Skip to main content
Top
Published in: Virology Journal 1/2011

Open Access 01-12-2011 | Research

Prohibitin is overexpressed in Huh-7-HCV and Huh-7.5-HCV cells harboring in vitro transcribed full-length hepatitis C virus RNA

Authors: Shuang-Suo Dang, Ming-Zhu Sun, E Yang, Meng Xun, Li Ma, Zhan-Sheng Jia, Wen-Jun Wang, Xiao-Li Jia

Published in: Virology Journal | Issue 1/2011

Login to get access

Abstract

Background

Currently, up-regulated proteins and apoptosis in hepatitis C is a hot topic in exploring the pathogenic mechanism of Heptitis C Virus(HCV). Some recent studies shows that prohibitin is overexpressed in cells expressing HCV core proteins, and up-regulated prohibitin is also found in human hepatoma cell line HCC-M, lung cancer, prostate cancer, and other cancers. Prohibitin is an important member of the membrane protein superfamily, and it plays a role of molecular chaperones in mitochondrial protein stability. Meanwhile, it has a permissive action on tumor growth or acts as an oncosuppressor. Based on our previously established the in vitro HCV cell-culture system (HCVcc), here we aimed to investigate the different expression profiles of prohibitin in Huh-7-HCV and Huh-7.5-HCV cells

Methods

The total cellular RNA of Huh-7, Huh-7.5, Huh-7-HCV and Huh-7.5-HCV cells were extracted, and then the first-strand cDNA was reversely transcribed. The expression of prohibitin at the mRNA level was assessed by real-time PCR with GAPDH as the control. Furthermore, the expression of prohibitin at the protein level was evaluated by western blot with GAPDH as an internal control.

Results

Our results of real-time PCR showed that the mRNA expression level of prohibitin in Huh-7-HCV cells was 2.09 times higher than that in Huh-7 cells, while, the mRNA level of prohibitin in Huh-7.5-HCV cells was 2.25 times higher than that in Huh-7.5 cells. The results of western blot showed that the protein expression level of prohibitin in Huh-7-HCV cells was 2.38 times higher than that in Huh-7 cells, while the protein expression of prohibitin in Huh-7.5-HCV cells was 2.29 times higher than that in Huh-7.5 cells.

Conclusions

The expression of prohibitin was relatively high in Huh-7-HCV and Huh-7.5-HCV cells harboring in vitro transcribed full-length HCV RNA.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lee JH, Lee S, Park MY, Myung H: Characterization of thiobarbituric acid derivatives as inhibitors of hepatitis C virus NS5B polymerase. Virol J 2011, 14: 8-18. Lee JH, Lee S, Park MY, Myung H: Characterization of thiobarbituric acid derivatives as inhibitors of hepatitis C virus NS5B polymerase. Virol J 2011, 14: 8-18.
2.
go back to reference Bobeck DR, Schinazi RF, Coats SJ: Advances in nucleoside monophoaphate prodrugs as anti-HCV agents. Antivir Ther 2010,15(7):935-50. 10.3851/IMP1667CrossRefPubMed Bobeck DR, Schinazi RF, Coats SJ: Advances in nucleoside monophoaphate prodrugs as anti-HCV agents. Antivir Ther 2010,15(7):935-50. 10.3851/IMP1667CrossRefPubMed
3.
go back to reference Javed T, Ashfaq UA, Riaz S, Rehman S, Riazuddin S: In-vitro antiviral activity of Solanum nigrum against Hepatitis C Virus. Virol J 2011, 19: 8-26. Javed T, Ashfaq UA, Riaz S, Rehman S, Riazuddin S: In-vitro antiviral activity of Solanum nigrum against Hepatitis C Virus. Virol J 2011, 19: 8-26.
4.
go back to reference Bamaba V: Hepatitis C virus infection: a "liasion a trois" amongst the virus, the host, and chronic low-level inflammation for human survival. J Hepatol 2010,53(4):752-61. 10.1016/j.jhep.2010.06.003CrossRef Bamaba V: Hepatitis C virus infection: a "liasion a trois" amongst the virus, the host, and chronic low-level inflammation for human survival. J Hepatol 2010,53(4):752-61. 10.1016/j.jhep.2010.06.003CrossRef
5.
go back to reference Lemon SM, Mckeating JA, Pietschmann T, Frick DN, Glenn JS, Tellinghuisen TL, Symons J, Furman PA: Development of novel therapies for hepatitis C. Antiviral Res 2010,86(1):79-92. 10.1016/j.antiviral.2010.02.003CrossRefPubMed Lemon SM, Mckeating JA, Pietschmann T, Frick DN, Glenn JS, Tellinghuisen TL, Symons J, Furman PA: Development of novel therapies for hepatitis C. Antiviral Res 2010,86(1):79-92. 10.1016/j.antiviral.2010.02.003CrossRefPubMed
6.
go back to reference Foster GR: Pegylated interferons for the treatment of chronic hepatitis C: pharmacological and clinical differences between peginterferon-alpha-2a and peginterferon-alpha-2b. Drugs 2010,70(2):147-65. 10.2165/11531990-000000000-00000CrossRefPubMed Foster GR: Pegylated interferons for the treatment of chronic hepatitis C: pharmacological and clinical differences between peginterferon-alpha-2a and peginterferon-alpha-2b. Drugs 2010,70(2):147-65. 10.2165/11531990-000000000-00000CrossRefPubMed
7.
go back to reference Sanchez-Quiles V, Santamaria E, Segura V, Sesma L, Prieto J, Corrales FJ: Prohibitin deficiency blocks proliferation and induces apoptosis in human hepatoma cells: Molecular mechanisms and functional implications. Proteomics 2010,10(8):1609-20. 10.1002/pmic.200900757CrossRefPubMed Sanchez-Quiles V, Santamaria E, Segura V, Sesma L, Prieto J, Corrales FJ: Prohibitin deficiency blocks proliferation and induces apoptosis in human hepatoma cells: Molecular mechanisms and functional implications. Proteomics 2010,10(8):1609-20. 10.1002/pmic.200900757CrossRefPubMed
8.
go back to reference Peng X, Mthta R, Wang S, Chellappan S, Mthta RG: Prohibitin is a novel target gene of vitamin D involved in its antiproliferative action in breast cancer cells. Cancer Res 2006,66(14):7361-9. 10.1158/0008-5472.CAN-06-1004CrossRefPubMed Peng X, Mthta R, Wang S, Chellappan S, Mthta RG: Prohibitin is a novel target gene of vitamin D involved in its antiproliferative action in breast cancer cells. Cancer Res 2006,66(14):7361-9. 10.1158/0008-5472.CAN-06-1004CrossRefPubMed
9.
go back to reference Rizwani W, Alexandrow M, Chellappan S: Prohibitin physically interacts with MCM proteins and inhibits mammalian DNA replication. Cell Cycle 2009, 8: 1621-1629. 10.4161/cc.8.10.8578PubMedCentralCrossRefPubMed Rizwani W, Alexandrow M, Chellappan S: Prohibitin physically interacts with MCM proteins and inhibits mammalian DNA replication. Cell Cycle 2009, 8: 1621-1629. 10.4161/cc.8.10.8578PubMedCentralCrossRefPubMed
10.
go back to reference Woodlock TJ, Bethlendy G, Segel GB: Prohibitin expression is increased in phorbol ester-treated chronic leukemic B-lymphocytes. Blood Cells Mol Dis 2001, 27: 27-34. 10.1006/bcmd.2000.0348CrossRefPubMed Woodlock TJ, Bethlendy G, Segel GB: Prohibitin expression is increased in phorbol ester-treated chronic leukemic B-lymphocytes. Blood Cells Mol Dis 2001, 27: 27-34. 10.1006/bcmd.2000.0348CrossRefPubMed
11.
go back to reference Mengwasser J, Piau A, Schlag P, Sleeman JP: Differential immunization identifies PHB1/PHB2 as blood-borne tumor antigens. Oncogene 2004, 23: 7430-7435. 10.1038/sj.onc.1207987CrossRefPubMed Mengwasser J, Piau A, Schlag P, Sleeman JP: Differential immunization identifies PHB1/PHB2 as blood-borne tumor antigens. Oncogene 2004, 23: 7430-7435. 10.1038/sj.onc.1207987CrossRefPubMed
12.
go back to reference Tsai HW, Chow NH, Lin CP, Chan SH, Chou CY, Ho CL: The significance of prohibitin and c-Met/hepatocye growth factor receptor in the progression of cervical adenocarcinoma. Hum Pathol 2006, 37: 198-204. 10.1016/j.humpath.2005.10.012CrossRefPubMed Tsai HW, Chow NH, Lin CP, Chan SH, Chou CY, Ho CL: The significance of prohibitin and c-Met/hepatocye growth factor receptor in the progression of cervical adenocarcinoma. Hum Pathol 2006, 37: 198-204. 10.1016/j.humpath.2005.10.012CrossRefPubMed
13.
go back to reference Kang X, Zhang L, Sun J, Ni Z, Ma Y, Chen X, Sheng X, Chen T: Prohibitin: a potential biomarker for tissue-based detection of gastric cancer. J Gastroenterol 2008, 43: 618-625. 10.1007/s00535-008-2208-3CrossRefPubMed Kang X, Zhang L, Sun J, Ni Z, Ma Y, Chen X, Sheng X, Chen T: Prohibitin: a potential biomarker for tissue-based detection of gastric cancer. J Gastroenterol 2008, 43: 618-625. 10.1007/s00535-008-2208-3CrossRefPubMed
14.
go back to reference Nan Y, Yang S, Tian Y, Zhang W, Zhou B, Bu L, Huo S: Analysis of the expression protein profiles of lung squamous carcinoma cell using shot-gun proteomics strategy. Med Oncol 2009, 26: 215-221. 10.1007/s12032-008-9109-4CrossRefPubMed Nan Y, Yang S, Tian Y, Zhang W, Zhou B, Bu L, Huo S: Analysis of the expression protein profiles of lung squamous carcinoma cell using shot-gun proteomics strategy. Med Oncol 2009, 26: 215-221. 10.1007/s12032-008-9109-4CrossRefPubMed
15.
go back to reference Tsutsumi T, Matsuda M, Aizaki H, Moriya K: Proteomics analysis of mitochondrial proteins reveals overexpression of a mitochondrial protein chaperon, prohibitin, in cells expressing hepatitis C virus core protein. Hepatology 2009,50(2):378-86. 10.1002/hep.22998CrossRefPubMed Tsutsumi T, Matsuda M, Aizaki H, Moriya K: Proteomics analysis of mitochondrial proteins reveals overexpression of a mitochondrial protein chaperon, prohibitin, in cells expressing hepatitis C virus core protein. Hepatology 2009,50(2):378-86. 10.1002/hep.22998CrossRefPubMed
16.
go back to reference Sato T, Saito H, Swensen J, Olifant A, Wood C, Danner D, Sakamoto T, Takita K, Kasumi F, Miki Y: The human prohibitin gene located on chromosome 17q21 is mutated in sporadic breaset cancer. Cancer Res 1992, 52: 1643-1646.PubMed Sato T, Saito H, Swensen J, Olifant A, Wood C, Danner D, Sakamoto T, Takita K, Kasumi F, Miki Y: The human prohibitin gene located on chromosome 17q21 is mutated in sporadic breaset cancer. Cancer Res 1992, 52: 1643-1646.PubMed
17.
go back to reference Mishra S, Murphy LC, Murphy LJ: The prohibitins: emerging roles in diverse functions. J Cell Mol Med 2006, 10: 353-363. 10.1111/j.1582-4934.2006.tb00404.xPubMedCentralCrossRefPubMed Mishra S, Murphy LC, Murphy LJ: The prohibitins: emerging roles in diverse functions. J Cell Mol Med 2006, 10: 353-363. 10.1111/j.1582-4934.2006.tb00404.xPubMedCentralCrossRefPubMed
18.
go back to reference Rastogi S, Joshi B, Dasgupta P, Morris M, Wright K, Chellappan S: Prohibitin facilitates cellular senescence by recruiting specific corepressors to inhibit E2F target genes. Mol Cell Biol 2006, 26: 4161-4171. 10.1128/MCB.02142-05PubMedCentralCrossRefPubMed Rastogi S, Joshi B, Dasgupta P, Morris M, Wright K, Chellappan S: Prohibitin facilitates cellular senescence by recruiting specific corepressors to inhibit E2F target genes. Mol Cell Biol 2006, 26: 4161-4171. 10.1128/MCB.02142-05PubMedCentralCrossRefPubMed
19.
go back to reference Fusaro G, Dasgupta P, Rastogi S, Joshi B, Chellappan S: Prohibitin induces the transcriptional activity of p53 and is exported from the nucleus upon apoptotic signaling. J Biol Chem 2003, 278: 47853-47861. 10.1074/jbc.M305171200CrossRefPubMed Fusaro G, Dasgupta P, Rastogi S, Joshi B, Chellappan S: Prohibitin induces the transcriptional activity of p53 and is exported from the nucleus upon apoptotic signaling. J Biol Chem 2003, 278: 47853-47861. 10.1074/jbc.M305171200CrossRefPubMed
20.
go back to reference Joshi B, Ko D, Ordonez-Ercan D, Chellappan SP: A putative coiled-coil domain of prohibitin is sufficient to repress E2F1-mediated transcription and induce apoptosis. Biochem Biophys Res Commun 2003, 312: 459-466. 10.1016/j.bbrc.2003.10.148CrossRefPubMed Joshi B, Ko D, Ordonez-Ercan D, Chellappan SP: A putative coiled-coil domain of prohibitin is sufficient to repress E2F1-mediated transcription and induce apoptosis. Biochem Biophys Res Commun 2003, 312: 459-466. 10.1016/j.bbrc.2003.10.148CrossRefPubMed
21.
go back to reference Jupe ER, Liu XT, Kiehlbauch JL, McClung JK, Dell'Orco RT: The 3' untranslated region of prohibitin and cellular immortalization. Exp Cell Res 1996, 224: 128-135. 10.1006/excr.1996.0120CrossRefPubMed Jupe ER, Liu XT, Kiehlbauch JL, McClung JK, Dell'Orco RT: The 3' untranslated region of prohibitin and cellular immortalization. Exp Cell Res 1996, 224: 128-135. 10.1006/excr.1996.0120CrossRefPubMed
22.
go back to reference Gamble SC, Odontiadis M, Waxm an J: Androgens target prohibitn to regulate proliferation of prostate cancer cells. Oncogene 2004, 23: 2996-3004. 10.1038/sj.onc.1207444CrossRefPubMed Gamble SC, Odontiadis M, Waxm an J: Androgens target prohibitn to regulate proliferation of prostate cancer cells. Oncogene 2004, 23: 2996-3004. 10.1038/sj.onc.1207444CrossRefPubMed
23.
go back to reference Seow TK, Ong SE, Liang RC, Ren EC, Chan L, Ou K, Chung MC: Two-dimensional electrophoresis map of the human hepatocellular carcinoma cell line, HCC-M, and identification of the separated proteins by mass spectrometry. Electrophoresis 2000, 21: 1787-1813. 10.1002/(SICI)1522-2683(20000501)21:9<1787::AID-ELPS1787>3.0.CO;2-ACrossRefPubMed Seow TK, Ong SE, Liang RC, Ren EC, Chan L, Ou K, Chung MC: Two-dimensional electrophoresis map of the human hepatocellular carcinoma cell line, HCC-M, and identification of the separated proteins by mass spectrometry. Electrophoresis 2000, 21: 1787-1813. 10.1002/(SICI)1522-2683(20000501)21:9<1787::AID-ELPS1787>3.0.CO;2-ACrossRefPubMed
Metadata
Title
Prohibitin is overexpressed in Huh-7-HCV and Huh-7.5-HCV cells harboring in vitro transcribed full-length hepatitis C virus RNA
Authors
Shuang-Suo Dang
Ming-Zhu Sun
E Yang
Meng Xun
Li Ma
Zhan-Sheng Jia
Wen-Jun Wang
Xiao-Li Jia
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2011
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/1743-422X-8-424

Other articles of this Issue 1/2011

Virology Journal 1/2011 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine