Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 6/2018

01-06-2018 | Original Article

Prostate segmentation in transrectal ultrasound using magnetic resonance imaging priors

Authors: Qi Zeng, Golnoosh Samei, Davood Karimi, Claudia Kesch, Sara S. Mahdavi, Purang Abolmaesumi, Septimiu E. Salcudean

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 6/2018

Login to get access

Abstract

Purpose

In the current standard of care, real-time transrectal ultrasound (TRUS) is commonly used for prostate brachytherapy guidance. As TRUS provides limited soft tissue contrast, segmenting the prostate gland in TRUS images is often challenging and subject to inter-observer and intra-observer variability, especially at the base and apex where the gland boundary is hard to define. Magnetic resonance imaging (MRI) has higher soft tissue contrast allowing the prostate to be contoured easily. In this paper, we aim to show that prostate segmentation in TRUS images informed by MRI priors can improve on prostate segmentation that relies only on TRUS images.

Methods

First, we compare the TRUS-based prostate segmentation used in the treatment of 598 patients with a high-quality MRI prostate atlas and observe inconsistencies at the apex and base. Second, motivated by this finding, we propose an alternative TRUS segmentation technique that is fully automatic and uses MRI priors. The algorithm uses a convolutional neural network to segment the prostate in TRUS images at mid-gland, where the gland boundary can be clearly seen. It then reconstructs the gland boundary at the apex and base with the aid of a statistical shape model built from an MRI atlas of 78 patients.

Results

Compared to the clinical TRUS segmentation, our method achieves similar mid-gland segmentation results in the 598-patient database. For the seven patients who had both TRUS and MRI, our method achieved more accurate segmentation of the base and apex with the MRI segmentation used as ground truth.

Conclusion

Our results suggest that utilizing MRI priors in TRUS prostate segmentation could potentially improve the performance at base and apex.
Literature
1.
go back to reference Morris WJ, Keyes M, Palma D, Spadinger I, McKenzie MR, Agranovich A, Pickles T, Liu M, Kwan W, Wu J, Berthelet E, Pai H (2009) Population-based study of biochemical and survival outcomes after permanent 125I brachytherapy for low- and intermediate-risk prostate cancer. Urology 73(4):860–865CrossRefPubMed Morris WJ, Keyes M, Palma D, Spadinger I, McKenzie MR, Agranovich A, Pickles T, Liu M, Kwan W, Wu J, Berthelet E, Pai H (2009) Population-based study of biochemical and survival outcomes after permanent 125I brachytherapy for low- and intermediate-risk prostate cancer. Urology 73(4):860–865CrossRefPubMed
2.
go back to reference Badiei S, Salcudean SE, Varah J, Morris WJ (2006) Prostate segmentation in 2D ultrasound images using image warping and ellipse fitting. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 17–24 Badiei S, Salcudean SE, Varah J, Morris WJ (2006) Prostate segmentation in 2D ultrasound images using image warping and ellipse fitting. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 17–24
3.
go back to reference Soumya G, Arnau O, Robert M, Xavier L, Joan CV, Jordi F, Jhimli M, Dsir S, Fabrice M (2012) A survey of prostate segmentation methodologies in ultrasound, magnetic resonance and computed tomography images. Comput Methods Programs Biomed 108(1):262–287CrossRef Soumya G, Arnau O, Robert M, Xavier L, Joan CV, Jordi F, Jhimli M, Dsir S, Fabrice M (2012) A survey of prostate segmentation methodologies in ultrasound, magnetic resonance and computed tomography images. Comput Methods Programs Biomed 108(1):262–287CrossRef
4.
go back to reference Pathak SD, Haynor DR, Kim Y (2000) Edge-guided boundary delineation in prostate ultrasound images. IEEE Trans Med Imaging 19(12):1211–1219CrossRefPubMed Pathak SD, Haynor DR, Kim Y (2000) Edge-guided boundary delineation in prostate ultrasound images. IEEE Trans Med Imaging 19(12):1211–1219CrossRefPubMed
5.
go back to reference Gong L, Pathak SD, Haynor DR, Cho PS, Kim Y (2004) Parametric shape modeling using deformable superellipses for prostate segmentation. IEEE Trans Med Imaging 23(3):340–349CrossRefPubMed Gong L, Pathak SD, Haynor DR, Cho PS, Kim Y (2004) Parametric shape modeling using deformable superellipses for prostate segmentation. IEEE Trans Med Imaging 23(3):340–349CrossRefPubMed
6.
go back to reference Shen D, Zhan Y, Davatzikos C (2003) Segmentation of prostate boundaries from ultrasound images using statistical shape model. IEEE Trans Med Imaging 22(4):539–551CrossRefPubMed Shen D, Zhan Y, Davatzikos C (2003) Segmentation of prostate boundaries from ultrasound images using statistical shape model. IEEE Trans Med Imaging 22(4):539–551CrossRefPubMed
7.
go back to reference Mahdavi SS, Chng N, Spadinger I, Morris WJ, Salcudean SE (2011) Semi-automatic segmentation for prostate interventions. Med Image Anal 15(2):226–237CrossRefPubMed Mahdavi SS, Chng N, Spadinger I, Morris WJ, Salcudean SE (2011) Semi-automatic segmentation for prostate interventions. Med Image Anal 15(2):226–237CrossRefPubMed
8.
go back to reference Mahdavi SS, Spadinger I, Chng N, Salcudean SE, Morris WJ (2013) Semiautomatic segmentation for prostate brachytherapy: dosimetric evaluation. Brachytherapy 12(1):65–76CrossRefPubMed Mahdavi SS, Spadinger I, Chng N, Salcudean SE, Morris WJ (2013) Semiautomatic segmentation for prostate brachytherapy: dosimetric evaluation. Brachytherapy 12(1):65–76CrossRefPubMed
9.
go back to reference Abolmaesumi P, Sirouspour MR (2004) An interacting multiple model probabilistic data association filter for cavity boundary extraction from ultrasound images. IEEE Trans Med Imaging 23(6):772–784CrossRefPubMed Abolmaesumi P, Sirouspour MR (2004) An interacting multiple model probabilistic data association filter for cavity boundary extraction from ultrasound images. IEEE Trans Med Imaging 23(6):772–784CrossRefPubMed
10.
go back to reference Nouranian S, Mahdavi SS, Spadinger I, Morris WJ, Salcudean SE, Abolmaesumi P (2015) A multi-atlas based segmentation framework for prostate brachytherapy. IEEE Trans Med Imaging 34(4):950–961CrossRefPubMed Nouranian S, Mahdavi SS, Spadinger I, Morris WJ, Salcudean SE, Abolmaesumi P (2015) A multi-atlas based segmentation framework for prostate brachytherapy. IEEE Trans Med Imaging 34(4):950–961CrossRefPubMed
11.
go back to reference Nouranian S, Ramezani M, Spadinger I, Morris WJ, Salcudean SE, Abolmaesumi P (2016) Learning-based multi-label segmentation of transrectal ultrasound images for prostate brachytherapy. IEEE Trans Med Imaging 35(3):921–931CrossRefPubMed Nouranian S, Ramezani M, Spadinger I, Morris WJ, Salcudean SE, Abolmaesumi P (2016) Learning-based multi-label segmentation of transrectal ultrasound images for prostate brachytherapy. IEEE Trans Med Imaging 35(3):921–931CrossRefPubMed
12.
go back to reference Anas EM, Nouranian S, Mahdavi SS, Spadinger I, Morris WJ, Salcudean SE, Mousavi P, Abolmaesumi P (2017) Clinical target-Volume delineation in prostate brachytherapy using residual neural networks. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 365–373 Anas EM, Nouranian S, Mahdavi SS, Spadinger I, Morris WJ, Salcudean SE, Mousavi P, Abolmaesumi P (2017) Clinical target-Volume delineation in prostate brachytherapy using residual neural networks. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 365–373
13.
go back to reference Martin S, Daanen V, Troccaz S (2008) Atlas-based prostate segmentation using an hybrid registration. Int J Comput Assist Radiol Surg 3(6):485–492CrossRef Martin S, Daanen V, Troccaz S (2008) Atlas-based prostate segmentation using an hybrid registration. Int J Comput Assist Radiol Surg 3(6):485–492CrossRef
14.
go back to reference Rahmouni A, Yang A, Tempany CM, Frenkel T, Epstein J, Walsh P, Leichner PK, Ricci C, Zerhouni E (1992) Accuracy of in-vivo assessment of prostatic volume by MRI and transrectal ultrasonography. J Comput Assist Tomogr 16(6):935–940CrossRefPubMed Rahmouni A, Yang A, Tempany CM, Frenkel T, Epstein J, Walsh P, Leichner PK, Ricci C, Zerhouni E (1992) Accuracy of in-vivo assessment of prostatic volume by MRI and transrectal ultrasonography. J Comput Assist Tomogr 16(6):935–940CrossRefPubMed
15.
go back to reference Lee JS, Chung BH (2007) Transrectal ultrasound versus magnetic resonance imaging in the estimation of prostate volume as compared with radical prostatectomy specimens. Urol Int 78(4):323–327CrossRefPubMed Lee JS, Chung BH (2007) Transrectal ultrasound versus magnetic resonance imaging in the estimation of prostate volume as compared with radical prostatectomy specimens. Urol Int 78(4):323–327CrossRefPubMed
16.
go back to reference Reynier C, Troccaz J, Fourneret P, Dusserre A, Gay-Jeune C, Descotes JL, Bolla M, Giraud JY (2004) MRI/TRUS data fusion for prostate brachytherapy. Preliminary results. Med Phys 31(6):1568–1575CrossRefPubMed Reynier C, Troccaz J, Fourneret P, Dusserre A, Gay-Jeune C, Descotes JL, Bolla M, Giraud JY (2004) MRI/TRUS data fusion for prostate brachytherapy. Preliminary results. Med Phys 31(6):1568–1575CrossRefPubMed
17.
go back to reference Khallaghi S, Snchez CA, Rasoulian A, Nouranian S, Romagnoli C, Abdi H, Chang SD, Black PC, Goldenberg L, Morris WJ, Spadinger I, Fenster A, Ward A, Fels S, Abolmaesumi P (2015) Statistical biomechanical surface registration: application to MR–TRUS fusion for prostate interventions. IEEE Trans Med Imaging 34(12):2535–2549CrossRefPubMed Khallaghi S, Snchez CA, Rasoulian A, Nouranian S, Romagnoli C, Abdi H, Chang SD, Black PC, Goldenberg L, Morris WJ, Spadinger I, Fenster A, Ward A, Fels S, Abolmaesumi P (2015) Statistical biomechanical surface registration: application to MR–TRUS fusion for prostate interventions. IEEE Trans Med Imaging 34(12):2535–2549CrossRefPubMed
18.
go back to reference Litjens G, Toth R, van de Ven W, Hoeks C, Kerkstra S, van Ginneken B, Vincent G, Guillard G, Birbeck N, Zhang J, Strand R, Malmberg F, Ou Y, Davatzikos C, Kirschner M, Jung F, Yuan J, Qiu W, Gao Q, Edwards PE, Maan B, van der Heijden F, Ghose S, Mitra J, Dowling J, Barratt D, Huisman H, Madabhushi A (2014) Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge. Med Image Anal 18(2):359–373CrossRefPubMed Litjens G, Toth R, van de Ven W, Hoeks C, Kerkstra S, van Ginneken B, Vincent G, Guillard G, Birbeck N, Zhang J, Strand R, Malmberg F, Ou Y, Davatzikos C, Kirschner M, Jung F, Yuan J, Qiu W, Gao Q, Edwards PE, Maan B, van der Heijden F, Ghose S, Mitra J, Dowling J, Barratt D, Huisman H, Madabhushi A (2014) Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge. Med Image Anal 18(2):359–373CrossRefPubMed
19.
go back to reference Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 234–241
20.
go back to reference Milletari F, Navab N, Ahmadi S (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: IEEE international conference on 3D vision, pp 565–571 Milletari F, Navab N, Ahmadi S (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: IEEE international conference on 3D vision, pp 565–571
21.
go back to reference Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. In: Proceedings of the 3rd international conference on learning representations. arXiv:1409.1556 Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. In: Proceedings of the 3rd international conference on learning representations. arXiv:​1409.​1556
23.
go back to reference Gao H, Zhuang L, Kilian QW, Laurens van der M (2017) Densely connected convolutional networks. In: IEEE conference on computer vision and pattern recognition, pp 2261–2269 Gao H, Zhuang L, Kilian QW, Laurens van der M (2017) Densely connected convolutional networks. In: IEEE conference on computer vision and pattern recognition, pp 2261–2269
24.
go back to reference Havaei M, Axel Davy A, David Warde-Farley D, Antoine Biard A, Aaron Courville A, Yoshua Bengio Y, Chris Pal C, Pierre-Marc Jodoin P, Hugo Larochelle H (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31CrossRefPubMed Havaei M, Axel Davy A, David Warde-Farley D, Antoine Biard A, Aaron Courville A, Yoshua Bengio Y, Chris Pal C, Pierre-Marc Jodoin P, Hugo Larochelle H (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31CrossRefPubMed
25.
go back to reference Salehi S, Erdogmus D, Gholipour A (2017) Tversky loss function for image segmentation using 3D fully convolutional deep networks. In: International workshop on machine learning in medical, imaging, pp 379–387 Salehi S, Erdogmus D, Gholipour A (2017) Tversky loss function for image segmentation using 3D fully convolutional deep networks. In: International workshop on machine learning in medical, imaging, pp 379–387
26.
go back to reference Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. In: Proceedings of the 3rd international conference on learning representations. arXiv:1412.6980 Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. In: Proceedings of the 3rd international conference on learning representations. arXiv:​1412.​6980
27.
go back to reference Rasoulian A, Rohling R, Abolmaesumi P (2012) Group-wise registration of point sets for statistical shape models. IEEE Trans Med Imaging 31(11):2025–2034CrossRefPubMed Rasoulian A, Rohling R, Abolmaesumi P (2012) Group-wise registration of point sets for statistical shape models. IEEE Trans Med Imaging 31(11):2025–2034CrossRefPubMed
28.
go back to reference Blanz V, Mehl A, Vetter T, Seidel HP (2004) A statistical method for robust 3D surface reconstruction from sparse data. In: Proceedings of 2nd international symposium on 3D data processing, visualization and transmission, pp 293–300 Blanz V, Mehl A, Vetter T, Seidel HP (2004) A statistical method for robust 3D surface reconstruction from sparse data. In: Proceedings of 2nd international symposium on 3D data processing, visualization and transmission, pp 293–300
29.
go back to reference Myronenko A, Song X (2010) Point set registration: coherent point drift. IEEE Trans Pattern Anal Mach Intell 32(12):2262–2275CrossRefPubMed Myronenko A, Song X (2010) Point set registration: coherent point drift. IEEE Trans Pattern Anal Mach Intell 32(12):2262–2275CrossRefPubMed
Metadata
Title
Prostate segmentation in transrectal ultrasound using magnetic resonance imaging priors
Authors
Qi Zeng
Golnoosh Samei
Davood Karimi
Claudia Kesch
Sara S. Mahdavi
Purang Abolmaesumi
Septimiu E. Salcudean
Publication date
01-06-2018
Publisher
Springer International Publishing
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 6/2018
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-018-1742-6

Other articles of this Issue 6/2018

International Journal of Computer Assisted Radiology and Surgery 6/2018 Go to the issue