Skip to main content
Top
Published in: BMC Anesthesiology 1/2018

Open Access 01-12-2018 | Research article

Propofol alleviates hypoxia-induced nerve injury in PC-12 cells by up-regulation of microRNA-153

Authors: Mingwei He, Haiyan Sun, Jinlei Pang, Xiangfei Guo, Yansong Huo, Xianhong Wu, Yaguang Liu, Jun Ma

Published in: BMC Anesthesiology | Issue 1/2018

Login to get access

Abstract

Background

Although the neuroprotective role of propofol has been identified recently, the regulatory mechanism associated with microRNAs (miRNAs/miRs) in neuronal cells remains to be poorly understood. We aimed to explore the regulatory mechanism of propofol in hypoxia-injured rat pheochromocytoma (PC-12) cells.

Methods

PC-12 cells were exposed to hypoxia, and cell viability and apoptosis were assessed by CCK-8 assay and flow cytometry assay/Western blot analysis, respectively. Effects of propofol on hypoxia-injured cells were measured, and the expression of miR-153 was determined by stem-loop RT-PCR. After that, whether propofol affected PC-12 cells under hypoxia via miR-153 was verified, and the downstream protein of miR-153 as well as the involved signaling cascade was finally explored.

Results

Hypoxia-induced decrease of cell viability and increase of apoptosis were attenuated by propofol. Then, we found hypoxia exposure up-regulated miR-153 expression, and the level of miR-153 was further elevated by propofol in hypoxia-injured PC-12 cells. Following experiments showed miR-153 inhibition reversed the effects of propofol on hypoxia-treated PC-12 cells. Afterwards, we found BTG3 expression was negatively regulated by miR-153 expression, and BTG3 overexpression inhibited the mTOR pathway and AMPK activation. Besides, hypoxia inhibited the mTOR pathway and AMPK, and these inhibitory effects could be attenuated by propofol.

Conclusion

Propofol protected hypoxia-injured PC-12 cells through miR-153-mediataed down-regulation of BTG3. BTG3 could inhibit the mTOR pathway and AMPK activation.
Literature
1.
go back to reference Georgia MAD. Brain tissue oxygen monitoring in Neurocritical care. J Intensive Care Med. 2015;30(8):473–83.CrossRef Georgia MAD. Brain tissue oxygen monitoring in Neurocritical care. J Intensive Care Med. 2015;30(8):473–83.CrossRef
2.
go back to reference Yang Z-B, Luo X-J, Ren K-D, Peng J-J, Tan B, Liu B, Lou Z, Xiong X-M, Zhang X-J, Ren X, et al. Beneficial effect of magnesium lithospermate B on cerebral ischemia–reperfusion injury in rats involves the regulation of miR-107/glutamate transporter 1 pathway. Eur J Pharmacol. 2015;766:91–8.CrossRef Yang Z-B, Luo X-J, Ren K-D, Peng J-J, Tan B, Liu B, Lou Z, Xiong X-M, Zhang X-J, Ren X, et al. Beneficial effect of magnesium lithospermate B on cerebral ischemia–reperfusion injury in rats involves the regulation of miR-107/glutamate transporter 1 pathway. Eur J Pharmacol. 2015;766:91–8.CrossRef
3.
go back to reference Sakamoto M, Miyazaki Y, Kitajo K, Yamaguchi A. VGF, which is induced transcriptionally in stroke brain, enhances neurite extension and confers protection against ischemia in vitro. Transl Stroke Res. 2015;6(4):301–8.CrossRef Sakamoto M, Miyazaki Y, Kitajo K, Yamaguchi A. VGF, which is induced transcriptionally in stroke brain, enhances neurite extension and confers protection against ischemia in vitro. Transl Stroke Res. 2015;6(4):301–8.CrossRef
4.
go back to reference Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, Carnethon MR, Dai S, de Simone G, Ford ES et al: Heart disease and stroke statistics--2011 update: a report from the American Heart Association. Circulation 2011, 123(4):e18-e209. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, Carnethon MR, Dai S, de Simone G, Ford ES et al: Heart disease and stroke statistics--2011 update: a report from the American Heart Association. Circulation 2011, 123(4):e18-e209.
5.
go back to reference Yang SH, Lou M, Luo B, Jiang WJ, Liu R. Precision medicine for ischemic stroke, let us move beyond time is brain. Transl Stroke Res. 2018;9(2):93–5.CrossRef Yang SH, Lou M, Luo B, Jiang WJ, Liu R. Precision medicine for ischemic stroke, let us move beyond time is brain. Transl Stroke Res. 2018;9(2):93–5.CrossRef
6.
go back to reference Xiong M, Shiwalkar N, Reddy K, Shin P, Bekker A. Neurobiology of Propofol addiction and supportive evidence: what is the new development? Brain Sciences. 2018;8(2):36.CrossRef Xiong M, Shiwalkar N, Reddy K, Shin P, Bekker A. Neurobiology of Propofol addiction and supportive evidence: what is the new development? Brain Sciences. 2018;8(2):36.CrossRef
7.
go back to reference Gelegen C, Miracca G, Ran MZ, Harding EC, Ye Z, Yu X, Tossell K, Houston CM, Yustos R, Hawkins ED, et al. Excitatory pathways from the lateral Habenula enable Propofol-induced sedation. Curr Biol. 2018;28(4):580–587.e585.CrossRef Gelegen C, Miracca G, Ran MZ, Harding EC, Ye Z, Yu X, Tossell K, Houston CM, Yustos R, Hawkins ED, et al. Excitatory pathways from the lateral Habenula enable Propofol-induced sedation. Curr Biol. 2018;28(4):580–587.e585.CrossRef
8.
go back to reference Zhang D, Zhou XH, Zhang J, Zhou YX, Ying J, Wu GQ, Qian JH. Propofol promotes cell apoptosis via inhibiting HOTAIR mediated mTOR pathway in cervical cancer. Biochem Biophys Res Commun. 2015;468(4):561–7.CrossRef Zhang D, Zhou XH, Zhang J, Zhou YX, Ying J, Wu GQ, Qian JH. Propofol promotes cell apoptosis via inhibiting HOTAIR mediated mTOR pathway in cervical cancer. Biochem Biophys Res Commun. 2015;468(4):561–7.CrossRef
9.
go back to reference Zhang L, Wang N, Zhou S, Ye W, Jing G, Zhang M. Propofol induces proliferation and invasion of gallbladder cancer cells through activation of Nrf2. J Exp Clin Cancer Res. 2012;31:66.CrossRef Zhang L, Wang N, Zhou S, Ye W, Jing G, Zhang M. Propofol induces proliferation and invasion of gallbladder cancer cells through activation of Nrf2. J Exp Clin Cancer Res. 2012;31:66.CrossRef
10.
go back to reference Ning HJ, Yuan HB, Xu HT, He XY. Propofol reduces hypoxiainduced autophagic cell death through downregulating HIF 1alpha in alveolar epithelial type II cells of rats. Mol Med Rep. 2017;16(2):1509–15.CrossRef Ning HJ, Yuan HB, Xu HT, He XY. Propofol reduces hypoxiainduced autophagic cell death through downregulating HIF 1alpha in alveolar epithelial type II cells of rats. Mol Med Rep. 2017;16(2):1509–15.CrossRef
11.
go back to reference Zhang J, Xia Y, Xu Z, Deng X. Propofol suppressed hypoxia/Reoxygenation-induced apoptosis in HBVSMC by regulation of the expression of Bcl-2, Bax, Caspase3, Kir6.1, and p-JNK. Oxidative Med Cell Longev. 2016;2016:1518738. Zhang J, Xia Y, Xu Z, Deng X. Propofol suppressed hypoxia/Reoxygenation-induced apoptosis in HBVSMC by regulation of the expression of Bcl-2, Bax, Caspase3, Kir6.1, and p-JNK. Oxidative Med Cell Longev. 2016;2016:1518738.
12.
go back to reference Zhang DX, Ding HZ, Jiang S, Zeng YM, Tang QF. An in vitro study of the neuroprotective effect of propofol on hypoxic hippocampal slice. Brain Inj. 2014;28(13–14):1758–65.CrossRef Zhang DX, Ding HZ, Jiang S, Zeng YM, Tang QF. An in vitro study of the neuroprotective effect of propofol on hypoxic hippocampal slice. Brain Inj. 2014;28(13–14):1758–65.CrossRef
13.
go back to reference Lu Y, Chen W, Lin C, Wang J, Zhu M, Chen J, Miao C. The protective effects of propofol against CoCl2-induced HT22 cell hypoxia injury via PP2A/CAMKIIalpha/nNOS pathway. BMC Anesthesiol. 2017;17(1):32.CrossRef Lu Y, Chen W, Lin C, Wang J, Zhu M, Chen J, Miao C. The protective effects of propofol against CoCl2-induced HT22 cell hypoxia injury via PP2A/CAMKIIalpha/nNOS pathway. BMC Anesthesiol. 2017;17(1):32.CrossRef
14.
go back to reference Ulbrich F, Eisert L, Buerkle H, Goebel U, Schallner N. Propofol, but not ketamine or midazolam, exerts neuroprotection after ischaemic injury by inhibition of toll-like receptor 4 and nuclear factor kappa-light-chain-enhancer of activated B-cell signalling: a combined in vitro and animal study. Eur J Anaesthesiol. 2016;33(9):670–80.CrossRef Ulbrich F, Eisert L, Buerkle H, Goebel U, Schallner N. Propofol, but not ketamine or midazolam, exerts neuroprotection after ischaemic injury by inhibition of toll-like receptor 4 and nuclear factor kappa-light-chain-enhancer of activated B-cell signalling: a combined in vitro and animal study. Eur J Anaesthesiol. 2016;33(9):670–80.CrossRef
15.
go back to reference Kaushik SB, Kaushik N. Non-coding RNAs in skin cancers: an update. Non-coding RNA Research. 2016;1(1):83–6.CrossRef Kaushik SB, Kaushik N. Non-coding RNAs in skin cancers: an update. Non-coding RNA Research. 2016;1(1):83–6.CrossRef
16.
go back to reference Luan Y, Zhang X, Zhang Y, Dong Y. MicroRNA-210 protects PC-12 cells against hypoxia-induced injury by targeting BNIP3. Front Cell Neurosci. 2017;11:285.CrossRef Luan Y, Zhang X, Zhang Y, Dong Y. MicroRNA-210 protects PC-12 cells against hypoxia-induced injury by targeting BNIP3. Front Cell Neurosci. 2017;11:285.CrossRef
17.
go back to reference Han L, Dong Z, Liu N, Xie F, Wang N. Maternally expressed gene 3 (MEG3) enhances PC12 cell hypoxia injury by targeting MiR-147. Cell Physiol Biochem. 2017;43(6):2457–69.CrossRef Han L, Dong Z, Liu N, Xie F, Wang N. Maternally expressed gene 3 (MEG3) enhances PC12 cell hypoxia injury by targeting MiR-147. Cell Physiol Biochem. 2017;43(6):2457–69.CrossRef
18.
go back to reference Hao W, Zhao ZH, Meng QT, Tie ME, Lei SQ, Xia ZY. Propofol protects against hepatic ischemia/reperfusion injury via miR-133a-5p regulating the expression of MAPK6. Cell Biol Int. 2017;41(5):495–504.CrossRef Hao W, Zhao ZH, Meng QT, Tie ME, Lei SQ, Xia ZY. Propofol protects against hepatic ischemia/reperfusion injury via miR-133a-5p regulating the expression of MAPK6. Cell Biol Int. 2017;41(5):495–504.CrossRef
19.
go back to reference Wu Z, He B, He J, Mao X. Upregulation of miR-153 promotes cell proliferation via downregulation of the PTEN tumor suppressor gene in human prostate cancer. Prostate. 2013;73(6):596–604.CrossRef Wu Z, He B, He J, Mao X. Upregulation of miR-153 promotes cell proliferation via downregulation of the PTEN tumor suppressor gene in human prostate cancer. Prostate. 2013;73(6):596–604.CrossRef
20.
go back to reference Shan N, Shen L, Wang J, He D, Duan C. MiR-153 inhibits migration and invasion of human non-small-cell lung cancer by targeting ADAM19. Biochem Biophys Res Commun. 2015;456(1):385–91.CrossRef Shan N, Shen L, Wang J, He D, Duan C. MiR-153 inhibits migration and invasion of human non-small-cell lung cancer by targeting ADAM19. Biochem Biophys Res Commun. 2015;456(1):385–91.CrossRef
21.
go back to reference Liang H, Xiao J, Zhou Z, Wu J, Ge F, Li Z, Zhang H, Sun J, Li F, Liu R, et al. Hypoxia induces miR-153 through the IRE1alpha-XBP1 pathway to fine tune the HIF1alpha/VEGFA axis in breast cancer angiogenesis. Oncogene. 2018. Liang H, Xiao J, Zhou Z, Wu J, Ge F, Li Z, Zhang H, Sun J, Li F, Liu R, et al. Hypoxia induces miR-153 through the IRE1alpha-XBP1 pathway to fine tune the HIF1alpha/VEGFA axis in breast cancer angiogenesis. Oncogene. 2018.
22.
go back to reference Kim JH, Kim BK, Kim DW, Shin HY, Yu SB, Kim DS, Ryu SJ, Kim KH, Jang HK, Kim JD. Effect of Propofol on microRNA expression profile in adipocyte-derived adult stem cells. Chonnam Med J. 2014;50(3):86–90.CrossRef Kim JH, Kim BK, Kim DW, Shin HY, Yu SB, Kim DS, Ryu SJ, Kim KH, Jang HK, Kim JD. Effect of Propofol on microRNA expression profile in adipocyte-derived adult stem cells. Chonnam Med J. 2014;50(3):86–90.CrossRef
23.
go back to reference Fragkouli A, Doxakis E. miR-7 and miR-153 protect neurons against MPP(+)-induced cell death via upregulation of mTOR pathway. Front Cell Neurosci. 2014;8:182.CrossRef Fragkouli A, Doxakis E. miR-7 and miR-153 protect neurons against MPP(+)-induced cell death via upregulation of mTOR pathway. Front Cell Neurosci. 2014;8:182.CrossRef
24.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25(4):402–8.CrossRef Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25(4):402–8.CrossRef
25.
go back to reference Wang Q, Li L, Li CY, Pei Z, Zhou M, Li N. SIRT3 protects cells from hypoxia via PGC-1alpha- and MnSOD-dependent pathways. Neuroscience. 2015;286:109–21.CrossRef Wang Q, Li L, Li CY, Pei Z, Zhou M, Li N. SIRT3 protects cells from hypoxia via PGC-1alpha- and MnSOD-dependent pathways. Neuroscience. 2015;286:109–21.CrossRef
26.
go back to reference Hartwig K, Fackler V, Jaksch-Bogensperger H, Winter S, Furtner T, Couillard-Despres S, Meier D, Moessler H, Aigner L. Cerebrolysin protects PC12 cells from CoCl2-induced hypoxia employing GSK3beta signaling. Int J Dev Neurosci. 2014;38:52–8.CrossRef Hartwig K, Fackler V, Jaksch-Bogensperger H, Winter S, Furtner T, Couillard-Despres S, Meier D, Moessler H, Aigner L. Cerebrolysin protects PC12 cells from CoCl2-induced hypoxia employing GSK3beta signaling. Int J Dev Neurosci. 2014;38:52–8.CrossRef
27.
go back to reference Chio CC, Wei L, Chen TG, Lin CM, Shieh JP, Yeh PS, Chen RM. Neuron-derived orphan receptor 1 transduces survival signals in neuronal cells in response to hypoxia-induced apoptotic insults. J Neurosurg. 2016;124(6):1654–64.CrossRef Chio CC, Wei L, Chen TG, Lin CM, Shieh JP, Yeh PS, Chen RM. Neuron-derived orphan receptor 1 transduces survival signals in neuronal cells in response to hypoxia-induced apoptotic insults. J Neurosurg. 2016;124(6):1654–64.CrossRef
28.
go back to reference Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, Neeman M, Bono F, Abramovitch R, Maxwell P, et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature. 1998;394(6692):485–90.CrossRef Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, Neeman M, Bono F, Abramovitch R, Maxwell P, et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature. 1998;394(6692):485–90.CrossRef
29.
go back to reference Li Y, Huang C, Feng P, Jiang Y, Wang W, Zhou D, Chen L. Aberrant expression of miR-153 is associated with overexpression of hypoxia-inducible factor-1alpha in refractory epilepsy. Sci Rep. 2016;6:32091.CrossRef Li Y, Huang C, Feng P, Jiang Y, Wang W, Zhou D, Chen L. Aberrant expression of miR-153 is associated with overexpression of hypoxia-inducible factor-1alpha in refractory epilepsy. Sci Rep. 2016;6:32091.CrossRef
30.
go back to reference Liu Y, Nie H, Zhang K, Ma D, Yang G, Zheng Z, Liu K, Yu B, Zhai C, Yang S. A feedback regulatory loop between HIF-1alpha and miR-21 in response to hypoxia in cardiomyocytes. FEBS Lett. 2014;588(17):3137–46.CrossRef Liu Y, Nie H, Zhang K, Ma D, Yang G, Zheng Z, Liu K, Yu B, Zhai C, Yang S. A feedback regulatory loop between HIF-1alpha and miR-21 in response to hypoxia in cardiomyocytes. FEBS Lett. 2014;588(17):3137–46.CrossRef
31.
go back to reference Chen X, Chen G, Cao X, Zhou Y, Yang T, Wei S. Downregulation of BTG3 in non-small cell lung cancer. Biochem Biophys Res Commun. 2013;437(1):173–8.CrossRef Chen X, Chen G, Cao X, Zhou Y, Yang T, Wei S. Downregulation of BTG3 in non-small cell lung cancer. Biochem Biophys Res Commun. 2013;437(1):173–8.CrossRef
32.
go back to reference W-f G, X-f Y, D-f S, Zhao S, Y-p L, H-z S, Takano Y, R-j S, J-s L, H-c Z. The roles of BTG3 expression in gastric cancer: a potential marker for carcinogenesis and a target molecule for gene therapy. Oncotarget. 2015;6(23):19841–67. W-f G, X-f Y, D-f S, Zhao S, Y-p L, H-z S, Takano Y, R-j S, J-s L, H-c Z. The roles of BTG3 expression in gastric cancer: a potential marker for carcinogenesis and a target molecule for gene therapy. Oncotarget. 2015;6(23):19841–67.
33.
go back to reference Ou YH, Chung PH, Hsu FF, Sun TP, Chang WY, Shieh SY. The candidate tumor suppressor BTG3 is a transcriptional target of p53 that inhibits E2F1. EMBO J. 2007;26(17):3968–80.CrossRef Ou YH, Chung PH, Hsu FF, Sun TP, Chang WY, Shieh SY. The candidate tumor suppressor BTG3 is a transcriptional target of p53 that inhibits E2F1. EMBO J. 2007;26(17):3968–80.CrossRef
34.
go back to reference Liu JY, Lu JB, Xu Y. MicroRNA-153 inhibits the proliferation and invasion of human laryngeal squamous cell carcinoma by targeting KLF5. Exp Ther Med. 2016;11(6):2503–8.CrossRef Liu JY, Lu JB, Xu Y. MicroRNA-153 inhibits the proliferation and invasion of human laryngeal squamous cell carcinoma by targeting KLF5. Exp Ther Med. 2016;11(6):2503–8.CrossRef
35.
go back to reference Zhu N, Gu L, Findley HW, Chen C, Dong JT, Yang L, Zhou M. KLF5 interacts with p53 in regulating survivin expression in acute lymphoblastic leukemia. J Biol Chem. 2006;281(21):14711–8.CrossRef Zhu N, Gu L, Findley HW, Chen C, Dong JT, Yang L, Zhou M. KLF5 interacts with p53 in regulating survivin expression in acute lymphoblastic leukemia. J Biol Chem. 2006;281(21):14711–8.CrossRef
36.
go back to reference Srivastava IN, Shperdheja J, Baybis M, Ferguson T, Crino PB. mTOR pathway inhibition prevents neuroinflammation and neuronal death in a mouse model of cerebral palsy. Neurobiol Dis. 2016;85:144–54.CrossRef Srivastava IN, Shperdheja J, Baybis M, Ferguson T, Crino PB. mTOR pathway inhibition prevents neuroinflammation and neuronal death in a mouse model of cerebral palsy. Neurobiol Dis. 2016;85:144–54.CrossRef
37.
go back to reference Fukuyama Y, Ohta K, Okoshi R, Suehara M, Kizaki H, Nakagawa K. Hypoxia induces expression and activation of AMPK in rat dental pulp cells. J Dent Res. 2007;86(9):903–7.CrossRef Fukuyama Y, Ohta K, Okoshi R, Suehara M, Kizaki H, Nakagawa K. Hypoxia induces expression and activation of AMPK in rat dental pulp cells. J Dent Res. 2007;86(9):903–7.CrossRef
Metadata
Title
Propofol alleviates hypoxia-induced nerve injury in PC-12 cells by up-regulation of microRNA-153
Authors
Mingwei He
Haiyan Sun
Jinlei Pang
Xiangfei Guo
Yansong Huo
Xianhong Wu
Yaguang Liu
Jun Ma
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Anesthesiology / Issue 1/2018
Electronic ISSN: 1471-2253
DOI
https://doi.org/10.1186/s12871-018-0660-z

Other articles of this Issue 1/2018

BMC Anesthesiology 1/2018 Go to the issue