbradt AG, Kulkarni M, Yi T, Takeuchi K, Sun ZY, Luna RE, Selenko P, Naar AM, Wagner G: Structure of the VP16 transactivator target in the Mediator. Nat Struct Mol Biol. 2011, 18 (4): 410-415. 10.1038/nsmb.1999PubMedCentralCrossRefPubMed
13.
go back to reference Bontems F, Verger A, Dewitte F, Lens Z, Baert JL, Ferreira E, de Launoit Y, Sizun C, Guittet E, Villeret V, Monte D: NMR structure of the human Mediator MED25 ACID domain. J Struct Biol. 2010, 174 (1): 245-251.CrossRefPubMed Bontems F, Verger A, Dewitte F, Lens Z, Baert JL, Ferreira E, de Launoit Y, Sizun C, Guittet E, Villeret V, Monte D: NMR structure of the human Mediator MED25 ACID domain. J Struct Biol. 2010, 174 (1): 245-251.CrossRefPubMed
14.
go back to reference Youn HS, Park UH, Kim EJ, Um SJ: PTOV1 antagonizes MED25 in RAR transcriptional activation. Biochem Biophys Res Commun. 2011, 404 (1): 239-244. 10.1016/j.bbrc.2010.11.100CrossRefPubMed Youn HS, Park UH, Kim EJ, Um SJ: PTOV1 antagonizes MED25 in RAR transcriptional activation. Biochem Biophys Res Commun. 2011, 404 (1): 239-244. 10.1016/j.bbrc.2010.11.100CrossRefPubMed
15.
go back to reference Youn H, Kim EJ, Um SJ: Zyxin cooperates with PTOV1 to confer retinoic acid resistance by repressing RAR activity. Cancer Lett. 2013, 331: 192-199. 10.1016/j.canlet.2012.12.019CrossRefPubMed Youn H, Kim EJ, Um SJ: Zyxin cooperates with PTOV1 to confer retinoic acid resistance by repressing RAR activity. Cancer Lett. 2013, 331: 192-199. 10.1016/j.canlet.2012.12.019CrossRefPubMed
16.
go back to reference Santamaria A, Castellanos E, Gomez V, Benedit P, Renau-Piqueras J, Morote J, Reventos J, Thomson TM, Paciucci R: PTOV1 enables the nuclear translocation and mitogenic activity of flotillin-1, a major protein of lipid rafts. Mol Cell Biol. 2005, 25 (5): 1900-1911. 10.1128/MCB.25.5.1900-1911.2005PubMedCentralCrossRefPubMed Santamaria A, Castellanos E, Gomez V, Benedit P, Renau-Piqueras J, Morote J, Reventos J, Thomson TM, Paciucci R: PTOV1 enables the nuclear translocation and mitogenic activity of flotillin-1, a major protein of lipid rafts. Mol Cell Biol. 2005, 25 (5): 1900-1911. 10.1128/MCB.25.5.1900-1911.2005PubMedCentralCrossRefPubMed
17.
go back to reference Benzinger A, Muster N, Koch HB, Yates JR, Hermeking H: Targeted proteomic analysis of 14-3-3 sigma, a p53 effector commonly silenced in cancer. Mol Cell Proteomics. 2005, 4 (6): 785-795. 10.1074/mcp.M500021-MCP200CrossRefPubMed Benzinger A, Muster N, Koch HB, Yates JR, Hermeking H: Targeted proteomic analysis of 14-3-3 sigma, a p53 effector commonly silenced in cancer. Mol Cell Proteomics. 2005, 4 (6): 785-795. 10.1074/mcp.M500021-MCP200CrossRefPubMed
18.
go back to reference Hard RL, Liu J, Shen J, Zhou P, Pei D: HDAC6 and Ubp-M BUZ domains recognize specific C-terminal sequences of proteins. Biochemistry. 2010, 49 (50): 10737-10746. 10.1021/bi101014sPubMedCentralCrossRefPubMed Hard RL, Liu J, Shen J, Zhou P, Pei D: HDAC6 and Ubp-M BUZ domains recognize specific C-terminal sequences of proteins. Biochemistry. 2010, 49 (50): 10737-10746. 10.1021/bi101014sPubMedCentralCrossRefPubMed
19.
go back to reference Marques N, Sese M, Canovas V, Valente F, Bermudo R, de Torres I, Fernandez Y, Abasolo I, Fernandez PL, Contreras H, Castellon E, Celia-Terrassa T, Mendez R, Ramon YCS, Thomson TM, Paciucci R: Regulation of protein translation and c-Jun expression by prostate tumor overexpressed 1. Oncogene. 2014, 33: 1124-1134. 10.1038/onc.2013.51CrossRefPubMed Marques N, Sese M, Canovas V, Valente F, Bermudo R, de Torres I, Fernandez Y, Abasolo I, Fernandez PL, Contreras H, Castellon E, Celia-Terrassa T, Mendez R, Ramon YCS, Thomson TM, Paciucci R: Regulation of protein translation and c-Jun expression by prostate tumor overexpressed 1. Oncogene. 2014, 33: 1124-1134. 10.1038/onc.2013.51CrossRefPubMed
20.
go back to reference Lee HK, Park UH, Kim EJ, Um SJ: MED25 is distinct from TRAP220/MED1 in cooperating with CBP for retinoid receptor activation. EMBO J. 2007, 26 (15): 3545-3557. 10.1038/sj.emboj.7601797PubMedCentralCrossRefPubMed Lee HK, Park UH, Kim EJ, Um SJ: MED25 is distinct from TRAP220/MED1 in cooperating with CBP for retinoid receptor activation. EMBO J. 2007, 26 (15): 3545-3557. 10.1038/sj.emboj.7601797PubMedCentralCrossRefPubMed
21.
go back to reference Artavanis-Tsakonas S, Rand MD, Lake RJ: Notch signaling: cell fate control and signal integration in development. Science. 1999, 284 (5415): 770-776. 10.1126/science.284.5415.770CrossRefPubMed Artavanis-Tsakonas S, Rand MD, Lake RJ: Notch signaling: cell fate control and signal integration in development. Science. 1999, 284 (5415): 770-776. 10.1126/science.284.5415.770CrossRefPubMed
22.
go back to reference Brou C, Logeat F, Gupta N, Bessia C, LeBail O, Doedens JR, Cumano A, Roux P, Black RA, Israel A: A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol Cell. 2000, 5 (2): 207-216. 10.1016/S1097-2765(00)80417-7CrossRefPubMed Brou C, Logeat F, Gupta N, Bessia C, LeBail O, Doedens JR, Cumano A, Roux P, Black RA, Israel A: A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol Cell. 2000, 5 (2): 207-216. 10.1016/S1097-2765(00)80417-7CrossRefPubMed
23.
go back to reference Mumm JS, Kopan R: Notch signaling: from the outside in. Dev Biol. 2000, 228 (2): 151-165. 10.1006/dbio.2000.9960CrossRefPubMed Mumm JS, Kopan R: Notch signaling: from the outside in. Dev Biol. 2000, 228 (2): 151-165. 10.1006/dbio.2000.9960CrossRefPubMed
24.
go back to reference Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A: Signalling downstream of activated mammalian Notch. Nature. 1995, 377 (6547): 355-358. 10.1038/377355a0CrossRefPubMed Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A: Signalling downstream of activated mammalian Notch. Nature. 1995, 377 (6547): 355-358. 10.1038/377355a0CrossRefPubMed
25.
go back to reference Iso T, Sartorelli V, Poizat C, Iezzi S, Wu HY, Chung G, Kedes L, Hamamori Y: HERP, a novel heterodimer partner of HES/E(spl) in Notch signaling. Mol Cell Biol. 2001, 21 (17): 6080-6089. 10.1128/MCB.21.17.6080-6089.2001PubMedCentralCrossRefPubMed Iso T, Sartorelli V, Poizat C, Iezzi S, Wu HY, Chung G, Kedes L, Hamamori Y: HERP, a novel heterodimer partner of HES/E(spl) in Notch signaling. Mol Cell Biol. 2001, 21 (17): 6080-6089. 10.1128/MCB.21.17.6080-6089.2001PubMedCentralCrossRefPubMed
26.
go back to reference Lai EC: Keeping a good pathway down: transcriptional repression of Notch pathway target genes by CSL proteins. EMBO Rep. 2002, 3 (9): 840-845. 10.1093/embo-reports/kvf170PubMedCentralCrossRefPubMed Lai EC: Keeping a good pathway down: transcriptional repression of Notch pathway target genes by CSL proteins. EMBO Rep. 2002, 3 (9): 840-845. 10.1093/embo-reports/kvf170PubMedCentralCrossRefPubMed
27.
go back to reference Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD, Sklar J: TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell. 1991, 66 (4): 649-661. 10.1016/0092-8674(91)90111-BCrossRefPubMed Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD, Sklar J: TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell. 1991, 66 (4): 649-661. 10.1016/0092-8674(91)90111-BCrossRefPubMed
28.
go back to reference Balint K, Xiao M, Pinnix CC, Soma A, Veres I, Juhasz I, Brown EJ, Capobianco AJ, Herlyn M, Liu ZJ: Activation of Notch1 signaling is required for beta-catenin-mediated human primary melanoma progression. J Clin Invest. 2005, 115 (11): 3166-3176. 10.1172/JCI25001PubMedCentralCrossRefPubMed Balint K, Xiao M, Pinnix CC, Soma A, Veres I, Juhasz I, Brown EJ, Capobianco AJ, Herlyn M, Liu ZJ: Activation of Notch1 signaling is required for beta-catenin-mediated human primary melanoma progression. J Clin Invest. 2005, 115 (11): 3166-3176. 10.1172/JCI25001PubMedCentralCrossRefPubMed
29.
go back to reference van Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M, Begthel H, Cozijnsen M, Robine S, Winton DJ, Radtke F, Clevers H: Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature. 2005, 435 (7044): 959-963. 10.1038/nature03659CrossRefPubMed van Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M, Begthel H, Cozijnsen M, Robine S, Winton DJ, Radtke F, Clevers H: Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature. 2005, 435 (7044): 959-963. 10.1038/nature03659CrossRefPubMed
30.
go back to reference Klinakis A, Lobry C, Abdel-Wahab O, Oh P, Haeno H, Buonamici S, van De Walle I, Cathelin S, Trimarchi T, Araldi E, Liu C, Ibrahim S, Beran M, Zavadil J, Efstratiadis A, Taghon T, Michor F, Levine RL, Aifantis I: A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia. Nature. 2011, 473 (7346): 230-233. 10.1038/nature09999PubMedCentralCrossRefPubMed Klinakis A, Lobry C, Abdel-Wahab O, Oh P, Haeno H, Buonamici S, van De Walle I, Cathelin S, Trimarchi T, Araldi E, Liu C, Ibrahim S, Beran M, Zavadil J, Efstratiadis A, Taghon T, Michor F, Levine RL, Aifantis I: A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia. Nature. 2011, 473 (7346): 230-233. 10.1038/nature09999PubMedCentralCrossRefPubMed
31.
go back to reference Nicolas M, Wolfer A, Raj K, Kummer JA, Mill P, van Noort M, Hui CC, Clevers H, Dotto GP, Radtke F: Notch1 functions as a tumor suppressor in mouse skin. Nat Genet. 2003, 33 (3): 416-421. 10.1038/ng1099CrossRefPubMed Nicolas M, Wolfer A, Raj K, Kummer JA, Mill P, van Noort M, Hui CC, Clevers H, Dotto GP, Radtke F: Notch1 functions as a tumor suppressor in mouse skin. Nat Genet. 2003, 33 (3): 416-421. 10.1038/ng1099CrossRefPubMed
32.
go back to reference Ranganathan P, Weaver KL, Capobianco AJ: Notch signalling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer. 2011, 11 (5): 338-351. 10.1038/nrc3035CrossRefPubMed Ranganathan P, Weaver KL, Capobianco AJ: Notch signalling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer. 2011, 11 (5): 338-351. 10.1038/nrc3035CrossRefPubMed
33.
go back to reference Leong KG, Gao WQ: The Notch pathway in prostate development and cancer. Differentiation. 2008, 76 (6): 699-716. 10.1111/j.1432-0436.2008.00288.xCrossRefPubMed Leong KG, Gao WQ: The Notch pathway in prostate development and cancer. Differentiation. 2008, 76 (6): 699-716. 10.1111/j.1432-0436.2008.00288.xCrossRefPubMed
34.
go back to reference Whelan JT, Kellogg A, Shewchuk BM, Hewan-Lowe K, Bertrand FE: Notch-1 signaling is lost in prostate adenocarcinoma and promotes PTEN gene expression. J Cell Biochem. 2009, 107 (5): 992-1001. 10.1002/jcb.22199CrossRefPubMed Whelan JT, Kellogg A, Shewchuk BM, Hewan-Lowe K, Bertrand FE: Notch-1 signaling is lost in prostate adenocarcinoma and promotes PTEN gene expression. J Cell Biochem. 2009, 107 (5): 992-1001. 10.1002/jcb.22199CrossRefPubMed
35.
go back to reference Wang XD, Leow CC, Zha J, Tang Z, Modrusan Z, Radtke F, Aguet M, de Sauvage FJ, Gao WQ: Notch signaling is required for normal prostatic epithelial cell proliferation and differentiation. Dev Biol. 2006, 290 (1): 66-80. 10.1016/j.ydbio.2005.11.009CrossRefPubMed Wang XD, Leow CC, Zha J, Tang Z, Modrusan Z, Radtke F, Aguet M, de Sauvage FJ, Gao WQ: Notch signaling is required for normal prostatic epithelial cell proliferation and differentiation. Dev Biol. 2006, 290 (1): 66-80. 10.1016/j.ydbio.2005.11.009CrossRefPubMed
36.
go back to reference Shou J, Ross S, Koeppen H, de Sauvage FJ, Gao WQ: Dynamics of notch expression during murine prostate development and tumorigenesis. Cancer Res. 2001, 61 (19): 7291-7297.PubMed Shou J, Ross S, Koeppen H, de Sauvage FJ, Gao WQ: Dynamics of notch expression during murine prostate development and tumorigenesis. Cancer Res. 2001, 61 (19): 7291-7297.PubMed
37.
go back to reference Santagata S, Demichelis F, Riva A, Varambally S, Hofer MD, Kutok JL, Kim R, Tang J, Montie JE, Chinnaiyan AM, Rubin MA, Aster JC: JAGGED1 expression is associated with prostate cancer metastasis and recurrence. Cancer Res. 2004, 64 (19): 6854-6857. 10.1158/0008-5472.CAN-04-2500CrossRefPubMed Santagata S, Demichelis F, Riva A, Varambally S, Hofer MD, Kutok JL, Kim R, Tang J, Montie JE, Chinnaiyan AM, Rubin MA, Aster JC: JAGGED1 expression is associated with prostate cancer metastasis and recurrence. Cancer Res. 2004, 64 (19): 6854-6857. 10.1158/0008-5472.CAN-04-2500CrossRefPubMed
38.
go back to reference Domingo-Domenech J, Vidal SJ, Rodriguez-Bravo V, Castillo-Martin M, Quinn SA, Rodriguez-Barrueco R, Bonal DM, Charytonowicz E, Gladoun N, de la Iglesia-Vicente J, Petrylak DP, Benson MC, Silva JM, Cordon-Cardo C: Suppression of acquired docetaxel resistance in prostate cancer through depletion of notch- and hedgehog-dependent tumor-initiating cells. Cancer Cell. 2012, 22 (3): 373-388. 10.1016/j.ccr.2012.07.016CrossRefPubMed Domingo-Domenech J, Vidal SJ, Rodriguez-Bravo V, Castillo-Martin M, Quinn SA, Rodriguez-Barrueco R, Bonal DM, Charytonowicz E, Gladoun N, de la Iglesia-Vicente J, Petrylak DP, Benson MC, Silva JM, Cordon-Cardo C: Suppression of acquired docetaxel resistance in prostate cancer through depletion of notch- and hedgehog-dependent tumor-initiating cells. Cancer Cell. 2012, 22 (3): 373-388. 10.1016/j.ccr.2012.07.016CrossRefPubMed
39.
go back to reference Wang Z, Li Y, Banerjee S, Kong D, Ahmad A, Nogueira V, Hay N, Sarkar FH: Down-regulation of Notch-1 and Jagged-1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF-kappaB signaling pathways. J Cell Biochem. 2010, 109 (4): 726-736.PubMed Wang Z, Li Y, Banerjee S, Kong D, Ahmad A, Nogueira V, Hay N, Sarkar FH: Down-regulation of Notch-1 and Jagged-1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF-kappaB signaling pathways. J Cell Biochem. 2010, 109 (4): 726-736.PubMed
40.
go back to reference Kung AL, Rebel VI, Bronson RT, Ch'ng LE, Sieff CA, Livingston DM, Yao TP: Gene dose-dependent control of hematopoiesis and hematologic tumor suppression by CBP. Genes Dev. 2000, 14 (3): 272-277.PubMedCentralPubMed Kung AL, Rebel VI, Bronson RT, Ch'ng LE, Sieff CA, Livingston DM, Yao TP: Gene dose-dependent control of hematopoiesis and hematologic tumor suppression by CBP. Genes Dev. 2000, 14 (3): 272-277.PubMedCentralPubMed
41.
go back to reference Rebel VI, Kung AL, Tanner EA, Yang H, Bronson RT, Livingston DM: Distinct roles for CREB-binding protein and p300 in hematopoietic stem cell self-renewal. Proc Natl Acad Sci U S A. 2002, 99 (23): 14789-14794. 10.1073/pnas.232568499PubMedCentralCrossRefPubMed Rebel VI, Kung AL, Tanner EA, Yang H, Bronson RT, Livingston DM: Distinct roles for CREB-binding protein and p300 in hematopoietic stem cell self-renewal. Proc Natl Acad Sci U S A. 2002, 99 (23): 14789-14794. 10.1073/pnas.232568499PubMedCentralCrossRefPubMed
42.
go back to reference Ding L, Chen S, Liu P, Pan Y, Zhong J, Regan KM, Wang L, Yu C, Rizzardi T, Cheng L, Zhang J, Schmechel SC, Cheville JC, van Deursen J, Tindall DJ, Huang H: CBP loss cooperates with PTEN haploinsufficiency to drive prostate cancer: implications for epigenetic therapy. Cancer Res. 2014 Ding L, Chen S, Liu P, Pan Y, Zhong J, Regan KM, Wang L, Yu C, Rizzardi T, Cheng L, Zhang J, Schmechel SC, Cheville JC, van Deursen J, Tindall DJ, Huang H: CBP loss cooperates with PTEN haploinsufficiency to drive prostate cancer: implications for epigenetic therapy. Cancer Res. 2014
43.
go back to reference Gong AY, Eischeid AN, Xiao J, Zhao J, Chen D, Wang ZY, Young CY, Chen XM: miR-17-5p targets the p300/CBP-associated factor and modulates androgen receptor transcriptional activity in cultured prostate cancer cells. BMC Cancer. 2012, 12: 492- 10.1186/1471-2407-12-492PubMedCentralCrossRefPubMed Gong AY, Eischeid AN, Xiao J, Zhao J, Chen D, Wang ZY, Young CY, Chen XM: miR-17-5p targets the p300/CBP-associated factor and modulates androgen receptor transcriptional activity in cultured prostate cancer cells. BMC Cancer. 2012, 12: 492- 10.1186/1471-2407-12-492PubMedCentralCrossRefPubMed
44.
go back to reference Santer FR, Hoschele PP, Oh SJ, Erb HH, Bouchal J, Cavarretta IT, Parson W, Meyers DJ, Cole PA, Culig Z: Inhibition of the acetyltransferases p300 and CBP reveals a targetable function for p300 in the survival and invasion pathways of prostate cancer cell lines. Mol Cancer Ther. 2011, 10 (9): 1644-1655. 10.1158/1535-7163.MCT-11-0182CrossRefPubMed Santer FR, Hoschele PP, Oh SJ, Erb HH, Bouchal J, Cavarretta IT, Parson W, Meyers DJ, Cole PA, Culig Z: Inhibition of the acetyltransferases p300 and CBP reveals a targetable function for p300 in the survival and invasion pathways of prostate cancer cell lines. Mol Cancer Ther. 2011, 10 (9): 1644-1655. 10.1158/1535-7163.MCT-11-0182CrossRefPubMed
45.
go back to reference Comuzzi B, Nemes C, Schmidt S, Jasarevic Z, Lodde M, Pycha A, Bartsch G, Offner F, Culig Z, Hobisch A: The androgen receptor co-activator CBP is up-regulated following androgen withdrawal and is highly expressed in advanced prostate cancer. J Pathol. 2004, 204 (2): 159-166. 10.1002/path.1609CrossRefPubMed Comuzzi B, Nemes C, Schmidt S, Jasarevic Z, Lodde M, Pycha A, Bartsch G, Offner F, Culig Z, Hobisch A: The androgen receptor co-activator CBP is up-regulated following androgen withdrawal and is highly expressed in advanced prostate cancer. J Pathol. 2004, 204 (2): 159-166. 10.1002/path.1609CrossRefPubMed
46.
go back to reference Wang XD, Shou J, Wong P, French DM, Gao WQ: Notch1-expressing cells are indispensable for prostatic branching morphogenesis during development and re-growth following castration and androgen replacement. J Biol Chem. 2004, 279 (23): 24733-24744. 10.1074/jbc.M401602200CrossRefPubMed Wang XD, Shou J, Wong P, French DM, Gao WQ: Notch1-expressing cells are indispensable for prostatic branching morphogenesis during development and re-growth following castration and androgen replacement. J Biol Chem. 2004, 279 (23): 24733-24744. 10.1074/jbc.M401602200CrossRefPubMed
47.
go back to reference Robinson DR, Zylstra CR, Williams BO: Wnt signaling and prostate cancer. Curr Drug Targets. 2008, 9 (7): 571-580.CrossRefPubMed Robinson DR, Zylstra CR, Williams BO: Wnt signaling and prostate cancer. Curr Drug Targets. 2008, 9 (7): 571-580.CrossRefPubMed
48.
go back to reference Geling A, Steiner H, Willem M, Bally-Cuif L, Haass C: A gamma-secretase inhibitor blocks Notch signaling in vivo and causes a severe neurogenic phenotype in zebrafish. EMBO Rep. 2002, 3 (7): 688-694. 10.1093/embo-reports/kvf124PubMedCentralCrossRefPubMed Geling A, Steiner H, Willem M, Bally-Cuif L, Haass C: A gamma-secretase inhibitor blocks Notch signaling in vivo and causes a severe neurogenic phenotype in zebrafish. EMBO Rep. 2002, 3 (7): 688-694. 10.1093/embo-reports/kvf124PubMedCentralCrossRefPubMed
49.
go back to reference Wu L, Aster JC, Blacklow SC, Lake R, Artavanis-Tsakonas S, Griffin JD: MAML1, a human homologue of Drosophila mastermind, is a transcriptional co-activator for NOTCH receptors. Nat Genet. 2000, 26 (4): 484-489. 10.1038/82644CrossRefPubMed Wu L, Aster JC, Blacklow SC, Lake R, Artavanis-Tsakonas S, Griffin JD: MAML1, a human homologue of Drosophila mastermind, is a transcriptional co-activator for NOTCH receptors. Nat Genet. 2000, 26 (4): 484-489. 10.1038/82644CrossRefPubMed
50.
go back to reference Yoshida M, Kijima M, Akita M, Beppu T: Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem. 1990, 265 (28): 17174-17179.PubMed Yoshida M, Kijima M, Akita M, Beppu T: Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem. 1990, 265 (28): 17174-17179.PubMed
51.
go back to reference Oswald F, Kostezka U, Astrahantseff K, Bourteele S, Dillinger K, Zechner U, Ludwig L, Wilda M, Hameister H, Knochel W, Liptay S, Schmid RM: SHARP is a novel component of the Notch/RBP-Jkappa signalling pathway. EMBO J. 2002, 21 (20): 5417-5426. 10.1093/emboj/cdf549PubMedCentralCrossRefPubMed Oswald F, Kostezka U, Astrahantseff K, Bourteele S, Dillinger K, Zechner U, Ludwig L, Wilda M, Hameister H, Knochel W, Liptay S, Schmid RM: SHARP is a novel component of the Notch/RBP-Jkappa signalling pathway. EMBO J. 2002, 21 (20): 5417-5426. 10.1093/emboj/cdf549PubMedCentralCrossRefPubMed
52.
go back to reference Poulson DF: Chromosomal Deficiencies and the Embryonic Development of Drosophila Melanogaster. Proc Natl Acad Sci U S A. 1937, 23 (3): 133-137. 10.1073/pnas.23.3.133PubMedCentralCrossRefPubMed Poulson DF: Chromosomal Deficiencies and the Embryonic Development of Drosophila Melanogaster. Proc Natl Acad Sci U S A. 1937, 23 (3): 133-137. 10.1073/pnas.23.3.133PubMedCentralCrossRefPubMed
53.
go back to reference de Celis JF, Garcia-Bellido A: Modifications of the notch function by Abruptex mutations in Drosophila melanogaster. Genetics. 1994, 136 (1): 183-194.PubMedCentralPubMed de Celis JF, Garcia-Bellido A: Modifications of the notch function by Abruptex mutations in Drosophila melanogaster. Genetics. 1994, 136 (1): 183-194.PubMedCentralPubMed
54.
go back to reference Brand AH, Perrimon N: Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 1993, 118 (2): 401-415.PubMed Brand AH, Perrimon N: Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 1993, 118 (2): 401-415.PubMed
55.
go back to reference Kolev V, Mandinova A, Guinea-Viniegra J, Hu B, Lefort K, Lambertini C, Neel V, Dummer R, Wagner EF, Dotto GP: EGFR signalling as a negative regulator of Notch1 gene transcription and function in proliferating keratinocytes and cancer. Nat Cell Biol. 2008, 10 (8): 902-911. 10.1038/ncb1750PubMedCentralCrossRefPubMed Kolev V, Mandinova A, Guinea-Viniegra J, Hu B, Lefort K, Lambertini C, Neel V, Dummer R, Wagner EF, Dotto GP: EGFR signalling as a negative regulator of Notch1 gene transcription and function in proliferating keratinocytes and cancer. Nat Cell Biol. 2008, 10 (8): 902-911. 10.1038/ncb1750PubMedCentralCrossRefPubMed
56.
go back to reference Hong SH, Privalsky ML: The SMRT corepressor is regulated by a MEK-1 kinase pathway: inhibition of corepressor function is associated with SMRT phosphorylation and nuclear export. Mol Cell Biol. 2000, 20 (17): 6612-6625. 10.1128/MCB.20.17.6612-6625.2000PubMedCentralCrossRefPubMed Hong SH, Privalsky ML: The SMRT corepressor is regulated by a MEK-1 kinase pathway: inhibition of corepressor function is associated with SMRT phosphorylation and nuclear export. Mol Cell Biol. 2000, 20 (17): 6612-6625. 10.1128/MCB.20.17.6612-6625.2000PubMedCentralCrossRefPubMed
57.
go back to reference Kao HY, Ordentlich P, Koyano-Nakagawa N, Tang Z, Downes M, Kintner CR, Evans RM, Kadesch T: A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes Dev. 1998, 12 (15): 2269-2277. 10.1101/gad.12.15.2269PubMedCentralCrossRefPubMed Kao HY, Ordentlich P, Koyano-Nakagawa N, Tang Z, Downes M, Kintner CR, Evans RM, Kadesch T: A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes Dev. 1998, 12 (15): 2269-2277. 10.1101/gad.12.15.2269PubMedCentralCrossRefPubMed
58.
go back to reference Fernandez-Majada V, Aguilera C, Villanueva A, Vilardell F, Robert-Moreno A, Aytes A, Real FX, Capella G, Mayo MW, Espinosa L, Bigas A: Nuclear IKK activity leads to dysregulated notch-dependent gene expression in colorectal cancer. Proc Natl Acad Sci U S A. 2007, 104 (1): 276-281. 10.1073/pnas.0606476104PubMedCentralCrossRefPubMed Fernandez-Majada V, Aguilera C, Villanueva A, Vilardell F, Robert-Moreno A, Aytes A, Real FX, Capella G, Mayo MW, Espinosa L, Bigas A: Nuclear IKK activity leads to dysregulated notch-dependent gene expression in colorectal cancer. Proc Natl Acad Sci U S A. 2007, 104 (1): 276-281. 10.1073/pnas.0606476104PubMedCentralCrossRefPubMed
59.
go back to reference Kinoshita M, Nakagawa T, Shimizu A, Katsuoka Y: Differently regulated androgen receptor transcriptional complex in prostate cancer compared with normal prostate. Int J Urol. 2005, 12 (4): 390-397. 10.1111/j.1442-2042.2005.01093.xCrossRefPubMed Kinoshita M, Nakagawa T, Shimizu A, Katsuoka Y: Differently regulated androgen receptor transcriptional complex in prostate cancer compared with normal prostate. Int J Urol. 2005, 12 (4): 390-397. 10.1111/j.1442-2042.2005.01093.xCrossRefPubMed
60.
go back to reference Zhou S, Fujimuro M, Hsieh JJ, Chen L, Miyamoto A, Weinmaster G, Hayward SD: SKIP, a CBF1-associated protein, interacts with the ankyrin repeat domain of NotchIC To facilitate NotchIC function. Mol Cell Biol. 2000, 20 (7): 2400-2410.PubMedCentralCrossRefPubMed Zhou S, Fujimuro M, Hsieh JJ, Chen L, Miyamoto A, Weinmaster G, Hayward SD: SKIP, a CBF1-associated protein, interacts with the ankyrin repeat domain of NotchIC To facilitate NotchIC function. Mol Cell Biol. 2000, 20 (7): 2400-2410.PubMedCentralCrossRefPubMed
61.
go back to reference Feng Y, Bommer GT, Zhai Y, Akyol A, Hinoi T, Winer I, Lin HV, Cadigan KM, Cho KR, Fearon ER: Drosophila split ends homologue SHARP functions as a positive regulator of Wnt/beta-catenin/T-cell factor signaling in neoplastic transformation. Cancer Res. 2007, 67 (2): 482-491. 10.1158/0008-5472.CAN-06-2314CrossRefPubMed Feng Y, Bommer GT, Zhai Y, Akyol A, Hinoi T, Winer I, Lin HV, Cadigan KM, Cho KR, Fearon ER: Drosophila split ends homologue SHARP functions as a positive regulator of Wnt/beta-catenin/T-cell factor signaling in neoplastic transformation. Cancer Res. 2007, 67 (2): 482-491. 10.1158/0008-5472.CAN-06-2314CrossRefPubMed
62.
go back to reference Shi Y, Downes M, Xie W, Kao HY, Ordentlich P, Tsai CC, Hon M, Evans RM: Sharp, an inducible cofactor that integrates nuclear receptor repression and activation. Genes Dev. 2001, 15 (9): 1140-1151. 10.1101/gad.871201PubMedCentralCrossRefPubMed Shi Y, Downes M, Xie W, Kao HY, Ordentlich P, Tsai CC, Hon M, Evans RM: Sharp, an inducible cofactor that integrates nuclear receptor repression and activation. Genes Dev. 2001, 15 (9): 1140-1151. 10.1101/gad.871201PubMedCentralCrossRefPubMed
63.
go back to reference Conlon RA, Reaume AG, Rossant J: Notch1 is required for the coordinate segmentation of somites. Development. 1995, 121 (5): 1533-1545.PubMed Conlon RA, Reaume AG, Rossant J: Notch1 is required for the coordinate segmentation of somites. Development. 1995, 121 (5): 1533-1545.PubMed
64.
go back to reference Swiatek PJ, Lindsell CE, del Amo FF, Weinmaster G, Gridley T: Notch1 is essential for postimplantation development in mice. Genes Dev. 1994, 8 (6): 707-719. 10.1101/gad.8.6.707CrossRefPubMed Swiatek PJ, Lindsell CE, del Amo FF, Weinmaster G, Gridley T: Notch1 is essential for postimplantation development in mice. Genes Dev. 1994, 8 (6): 707-719. 10.1101/gad.8.6.707CrossRefPubMed
65.
go back to reference de la Pompa JL, Wakeham A, Correia KM, Samper E, Brown S, Aguilera RJ, Nakano T, Honjo T, Mak TW, Rossant J, Conlon RA: Conservation of the Notch signalling pathway in mammalian neurogenesis. Development. 1997, 124 (6): 1139-1148.PubMed de la Pompa JL, Wakeham A, Correia KM, Samper E, Brown S, Aguilera RJ, Nakano T, Honjo T, Mak TW, Rossant J, Conlon RA: Conservation of the Notch signalling pathway in mammalian neurogenesis. Development. 1997, 124 (6): 1139-1148.PubMed
66.
go back to reference Nakayama K, Satoh T, Igari A, Kageyama R, Nishida E: FGF induces oscillations of Hes1 expression and Ras/ERK activation. Curr Biol. 2008, 18 (8): R332-R334. 10.1016/j.cub.2008.03.013CrossRefPubMed Nakayama K, Satoh T, Igari A, Kageyama R, Nishida E: FGF induces oscillations of Hes1 expression and Ras/ERK activation. Curr Biol. 2008, 18 (8): R332-R334. 10.1016/j.cub.2008.03.013CrossRefPubMed
67.
go back to reference Yoshiura S, Ohtsuka T, Takenaka Y, Nagahara H, Yoshikawa K, Kageyama R: Ultradian oscillations of Stat, Smad, and Hes1 expression in response to serum. Proc Natl Acad Sci U S A. 2007, 104 (27): 11292-11297. 10.1073/pnas.0701837104PubMedCentralCrossRefPubMed Yoshiura S, Ohtsuka T, Takenaka Y, Nagahara H, Yoshikawa K, Kageyama R: Ultradian oscillations of Stat, Smad, and Hes1 expression in response to serum. Proc Natl Acad Sci U S A. 2007, 104 (27): 11292-11297. 10.1073/pnas.0701837104PubMedCentralCrossRefPubMed
68.
go back to reference Ramos YF, Hestand MS, Verlaan M, Krabbendam E, Ariyurek Y, van Galen M, van Dam H, van Ommen GJ, den Dunnen JT, Zantema A, t Hoen PA: Genome-wide assessment of differential roles for p300 and CBP in transcription regulation. Nucleic Acids Res. 2010, 38 (16): 5396-5408. 10.1093/nar/gkq184PubMedCentralCrossRefPubMed Ramos YF, Hestand MS, Verlaan M, Krabbendam E, Ariyurek Y, van Galen M, van Dam H, van Ommen GJ, den Dunnen JT, Zantema A, t Hoen PA: Genome-wide assessment of differential roles for p300 and CBP in transcription regulation. Nucleic Acids Res. 2010, 38 (16): 5396-5408. 10.1093/nar/gkq184PubMedCentralCrossRefPubMed
69.
go back to reference Debes JD, Sebo TJ, Lohse CM, Murphy LM, Haugen DA, Tindall DJ: p300 in prostate cancer proliferation and progression. Cancer Res. 2003, 63 (22): 7638-7640.PubMed Debes JD, Sebo TJ, Lohse CM, Murphy LM, Haugen DA, Tindall DJ: p300 in prostate cancer proliferation and progression. Cancer Res. 2003, 63 (22): 7638-7640.PubMed
70.
go back to reference Zhong J, Ding L, Bohrer LR, Pan Y, Liu P, Zhang J, Sebo TJ, Karnes RJ, Tindall DJ, van Deursen J, Huang H: P300 acetyltransferase regulates androgen receptor degradation and PTEN-deficient prostate tumorigenesis. Cancer Res. 2014 Zhong J, Ding L, Bohrer LR, Pan Y, Liu P, Zhang J, Sebo TJ, Karnes RJ, Tindall DJ, van Deursen J, Huang H: P300 acetyltransferase regulates androgen receptor degradation and PTEN-deficient prostate tumorigenesis. Cancer Res. 2014
71.
go back to reference Talora C, Sgroi DC, Crum CP, Dotto GP: Specific down-modulation of Notch1 signaling in cervical cancer cells is required for sustained HPV-E6/E7 expression and late steps of malignant transformation. Genes Dev. 2002, 16 (17): 2252-2263. 10.1101/gad.988902PubMedCentralCrossRefPubMed Talora C, Sgroi DC, Crum CP, Dotto GP: Specific down-modulation of Notch1 signaling in cervical cancer cells is required for sustained HPV-E6/E7 expression and late steps of malignant transformation. Genes Dev. 2002, 16 (17): 2252-2263. 10.1101/gad.988902PubMedCentralCrossRefPubMed
72.
go back to reference Hu B, Castillo E, Harewood L, Ostano P, Reymond A, Dummer R, Raffoul W, Hoetzenecker W, Hofbauer GF, Dotto GP: Multifocal epithelial tumors and field cancerization from loss of mesenchymal CSL signaling. Cell. 2012, 149 (6): 1207-1220. 10.1016/j.cell.2012.03.048PubMedCentralCrossRefPubMed Hu B, Castillo E, Harewood L, Ostano P, Reymond A, Dummer R, Raffoul W, Hoetzenecker W, Hofbauer GF, Dotto GP: Multifocal epithelial tumors and field cancerization from loss of mesenchymal CSL signaling. Cell. 2012, 149 (6): 1207-1220. 10.1016/j.cell.2012.03.048PubMedCentralCrossRefPubMed
73.
go back to reference Rhim JS, Webber MM, Bello D, Lee MS, Arnstein P, Chen LS, Jay G: Stepwise immortalization and transformation of adult human prostate epithelial cells by a combination of HPV-18 and v-Ki-ras. Proc Natl Acad Sci U S A. 1994, 91 (25): 11874-11878. 10.1073/pnas.91.25.11874PubMedCentralCrossRefPubMed Rhim JS, Webber MM, Bello D, Lee MS, Arnstein P, Chen LS, Jay G: Stepwise immortalization and transformation of adult human prostate epithelial cells by a combination of HPV-18 and v-Ki-ras. Proc Natl Acad Sci U S A. 1994, 91 (25): 11874-11878. 10.1073/pnas.91.25.11874PubMedCentralCrossRefPubMed
Metadata
Title
Prostate tumor OVerexpressed-1 (PTOV1) down-regulates HES1 and HEY1 notch targets genes and promotes prostate cancer progression
Authors
Lide Alaña
Marta Sesé
Verónica Cánovas
Yolanda Punyal
Yolanda Fernández
Ibane Abasolo
Inés de Torres
Cristina Ruiz
Lluís Espinosa
Anna Bigas
Santiago Ramón y Cajal
Pedro L Fernández
Florenci Serras
Montserrat Corominas
Timothy M Thomson
Rosanna Paciucci
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2014
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-13-74

Other articles of this Issue 1/2014

Molecular Cancer 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine