Skip to main content
Top
Published in: BMC Cancer 1/2012

Open Access 01-12-2012 | Research article

Promoter hypermethylation-induced transcriptional down-regulation of the gene MYCT1in laryngeal squamous cell carcinoma

Authors: Min Yang, Wei Li, Yi-Ying Liu, Shuang Fu, Guang-Bin Qiu, Kai-Lai Sun, Wei-Neng Fu

Published in: BMC Cancer | Issue 1/2012

Login to get access

Abstract

Background

MYCT1, previously named MTLC, is a novel candidate tumor suppressor gene. MYCT1 was cloned from laryngeal squamous cell cancer (LSCC) and has been found to be down-regulated in LSCC; however, the regulatory details have not been fully elucidated.

Methods

Here, we sought to investigate the methylation status of the CpG islands of MYCT1 and mRNA levels by bisulfite-specific PCR (BSP) based on sequencing restriction enzyme digestion, reverse transcription and real-time quantitative polymerase chain reaction (RQ-PCR). The function of specific sites in the proximal promoter of MYCT1 in LSCC was measured by transient transfection, luciferase assays, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (ChIP).

Results

The results suggested hypermethylation of 12 CpG sites of the promoter in both laryngeal cancer tissues and the laryngeal cancer line Hep-2 cell. The hypermethylation of the site CGCG (−695 to −692), which has been identified as the c-Myc binding site, was identified in laryngeal cancer tissues (59/73) compared to paired mucosa (13/73); in addition, statistical analysis revealed that the methylation status of this site significantly correlated with cancer cell differentiation(p < 0.01). The mRNA level of MYCT1 increased in Hep-2 cells treated with 5-aza-C (p < 0.01). The luciferase activity from mutant transfectants pGL3-MYCT1m (−852/+12, mut-695-C > A, mut-693-C > G) was significantly reduced compared with the wild type pGL3-MYCT1 (−852/+12), while the luciferase activity from wild transfectants pGL3-MYCT1 (−852/+12) rose after 5-aza treatment in Hep-2 cells. Finally, EMSA and ChIP confirmed that the methylation of the CGCG (−695 to −692) site prevented c-Myc from binding of the site and demethylation treatment of the 5′ flanking region of MYCT1 by 5-aza induced the increased occupation of the core promoter by c-Myc (p < 0.01).

Conclusion

In summary, this study concluded that hypermethylation contributed to the transcriptional down-regulation of MYCT1 and could inhibit cancer cell differentiation in LSCC. DNA methylation of the CGCG site (−695 to −692) of MYCT1 altered the promoter activity by interfering with its binding to c-Myc in LSCC. Epigenetic therapy of reactivating MYCT1 by 5-aza should be further evaluated in clinical trails of LSCC.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cattaruzza MS, Maisonneuve P, Boyle P: Epidemiology of laryngeal cancer. Eur J Cancer B Oral Oncol. 1996, 32B: 293-305.CrossRefPubMed Cattaruzza MS, Maisonneuve P, Boyle P: Epidemiology of laryngeal cancer. Eur J Cancer B Oral Oncol. 1996, 32B: 293-305.CrossRefPubMed
2.
go back to reference Chen K, Song F, He M, et al: Trends in head and neck cancer incidence in Tianjin, China, between 1981 and 2002. Head Neck. 2009, 31: 175-182. 10.1002/hed.20946.CrossRefPubMed Chen K, Song F, He M, et al: Trends in head and neck cancer incidence in Tianjin, China, between 1981 and 2002. Head Neck. 2009, 31: 175-182. 10.1002/hed.20946.CrossRefPubMed
3.
go back to reference Morshed K, Polz-Dacewicz M, Szymanski M, et al: Short-fragment PCR assay for highly sensitive broad-spectrum detection of human papillomaviruses in laryngeal squamous cell carcinoma and normal mucosa: clinico-pathological evaluation. Eur Arch Otorhinolaryngol. 2008, 265 (Suppl 1): S89-S96.CrossRefPubMed Morshed K, Polz-Dacewicz M, Szymanski M, et al: Short-fragment PCR assay for highly sensitive broad-spectrum detection of human papillomaviruses in laryngeal squamous cell carcinoma and normal mucosa: clinico-pathological evaluation. Eur Arch Otorhinolaryngol. 2008, 265 (Suppl 1): S89-S96.CrossRefPubMed
4.
go back to reference Ma XJ, Pan XL, Lv ZH, et al: Therapeutic influence on circulating and monocyte-derived dendritic cells in laryngeal squamous cell carcinoma patients. Acta Otolaryngol. 2009, 129: 84-91. 10.1080/00016480802020459.CrossRefPubMed Ma XJ, Pan XL, Lv ZH, et al: Therapeutic influence on circulating and monocyte-derived dendritic cells in laryngeal squamous cell carcinoma patients. Acta Otolaryngol. 2009, 129: 84-91. 10.1080/00016480802020459.CrossRefPubMed
5.
go back to reference Kada S, Hirano S, Tateya I, et al: Ten years single institutional experience of treatment for advanced laryngeal cancer in Kyoto University. Acta Otolaryngol Suppl. 2010, 563: 68-73.CrossRefPubMed Kada S, Hirano S, Tateya I, et al: Ten years single institutional experience of treatment for advanced laryngeal cancer in Kyoto University. Acta Otolaryngol Suppl. 2010, 563: 68-73.CrossRefPubMed
6.
go back to reference Marioni G, Marchese-Ragona R, Cartei G, et al: Current opinion in diagnosis and treatment of laryngeal carcinoma. Cancer Treat Rev. 2006, 32: 504-515. 10.1016/j.ctrv.2006.07.002.CrossRefPubMed Marioni G, Marchese-Ragona R, Cartei G, et al: Current opinion in diagnosis and treatment of laryngeal carcinoma. Cancer Treat Rev. 2006, 32: 504-515. 10.1016/j.ctrv.2006.07.002.CrossRefPubMed
7.
go back to reference Qiu G, Xu Z, Huang D, et al: Cloning and characterization of MTLC, a novel gene in 6q25. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2003, 20: 94-97.PubMed Qiu G, Xu Z, Huang D, et al: Cloning and characterization of MTLC, a novel gene in 6q25. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2003, 20: 94-97.PubMed
8.
go back to reference Rogulski KR, Cohen DE, Corcoran DL, et al: Deregulation of common genes by c-Myc and its direct target, MT-MC1. Proc Natl Acad Sci USA. 2005, 102: 18968-18973. 10.1073/pnas.0507902102.CrossRefPubMedPubMedCentral Rogulski KR, Cohen DE, Corcoran DL, et al: Deregulation of common genes by c-Myc and its direct target, MT-MC1. Proc Natl Acad Sci USA. 2005, 102: 18968-18973. 10.1073/pnas.0507902102.CrossRefPubMedPubMedCentral
9.
go back to reference Reymann S, Borlak J: Transcription profiling of lung adenocarcinomas of c-myc-transgenic mice: identification of the c-myc regulatory gene network. BMC Syst Biol. 2008, 2: 46-10.1186/1752-0509-2-46.CrossRefPubMedPubMedCentral Reymann S, Borlak J: Transcription profiling of lung adenocarcinomas of c-myc-transgenic mice: identification of the c-myc regulatory gene network. BMC Syst Biol. 2008, 2: 46-10.1186/1752-0509-2-46.CrossRefPubMedPubMedCentral
10.
go back to reference Li Y, Lu J, Prochownik EV: c-Myc-mediated genomic instability proceeds via a megakaryocytic endomitosis pathway involving Gp1balpha. Proc Natl Acad Sci USA. 2007, 104: 3490-3495. 10.1073/pnas.0610163104.CrossRefPubMedPubMedCentral Li Y, Lu J, Prochownik EV: c-Myc-mediated genomic instability proceeds via a megakaryocytic endomitosis pathway involving Gp1balpha. Proc Natl Acad Sci USA. 2007, 104: 3490-3495. 10.1073/pnas.0610163104.CrossRefPubMedPubMedCentral
12.
go back to reference Fu S, Guo Y, Chen H, et al: MYCT1-TV, A Novel MYCT1 Transcript, Is Regulated by c-Myc and May Participate in Laryngeal Carcinogenesis. PLoS One. 2011, 6: e25648-10.1371/journal.pone.0025648.CrossRefPubMedPubMedCentral Fu S, Guo Y, Chen H, et al: MYCT1-TV, A Novel MYCT1 Transcript, Is Regulated by c-Myc and May Participate in Laryngeal Carcinogenesis. PLoS One. 2011, 6: e25648-10.1371/journal.pone.0025648.CrossRefPubMedPubMedCentral
13.
go back to reference Dang CV, O'Donnell KA, Zeller KI, et al: The c-Myc target gene network. Semin Cancer Biol. 2006, 16: 253-264. 10.1016/j.semcancer.2006.07.014.CrossRefPubMed Dang CV, O'Donnell KA, Zeller KI, et al: The c-Myc target gene network. Semin Cancer Biol. 2006, 16: 253-264. 10.1016/j.semcancer.2006.07.014.CrossRefPubMed
14.
go back to reference Kim J, Lee JH, Iyer VR: Global identification of Myc target genes reveals its direct role in mitochondrial biogenesis and its E-box usage in vivo. PLoS One. 2008, 3: e1798-10.1371/journal.pone.0001798.CrossRefPubMedPubMedCentral Kim J, Lee JH, Iyer VR: Global identification of Myc target genes reveals its direct role in mitochondrial biogenesis and its E-box usage in vivo. PLoS One. 2008, 3: e1798-10.1371/journal.pone.0001798.CrossRefPubMedPubMedCentral
15.
go back to reference Kuznetsov VA, Singh O, Jenjaroenpun P: Statistics of protein-DNA binding and the total number of binding sites for a transcription factor in the mammalian genome. BMC Genomics. 2010, 11 (Suppl 1): S12-10.1186/1471-2164-11-S1-S12.CrossRefPubMedPubMedCentral Kuznetsov VA, Singh O, Jenjaroenpun P: Statistics of protein-DNA binding and the total number of binding sites for a transcription factor in the mammalian genome. BMC Genomics. 2010, 11 (Suppl 1): S12-10.1186/1471-2164-11-S1-S12.CrossRefPubMedPubMedCentral
16.
go back to reference Haggerty TJ, Zeller KI, Osthus RC, et al: A strategy for identifying transcription factor binding sites reveals two classes of genomic c-Myc target sites. Proc Natl Acad Sci USA. 2003, 100: 5313-5318. 10.1073/pnas.0931346100.CrossRefPubMedPubMedCentral Haggerty TJ, Zeller KI, Osthus RC, et al: A strategy for identifying transcription factor binding sites reveals two classes of genomic c-Myc target sites. Proc Natl Acad Sci USA. 2003, 100: 5313-5318. 10.1073/pnas.0931346100.CrossRefPubMedPubMedCentral
17.
go back to reference Blackwood EM, Eisenman RN: Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science. 1991, 251: 1211-1217. 10.1126/science.2006410.CrossRefPubMed Blackwood EM, Eisenman RN: Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science. 1991, 251: 1211-1217. 10.1126/science.2006410.CrossRefPubMed
18.
go back to reference Si J, Yu X, Zhang Y, DeWille JW: Myc interacts with Max and Miz1 to repress C/EBPdelta promoter activity and gene expression. Mol Cancer. 2010, 9: 92-10.1186/1476-4598-9-92.CrossRefPubMedPubMedCentral Si J, Yu X, Zhang Y, DeWille JW: Myc interacts with Max and Miz1 to repress C/EBPdelta promoter activity and gene expression. Mol Cancer. 2010, 9: 92-10.1186/1476-4598-9-92.CrossRefPubMedPubMedCentral
19.
go back to reference Chen PY, Chang WS, Lai YK, et al: c-Myc regulates the coordinated transcription of brain disease-related PDCD10-SERPINI1 bidirectional gene pair. Mol Cell Neurosci. 2009, 42: 23-32. 10.1016/j.mcn.2009.05.001.CrossRefPubMed Chen PY, Chang WS, Lai YK, et al: c-Myc regulates the coordinated transcription of brain disease-related PDCD10-SERPINI1 bidirectional gene pair. Mol Cell Neurosci. 2009, 42: 23-32. 10.1016/j.mcn.2009.05.001.CrossRefPubMed
20.
go back to reference Perini G, Diolaiti D, Porro A, et al: In vivo transcriptional regulation of N-Myc target genes is controlled by E-box methylation. Proc Natl Acad Sci USA. 2005, 102: 12117-12122. 10.1073/pnas.0409097102.CrossRefPubMedPubMedCentral Perini G, Diolaiti D, Porro A, et al: In vivo transcriptional regulation of N-Myc target genes is controlled by E-box methylation. Proc Natl Acad Sci USA. 2005, 102: 12117-12122. 10.1073/pnas.0409097102.CrossRefPubMedPubMedCentral
21.
go back to reference Sharp TV, Al-Attar A, Foxler DE, et al: The chromosome 3p21.3-encoded gene, LIMD1, is a critical tumor suppressor involved in human lung cancer development. Proc Natl Acad Sci USA. 2008, 105: 19932-19937. 10.1073/pnas.0805003105.CrossRefPubMedPubMedCentral Sharp TV, Al-Attar A, Foxler DE, et al: The chromosome 3p21.3-encoded gene, LIMD1, is a critical tumor suppressor involved in human lung cancer development. Proc Natl Acad Sci USA. 2008, 105: 19932-19937. 10.1073/pnas.0805003105.CrossRefPubMedPubMedCentral
22.
go back to reference Furuta T, Shuto T, Shimasaki S, et al: DNA demethylation-dependent enhancement of toll-like receptor-2 gene expression in cystic fibrosis epithelial cells involves SP1-activated transcription. BMC Mol Biol. 2008, 9: 39-10.1186/1471-2199-9-39.CrossRefPubMedPubMedCentral Furuta T, Shuto T, Shimasaki S, et al: DNA demethylation-dependent enhancement of toll-like receptor-2 gene expression in cystic fibrosis epithelial cells involves SP1-activated transcription. BMC Mol Biol. 2008, 9: 39-10.1186/1471-2199-9-39.CrossRefPubMedPubMedCentral
23.
go back to reference Wang J, Chen H, Fu S, et al: The involvement of CHD5 hypermethylation in laryngeal squamous cell carcinoma. Oral Oncol. 2011, 47: 601-608. 10.1016/j.oraloncology.2011.05.003.CrossRefPubMed Wang J, Chen H, Fu S, et al: The involvement of CHD5 hypermethylation in laryngeal squamous cell carcinoma. Oral Oncol. 2011, 47: 601-608. 10.1016/j.oraloncology.2011.05.003.CrossRefPubMed
24.
go back to reference Oliveira MS, Skinner F, Arshadmansab MF, et al: Altered expression and function of small-conductance (SK) Ca(2+)-activated K+channels in pilocarpine-treated epileptic rats. Brain Res. 2010, 1348: 187-199.CrossRefPubMedPubMedCentral Oliveira MS, Skinner F, Arshadmansab MF, et al: Altered expression and function of small-conductance (SK) Ca(2+)-activated K+channels in pilocarpine-treated epileptic rats. Brain Res. 2010, 1348: 187-199.CrossRefPubMedPubMedCentral
25.
go back to reference Rawłuszko AA, Horbacka K, Krokowicz P, et al: Decreased expression of 17β-hydroxysteroid dehydrogenase type 1 is associated with DNA hypermethylation in colorectal cancer located in the proximal colon. BMC Cancer. 2011, 11: 522-10.1186/1471-2407-11-522.CrossRefPubMedPubMedCentral Rawłuszko AA, Horbacka K, Krokowicz P, et al: Decreased expression of 17β-hydroxysteroid dehydrogenase type 1 is associated with DNA hypermethylation in colorectal cancer located in the proximal colon. BMC Cancer. 2011, 11: 522-10.1186/1471-2407-11-522.CrossRefPubMedPubMedCentral
26.
27.
go back to reference Lahousse SA, Hoenerhoff M, Collins J, et al: Gene expression and mutation assessment provide clues of genetic and epigenetic mechanisms in liver tumors of oxazepam-exposed mice. Vet Pathol. 2011, 48: 875-884. 10.1177/0300985810390019.CrossRefPubMed Lahousse SA, Hoenerhoff M, Collins J, et al: Gene expression and mutation assessment provide clues of genetic and epigenetic mechanisms in liver tumors of oxazepam-exposed mice. Vet Pathol. 2011, 48: 875-884. 10.1177/0300985810390019.CrossRefPubMed
28.
go back to reference Arai E, Kanai Y: Genetic and epigenetic alterations during renal carcinogenesis. Int J Clin Exp Pathol. 2010, 4: 58-73.PubMedPubMedCentral Arai E, Kanai Y: Genetic and epigenetic alterations during renal carcinogenesis. Int J Clin Exp Pathol. 2010, 4: 58-73.PubMedPubMedCentral
29.
go back to reference Bell A, Bell D, Weber RS, et al: CpG Island Methylation Profiling in Human Salivary Gland Adenoid Cystic Carcinoma. Cancer. 2011, 117: 2898-2909. 10.1002/cncr.25818.CrossRefPubMedPubMedCentral Bell A, Bell D, Weber RS, et al: CpG Island Methylation Profiling in Human Salivary Gland Adenoid Cystic Carcinoma. Cancer. 2011, 117: 2898-2909. 10.1002/cncr.25818.CrossRefPubMedPubMedCentral
30.
go back to reference Uhm KO, Lee ES, Lee YM, et al: Aberrant promoter CpG islands methylation of tumor suppressor genes in cholangiocarcinoma. Oncol Res. 2008, 17: 151-157. 10.3727/096504008785114110.CrossRefPubMed Uhm KO, Lee ES, Lee YM, et al: Aberrant promoter CpG islands methylation of tumor suppressor genes in cholangiocarcinoma. Oncol Res. 2008, 17: 151-157. 10.3727/096504008785114110.CrossRefPubMed
31.
go back to reference Wu X, Liu W, Tian Y, et al: Aberrant methylation of death-associated protein kinase 1 CpG islands in myelodysplastic syndromes. Acta Haematol. 2011, 125: 179-185. 10.1159/000322593.CrossRefPubMed Wu X, Liu W, Tian Y, et al: Aberrant methylation of death-associated protein kinase 1 CpG islands in myelodysplastic syndromes. Acta Haematol. 2011, 125: 179-185. 10.1159/000322593.CrossRefPubMed
32.
go back to reference Li W, Li X, Wang W, et al: NOR1 is an HSF1- and NRF1-regulated putative tumor suppressor inactivated by promoter hypermethylation in nasopharyngeal carcinoma. Carcinogenesis. 2011, 32: 1305-1314. 10.1093/carcin/bgr174.CrossRefPubMed Li W, Li X, Wang W, et al: NOR1 is an HSF1- and NRF1-regulated putative tumor suppressor inactivated by promoter hypermethylation in nasopharyngeal carcinoma. Carcinogenesis. 2011, 32: 1305-1314. 10.1093/carcin/bgr174.CrossRefPubMed
33.
go back to reference Du C, Huang T, Sun D, et al: CDH4 as a novel putative tumor suppressor gene epigenetically silenced by promoter hypermethylation in nasopharyngeal carcinoma. Cancer Lett. 2011, 309: 54-61. 10.1016/j.canlet.2011.05.016.CrossRefPubMed Du C, Huang T, Sun D, et al: CDH4 as a novel putative tumor suppressor gene epigenetically silenced by promoter hypermethylation in nasopharyngeal carcinoma. Cancer Lett. 2011, 309: 54-61. 10.1016/j.canlet.2011.05.016.CrossRefPubMed
34.
go back to reference Hervouet E, Vallette FM, Cartron PF: Dnmt3/transcription factor interactions as crucial players in targeted DNA methylation. Epigenetics. 2009, 4: 487-499. 10.4161/epi.4.7.9883.CrossRefPubMed Hervouet E, Vallette FM, Cartron PF: Dnmt3/transcription factor interactions as crucial players in targeted DNA methylation. Epigenetics. 2009, 4: 487-499. 10.4161/epi.4.7.9883.CrossRefPubMed
35.
go back to reference Weng W, Yang Q, Huang M, et al: c-Myc inhibits TP53INP1 expression via promoter methylation in esophageal carcinoma. Biochem Biophys Res Commun. 2011, 405: 278-284. 10.1016/j.bbrc.2011.01.028.CrossRefPubMed Weng W, Yang Q, Huang M, et al: c-Myc inhibits TP53INP1 expression via promoter methylation in esophageal carcinoma. Biochem Biophys Res Commun. 2011, 405: 278-284. 10.1016/j.bbrc.2011.01.028.CrossRefPubMed
36.
go back to reference Licchesi JD, Van Neste L, Tiwari VK, et al: Transcriptional regulation of Wnt inhibitory factor-1 by Miz-1/c-Myc. Oncogene. 2010, 29: 5923-5934. 10.1038/onc.2010.322.CrossRefPubMedPubMedCentral Licchesi JD, Van Neste L, Tiwari VK, et al: Transcriptional regulation of Wnt inhibitory factor-1 by Miz-1/c-Myc. Oncogene. 2010, 29: 5923-5934. 10.1038/onc.2010.322.CrossRefPubMedPubMedCentral
38.
go back to reference Brieger J, Mann SA, Pongsapich W, et al: Pharmacological genome demethylation increases radiosensitivity of head and neck squamous carcinoma cells. Int J Mol Med. 2012, 29: 505-509.PubMed Brieger J, Mann SA, Pongsapich W, et al: Pharmacological genome demethylation increases radiosensitivity of head and neck squamous carcinoma cells. Int J Mol Med. 2012, 29: 505-509.PubMed
39.
go back to reference Bauman J, Verschraegen C, Belinsky S, et al: A phase I study of 5-azacytidine and erlotinib in advanced solid tumor malignancies. Cancer Chemother Pharmacol. 2012, 69 (2): 547-54. 10.1007/s00280-011-1729-2.CrossRefPubMed Bauman J, Verschraegen C, Belinsky S, et al: A phase I study of 5-azacytidine and erlotinib in advanced solid tumor malignancies. Cancer Chemother Pharmacol. 2012, 69 (2): 547-54. 10.1007/s00280-011-1729-2.CrossRefPubMed
Metadata
Title
Promoter hypermethylation-induced transcriptional down-regulation of the gene MYCT1in laryngeal squamous cell carcinoma
Authors
Min Yang
Wei Li
Yi-Ying Liu
Shuang Fu
Guang-Bin Qiu
Kai-Lai Sun
Wei-Neng Fu
Publication date
01-12-2012
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2012
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-12-219

Other articles of this Issue 1/2012

BMC Cancer 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine