Skip to main content
Top
Published in: Breast Cancer Research 1/2018

Open Access 01-12-2018 | Research article

Prospective validation of the NCI Breast Cancer Risk Assessment Tool (Gail Model) on 40,000 Australian women

Authors: Carolyn Nickson, Pietro Procopio, Louiza S. Velentzis, Sarah Carr, Lisa Devereux, Gregory Bruce Mann, Paul James, Grant Lee, Cameron Wellard, Ian Campbell

Published in: Breast Cancer Research | Issue 1/2018

Login to get access

Abstract

Background

There is a growing interest in delivering more personalised, risk-based breast cancer screening protocols. This requires population-level validation of practical models that can stratify women into breast cancer risk groups. Few studies have evaluated the Gail model (NCI Breast Cancer Risk Assessment Tool) in a population screening setting; we validated this tool in a large, screened population.

Methods

We used data from 40,158 women aged 50–69 years (via the lifepool cohort) participating in Australia’s BreastScreen programme. We investigated the association between Gail scores and future invasive breast cancer, comparing observed and expected outcomes by Gail score ranked groups. We also used machine learning to rank Gail model input variables by importance and then assessed the incremental benefit in risk prediction obtained by adding variables in order of diminishing importance.

Results

Over a median of 4.3 years, the Gail model predicted 612 invasive breast cancers compared with 564 observed cancers (expected/observed (E/O) = 1.09, 95% confidence interval (CI) 1.00–1.18). There was good agreement across decile groups of Gail scores (χ2 = 7.1, p = 0.6) although there was some overestimation of cancer risk in the top decile of our study group (E/O = 1.65, 95% CI 1.33–2.07). Women in the highest quintile (Q5) of Gail scores had a 2.28-fold increased risk of breast cancer (95% CI 1.73–3.02, p < 0.0001) compared with the lowest quintile (Q1). Compared with the median quintile, women in Q5 had a 34% increased risk (95% CI 1.06–1.70, p = 0.014) and those in Q1 had a 41% reduced risk (95% CI 0.44–0.79, p < 0.0001). Similar patterns were observed separately for women aged 50–59 and 60–69 years. The model’s overall discrimination was modest (area under the curve (AUC) 0.59, 95% CI 0.56–0.61). A reduced Gail model excluding information on ethnicity and hyperplasia was comparable to the full Gail model in terms of correctly stratifying women into risk groups.

Conclusions

This study confirms that the Gail model (or a reduced model excluding information on hyperplasia and ethnicity) can effectively stratify a screened population aged 50–69 years according to the risk of future invasive breast cancer. This information has the potential to enable more personalised, risk-based screening strategies that aim to improve the balance of the benefits and harms of screening.
Appendix
Available only for authorised users
Literature
1.
go back to reference Marmot MG, Altman DG, Cameron DA, Dewar JA, Thompson SG, Wilcox M. The benefits and harms of breast cancer screening: an independent review. Br J Cancer. 2013;108:2205–40.CrossRef Marmot MG, Altman DG, Cameron DA, Dewar JA, Thompson SG, Wilcox M. The benefits and harms of breast cancer screening: an independent review. Br J Cancer. 2013;108:2205–40.CrossRef
2.
go back to reference Kalager M, Zelen M, Langmark F, Adami HO. Effect of screening mammography on breast-cancer mortality in Norway. N Engl J Med. 2010;363:1203–10.CrossRef Kalager M, Zelen M, Langmark F, Adami HO. Effect of screening mammography on breast-cancer mortality in Norway. N Engl J Med. 2010;363:1203–10.CrossRef
3.
go back to reference Tabar L, Yen MF, Vitak B, Chen HH, Smith RA, Duffy SW. Mammography service screening and mortality in breast cancer patients: 20-year follow-up before and after introduction of screening. Lancet. 2003;361:1405–10.CrossRef Tabar L, Yen MF, Vitak B, Chen HH, Smith RA, Duffy SW. Mammography service screening and mortality in breast cancer patients: 20-year follow-up before and after introduction of screening. Lancet. 2003;361:1405–10.CrossRef
4.
go back to reference Blanks RG, Moss SM, McGahan CE, Quinn MJ, Babb PJ. Effect of NHS breast screening programme on mortality from breast cancer in England and Wales, 1990–8: comparison of observed with predicted mortality. BMJ. 2000;321:665–9.CrossRef Blanks RG, Moss SM, McGahan CE, Quinn MJ, Babb PJ. Effect of NHS breast screening programme on mortality from breast cancer in England and Wales, 1990–8: comparison of observed with predicted mortality. BMJ. 2000;321:665–9.CrossRef
5.
go back to reference Yang XR, Chang-Claude J, Goode EL, et al. Associations of breast cancer risk factors with tumor subtypes: a pooled analysis from the Breast Cancer Association Consortium studies. J Natl Cancer Inst. 2011;103:250–63.CrossRef Yang XR, Chang-Claude J, Goode EL, et al. Associations of breast cancer risk factors with tumor subtypes: a pooled analysis from the Breast Cancer Association Consortium studies. J Natl Cancer Inst. 2011;103:250–63.CrossRef
6.
go back to reference Lacey JV Jr, Kreimer AR, Buys SS, et al. Breast cancer epidemiology according to recognized breast cancer risk factors in the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial Cohort. BMC Cancer. 2009;9:84.CrossRef Lacey JV Jr, Kreimer AR, Buys SS, et al. Breast cancer epidemiology according to recognized breast cancer risk factors in the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial Cohort. BMC Cancer. 2009;9:84.CrossRef
7.
go back to reference Morrell S, Barratt A, Irwig L, Howard K, Biesheuvel C, Armstrong B. Estimates of overdiagnosis of invasive breast cancer associated with screening mammography. Cancer Causes Control. 2010;21:275–82.CrossRef Morrell S, Barratt A, Irwig L, Howard K, Biesheuvel C, Armstrong B. Estimates of overdiagnosis of invasive breast cancer associated with screening mammography. Cancer Causes Control. 2010;21:275–82.CrossRef
8.
go back to reference Jørgensen KJ, Gøtzsche PC. Overdiagnosis in publicly organised mammography screening programmes: systematic review of incidence trends. BMJ. 2009;339:b2587.CrossRef Jørgensen KJ, Gøtzsche PC. Overdiagnosis in publicly organised mammography screening programmes: systematic review of incidence trends. BMJ. 2009;339:b2587.CrossRef
9.
go back to reference Boyd NF, Guo H, Martin LJ, Sun L, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med. 2007;356:227–36.CrossRef Boyd NF, Guo H, Martin LJ, Sun L, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med. 2007;356:227–36.CrossRef
10.
go back to reference Mandelson MT, Oestreicher N, Porter PL, et al. Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers. J Natl Cancer Inst. 2000;92:1081–7.CrossRef Mandelson MT, Oestreicher N, Porter PL, et al. Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers. J Natl Cancer Inst. 2000;92:1081–7.CrossRef
11.
go back to reference Schousboe JT, Kerlikowske K, Loh A, Cummings SR. Personalizing mammography by breast density and other risk factors for breast cancer: analysis of health benefits and cost-effectiveness. Ann Intern Med. 2011;155:10–20.CrossRef Schousboe JT, Kerlikowske K, Loh A, Cummings SR. Personalizing mammography by breast density and other risk factors for breast cancer: analysis of health benefits and cost-effectiveness. Ann Intern Med. 2011;155:10–20.CrossRef
12.
go back to reference Australian Institute of Health and Welfare. BreastScreen Australia monitoring report 2014–2015. Cancer series no. 106. Cat. no. CAN 105. Canberra: AIHW; 2017. Australian Institute of Health and Welfare. BreastScreen Australia monitoring report 2014–2015. Cancer series no. 106. Cat. no. CAN 105. Canberra: AIHW; 2017.
14.
go back to reference Tice JA, Cummings SR, Smith-Bindman R, Ichikawa L, Barlow WE, Kerlikowske K. Using clinical factors and mammographic breast density to estimate breast cancer risk: development and validation of a new predictive model. Ann Intern Med. 2008;148:337–47.CrossRef Tice JA, Cummings SR, Smith-Bindman R, Ichikawa L, Barlow WE, Kerlikowske K. Using clinical factors and mammographic breast density to estimate breast cancer risk: development and validation of a new predictive model. Ann Intern Med. 2008;148:337–47.CrossRef
15.
go back to reference Novotny J, Pecen L, Petruzelka L, Svobodnik A, Dusek L, Danes J, et al. Breast cancer risk assessment in the Czech female population—an adjustment of the original Gail model. Breast Cancer Res Treat. 2006;95:29–35.CrossRef Novotny J, Pecen L, Petruzelka L, Svobodnik A, Dusek L, Danes J, et al. Breast cancer risk assessment in the Czech female population—an adjustment of the original Gail model. Breast Cancer Res Treat. 2006;95:29–35.CrossRef
16.
go back to reference Tyrer J, Duffy SW, Cuzick J. A breast cancer prediction model incorporating familial and personal risk factors. Stat Med. 2004;23:1111–30.CrossRef Tyrer J, Duffy SW, Cuzick J. A breast cancer prediction model incorporating familial and personal risk factors. Stat Med. 2004;23:1111–30.CrossRef
17.
go back to reference Gail MH, Brinton LA, Byar DP, Corle DK, Green SB, Schairer C, et al. Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst. 1989;81:1879–86.CrossRef Gail MH, Brinton LA, Byar DP, Corle DK, Green SB, Schairer C, et al. Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst. 1989;81:1879–86.CrossRef
18.
go back to reference Anderson SJ, Ahnn S, Duff K. NSABP Breast Cancer Prevention Trial risk assessment program, version 2. NSABP Biostatistical Center Technical Report; 1992. Anderson SJ, Ahnn S, Duff K. NSABP Breast Cancer Prevention Trial risk assessment program, version 2. NSABP Biostatistical Center Technical Report; 1992.
20.
go back to reference Chlebowski RT, Anderson GL, Lane DS, Aragaki AK, Rohan T, Yasmeen S, et al. Predicting risk of breast cancer in postmenopausal women by hormone receptor status. J Natl Cancer Inst. 2007;99:1695–705.CrossRef Chlebowski RT, Anderson GL, Lane DS, Aragaki AK, Rohan T, Yasmeen S, et al. Predicting risk of breast cancer in postmenopausal women by hormone receptor status. J Natl Cancer Inst. 2007;99:1695–705.CrossRef
21.
go back to reference Tice JA, Cummings SR, Ziv E, Kerlikowske K. Mammographic breast density and the Gail model for breast cancer risk prediction in a screening population. Breast Cancer Res Treat. 2005;94:115–22.CrossRef Tice JA, Cummings SR, Ziv E, Kerlikowske K. Mammographic breast density and the Gail model for breast cancer risk prediction in a screening population. Breast Cancer Res Treat. 2005;94:115–22.CrossRef
22.
go back to reference Decarli A, Calza S, Masala G, Specchia C, Palli D, Gail MH. Gail model for prediction of absolute risk of invasive breast cancer: independent evaluation in the Florence-European prospective investigation into cancer and nutrition cohort. J Natl Cancer Inst. 2006;98:1686–93.CrossRef Decarli A, Calza S, Masala G, Specchia C, Palli D, Gail MH. Gail model for prediction of absolute risk of invasive breast cancer: independent evaluation in the Florence-European prospective investigation into cancer and nutrition cohort. J Natl Cancer Inst. 2006;98:1686–93.CrossRef
24.
go back to reference Matsuno RK, Costantino JP, Ziegler RG, Anderson GL, Li H, Pee D, Gail MH. Projecting individualized absolute invasive breast cancer risk in Asian and Pacific Islander American women. J Natl Cancer Inst. 2011;103:951–61.CrossRef Matsuno RK, Costantino JP, Ziegler RG, Anderson GL, Li H, Pee D, Gail MH. Projecting individualized absolute invasive breast cancer risk in Asian and Pacific Islander American women. J Natl Cancer Inst. 2011;103:951–61.CrossRef
25.
go back to reference Gail MH, Costantino JP, Pee D, Bondy M, Newman L, Selvan M, et al. Projecting individualized absolute invasive breast cancer risk in African American women. J Natl Cancer Inst. 2007;99:1782–92.CrossRef Gail MH, Costantino JP, Pee D, Bondy M, Newman L, Selvan M, et al. Projecting individualized absolute invasive breast cancer risk in African American women. J Natl Cancer Inst. 2007;99:1782–92.CrossRef
26.
go back to reference MacInnis R, Dite G, Bickerstaffe A, et al. Validation study of risk prediction models for female relatives of Australian women with breast cancer. Hered Cancer Clin Pract. 2012;10(Suppl 2):A66. MacInnis R, Dite G, Bickerstaffe A, et al. Validation study of risk prediction models for female relatives of Australian women with breast cancer. Hered Cancer Clin Pract. 2012;10(Suppl 2):A66.
27.
go back to reference Dite GS, Mahmoodi A, Bickerstaffe A, et al. Using SNP genotypes to improve the discrimination of a simple breast cancer risk prediction model. Breast Cancer Res Treat. 2013;139:887–96.CrossRef Dite GS, Mahmoodi A, Bickerstaffe A, et al. Using SNP genotypes to improve the discrimination of a simple breast cancer risk prediction model. Breast Cancer Res Treat. 2013;139:887–96.CrossRef
29.
go back to reference Costantino JP, Gail MH, Pee D, Anderson S, Redmond CK, Benichou J, et al. Validation studies for models projecting the risk of invasive and total breast cancer incidence. J Natl Cancer Inst. 1999;91:1541–8.CrossRef Costantino JP, Gail MH, Pee D, Anderson S, Redmond CK, Benichou J, et al. Validation studies for models projecting the risk of invasive and total breast cancer incidence. J Natl Cancer Inst. 1999;91:1541–8.CrossRef
30.
go back to reference Pfeiffer RM, Park Y, Kreimer AR, et al. Risk prediction for breast, endometrial, and ovarian cancer in white women aged 50 y or older: derivation and validation from population-based cohort studies. PLoS Med. 2013;10:e1001492.CrossRef Pfeiffer RM, Park Y, Kreimer AR, et al. Risk prediction for breast, endometrial, and ovarian cancer in white women aged 50 y or older: derivation and validation from population-based cohort studies. PLoS Med. 2013;10:e1001492.CrossRef
31.
go back to reference Australian Institute of Health and Welfare & Cancer Australia. Breast cancer in Australia: an overview. Cancer series no. 71. Cat. no. CAN 67. Canberra: AIHW; 2012. Australian Institute of Health and Welfare & Cancer Australia. Breast cancer in Australia: an overview. Cancer series no. 71. Cat. no. CAN 67. Canberra: AIHW; 2012.
32.
go back to reference Wang X, Huang Y, Li L, Dai H, Song F, Chen K. Assessment of performance of the Gail model for predicting breast cancer risk: a systematic review and meta-analysis with trial sequential analysis. Breast Cancer Res. 2018;20:18.CrossRef Wang X, Huang Y, Li L, Dai H, Song F, Chen K. Assessment of performance of the Gail model for predicting breast cancer risk: a systematic review and meta-analysis with trial sequential analysis. Breast Cancer Res. 2018;20:18.CrossRef
34.
go back to reference Brentnall AR, Harkness EF, Astley SM, Donnelly LS, Stavrinos P, Sampson S, et al. Mammographic density adds accuracy to both the Tyrer-Cuzick and Gail breast cancer risk models in a prospective UK screening cohort. Breast Cancer Res. 2015;17:147.CrossRef Brentnall AR, Harkness EF, Astley SM, Donnelly LS, Stavrinos P, Sampson S, et al. Mammographic density adds accuracy to both the Tyrer-Cuzick and Gail breast cancer risk models in a prospective UK screening cohort. Breast Cancer Res. 2015;17:147.CrossRef
35.
go back to reference Min JW, Chang MC, Lee HK, Hur MH, Noh DY, Yoon JH, et al. Validation of risk assessment models for predicting the incidence of breast cancer in Korean women. J Breast Cancer. 2014;17:226–35.CrossRef Min JW, Chang MC, Lee HK, Hur MH, Noh DY, Yoon JH, et al. Validation of risk assessment models for predicting the incidence of breast cancer in Korean women. J Breast Cancer. 2014;17:226–35.CrossRef
36.
go back to reference Pastor-Barriuso R, Ascunce N, Ederra M, Erdozáin N, Murillo A, Alés-Martínez JE, et al. Recalibration of the Gail model for predicting invasive breast cancer risk in Spanish women: a population-based cohort study. Breast Cancer Res Treat. 2013;138:249–59.CrossRef Pastor-Barriuso R, Ascunce N, Ederra M, Erdozáin N, Murillo A, Alés-Martínez JE, et al. Recalibration of the Gail model for predicting invasive breast cancer risk in Spanish women: a population-based cohort study. Breast Cancer Res Treat. 2013;138:249–59.CrossRef
37.
go back to reference Chay WY, Ong WS, Tan PH, Jie Leo NQ, Ho GH, Wong CS, et al. Validation of the Gail model for predicting individual breast cancer risk in a prospective nationwide study of 28,104 Singapore women. Breast Cancer Res. 2012;14:R19.CrossRef Chay WY, Ong WS, Tan PH, Jie Leo NQ, Ho GH, Wong CS, et al. Validation of the Gail model for predicting individual breast cancer risk in a prospective nationwide study of 28,104 Singapore women. Breast Cancer Res. 2012;14:R19.CrossRef
38.
go back to reference Crispo A, D'Aiuto G, De Marco M, Rinaldo M, Grimaldi M, Capasso I, et al. Gail model risk factors: impact of adding an extended family history for breast cancer. Breast J. 2008;14:221–7.CrossRef Crispo A, D'Aiuto G, De Marco M, Rinaldo M, Grimaldi M, Capasso I, et al. Gail model risk factors: impact of adding an extended family history for breast cancer. Breast J. 2008;14:221–7.CrossRef
Metadata
Title
Prospective validation of the NCI Breast Cancer Risk Assessment Tool (Gail Model) on 40,000 Australian women
Authors
Carolyn Nickson
Pietro Procopio
Louiza S. Velentzis
Sarah Carr
Lisa Devereux
Gregory Bruce Mann
Paul James
Grant Lee
Cameron Wellard
Ian Campbell
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/2018
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/s13058-018-1084-x

Other articles of this Issue 1/2018

Breast Cancer Research 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine