Skip to main content
Top
Published in: BioDrugs 5/2009

01-10-2009 | Review Article

Progress towards Therapeutic Application of RNA Interference for HIV Infection

Authors: Sunit K. Singh, Dr Rajesh K. Gaur

Published in: BioDrugs | Issue 5/2009

Login to get access

Abstract

HIV-1 infection is the cause of acquired immune deficiency syndrome (AIDS). Highly active anti-retroviral therapy (HAART) has been successful in reducing the rate of progression to AIDS, but a cure has not yet been achieved. New tools are required to delay progression of infection or to block the replication cycle of HIV. RNA interference (RNAi) has the potential to work as a powerful tool against HIV infection. The mode of action of small interfering RNAs (siRNAs) against their target genes is through sequence complementarity, which in turn results in target degradation. siRNAs are showing enormous potential to be used as a therapeutic tool in various diseases; however, this technology still requires refinement before its full potential can be utilized for the development of HIV therapies.
Literature
1.
go back to reference Finzi D, Blankson J, Siliciano JD, et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med 1999 May; 5(5): 512–7PubMedCrossRef Finzi D, Blankson J, Siliciano JD, et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med 1999 May; 5(5): 512–7PubMedCrossRef
2.
go back to reference Saag MS, Kilby JM. HIV-1 and HAART: a time to cure, a time to kill. Nat Med 1999 Jun; 5(6): 609–11PubMedCrossRef Saag MS, Kilby JM. HIV-1 and HAART: a time to cure, a time to kill. Nat Med 1999 Jun; 5(6): 609–11PubMedCrossRef
3.
go back to reference Voss G, Villinger F. Adjuvanted vaccine strategies and live vector approaches for the prevention of AIDS. AIDS 2000; 14Suppl. 3: S153–65PubMed Voss G, Villinger F. Adjuvanted vaccine strategies and live vector approaches for the prevention of AIDS. AIDS 2000; 14Suppl. 3: S153–65PubMed
4.
go back to reference Reyes-Darias JA, Sanchez-Luque FJ, Berzal-Herranz A. Inhibition of HIV-1 replication by RNA-based strategies. Curr HIV Res 2008 Nov; 6(6): 500–14PubMedCrossRef Reyes-Darias JA, Sanchez-Luque FJ, Berzal-Herranz A. Inhibition of HIV-1 replication by RNA-based strategies. Curr HIV Res 2008 Nov; 6(6): 500–14PubMedCrossRef
5.
go back to reference Scherer L, Rossi JJ, Weinberg MS. Progress and prospects: RNA-based therapies for treatment of HIV infection. Gene Ther 2007 Jul; 14(14): 1057–64PubMedCrossRef Scherer L, Rossi JJ, Weinberg MS. Progress and prospects: RNA-based therapies for treatment of HIV infection. Gene Ther 2007 Jul; 14(14): 1057–64PubMedCrossRef
6.
go back to reference Morris KV, Rossi JJ. Lentivirus-mediated RNA interference therapy for human immunodeficiency virus type 1 infection. Hum Gene Ther 2006 May; 17(5): 479–86PubMedCrossRef Morris KV, Rossi JJ. Lentivirus-mediated RNA interference therapy for human immunodeficiency virus type 1 infection. Hum Gene Ther 2006 May; 17(5): 479–86PubMedCrossRef
7.
go back to reference Rossi JJ. Expression strategies for short hairpin RNA interference triggers. Hum Gene Ther 2008 Apr; 19(4): 313–7PubMedCrossRef Rossi JJ. Expression strategies for short hairpin RNA interference triggers. Hum Gene Ther 2008 Apr; 19(4): 313–7PubMedCrossRef
8.
go back to reference van Rij RP, Andino R. The silent treatment: RNAi as a defense against virus infection in mammals. Trends Biotechnol 2006 Apr; 24(4): 186–93PubMedCrossRef van Rij RP, Andino R. The silent treatment: RNAi as a defense against virus infection in mammals. Trends Biotechnol 2006 Apr; 24(4): 186–93PubMedCrossRef
9.
go back to reference Zhu P, Winkler H, Chertova E, et al. 2008 Cryoelectron tomography of HIV-1 envelope spikes: further evidence for tripod-like legs. PLoS Pathog 2008 Nov; 4(11): e1000203PubMedCrossRef Zhu P, Winkler H, Chertova E, et al. 2008 Cryoelectron tomography of HIV-1 envelope spikes: further evidence for tripod-like legs. PLoS Pathog 2008 Nov; 4(11): e1000203PubMedCrossRef
10.
go back to reference Sougrat R, Bartesaghi A, Lifson JD, et al. 2008 Electron tomography of the contact between T cells and SIV/HIV-1: implications for viral entry. PLoS Pathog 2007 May 4; 3(5): e63PubMedCrossRef Sougrat R, Bartesaghi A, Lifson JD, et al. 2008 Electron tomography of the contact between T cells and SIV/HIV-1: implications for viral entry. PLoS Pathog 2007 May 4; 3(5): e63PubMedCrossRef
11.
go back to reference Dalgleish AG, Beverley PC, Clapham PR, et al. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 1984 Dec 20–1985 Jan 2; 312(5996): 763–7PubMedCrossRef Dalgleish AG, Beverley PC, Clapham PR, et al. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 1984 Dec 20–1985 Jan 2; 312(5996): 763–7PubMedCrossRef
12.
go back to reference Klatzmann D, Champagne E, Chamaret S, et al. T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature 1984 Dec 20–1985 Jan 2; 312(5996): 767–8PubMedCrossRef Klatzmann D, Champagne E, Chamaret S, et al. T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature 1984 Dec 20–1985 Jan 2; 312(5996): 767–8PubMedCrossRef
13.
go back to reference Bour S, Geleziunas R, Wainberg MA. The human immunodeficiency virus type 1 (HIV-1) CD4 receptor and its central role in promotion of HIV-1 infection. Microbiol Rev 1995 Mar; 59(1): 63–93PubMed Bour S, Geleziunas R, Wainberg MA. The human immunodeficiency virus type 1 (HIV-1) CD4 receptor and its central role in promotion of HIV-1 infection. Microbiol Rev 1995 Mar; 59(1): 63–93PubMed
14.
go back to reference Deng H, Liu R, Ellmeier W, et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature 1996 Jun 20; 381(6584): 661–6PubMedCrossRef Deng H, Liu R, Ellmeier W, et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature 1996 Jun 20; 381(6584): 661–6PubMedCrossRef
15.
go back to reference Doranz BJ, Rucker J, Yi Y, et al. A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 1996 Jun 28; 85(7): 1149–58PubMedCrossRef Doranz BJ, Rucker J, Yi Y, et al. A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 1996 Jun 28; 85(7): 1149–58PubMedCrossRef
16.
go back to reference Feng Y, Broder CC, Kennedy PE, et al. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 1996 May 10; 272(5263): 872–7PubMedCrossRef Feng Y, Broder CC, Kennedy PE, et al. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 1996 May 10; 272(5263): 872–7PubMedCrossRef
17.
go back to reference Deng HK, Unutmaz D, KewalRamani VN, et al. Expression cloning of new receptors used by simian and human immunodeficiency viruses. Nature 1997 Jul 17; 388(6639): 296–300PubMedCrossRef Deng HK, Unutmaz D, KewalRamani VN, et al. Expression cloning of new receptors used by simian and human immunodeficiency viruses. Nature 1997 Jul 17; 388(6639): 296–300PubMedCrossRef
18.
go back to reference Liao F, Alkhatib G, Peden KW, et al. STRL33, a novel chemokine receptor-like protein, functions as a fusion cofactor for both macrophage-tropic and T cell line-tropic HIV-1. J Exp Med 1997 Jun 2; 185(11): 2015–23PubMedCrossRef Liao F, Alkhatib G, Peden KW, et al. STRL33, a novel chemokine receptor-like protein, functions as a fusion cofactor for both macrophage-tropic and T cell line-tropic HIV-1. J Exp Med 1997 Jun 2; 185(11): 2015–23PubMedCrossRef
19.
go back to reference Cocchi F, DeVico AL, Garzino-Demo A, et al. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 1995 Dec 15; 270(5243): 1811–5PubMedCrossRef Cocchi F, DeVico AL, Garzino-Demo A, et al. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 1995 Dec 15; 270(5243): 1811–5PubMedCrossRef
20.
go back to reference Wang QC, Nie QH, Feng ZH. RNA interference: antiviral weapon and beyond. World J Gastroenterol 2003 Aug; 9(8): 1657–61PubMed Wang QC, Nie QH, Feng ZH. RNA interference: antiviral weapon and beyond. World J Gastroenterol 2003 Aug; 9(8): 1657–61PubMed
21.
go back to reference Song E, Zhu P, Lee SK, et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 2005 Jun; 23(6): 709–17PubMedCrossRef Song E, Zhu P, Lee SK, et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 2005 Jun; 23(6): 709–17PubMedCrossRef
22.
go back to reference Lee SK, Dykxhoorn DM, Kumar P, et al. Lentiviral delivery of short hairpin RNAs protects CD4 T cells from multiple clades and primary isolates of HIV. Blood 2005 Aug 1; 106(3): 818–26PubMedCrossRef Lee SK, Dykxhoorn DM, Kumar P, et al. Lentiviral delivery of short hairpin RNAs protects CD4 T cells from multiple clades and primary isolates of HIV. Blood 2005 Aug 1; 106(3): 818–26PubMedCrossRef
23.
go back to reference Chang LJ, Liu X, He J. Lentiviral siRNAs targeting multiple highly conserved RNA sequences of human immunodeficiency virus type 1. Gene Ther 2005 Jul; 12(14): 1133–44PubMedCrossRef Chang LJ, Liu X, He J. Lentiviral siRNAs targeting multiple highly conserved RNA sequences of human immunodeficiency virus type 1. Gene Ther 2005 Jul; 12(14): 1133–44PubMedCrossRef
24.
go back to reference Hu WY, Myers CP, Kilzer JM, et al. Inhibition of retroviral pathogenesis by RNA interference. Curr Biol 2002 Aug 6; 12(15): 1301–11PubMedCrossRef Hu WY, Myers CP, Kilzer JM, et al. Inhibition of retroviral pathogenesis by RNA interference. Curr Biol 2002 Aug 6; 12(15): 1301–11PubMedCrossRef
25.
go back to reference Barnor JS, Miyano-Kurosaki N, Yamaguchi K, et al. Lentiviral-mediated delivery of combined HIV-1 decoy TAR and Vif siRNA as a single RNA molecule that cleaves to inhibit HIV-1 in transduced cells. Nucleosides Nucleotides Nucleic Acids 2005; 24(5–7): 431–4PubMedCrossRef Barnor JS, Miyano-Kurosaki N, Yamaguchi K, et al. Lentiviral-mediated delivery of combined HIV-1 decoy TAR and Vif siRNA as a single RNA molecule that cleaves to inhibit HIV-1 in transduced cells. Nucleosides Nucleotides Nucleic Acids 2005; 24(5–7): 431–4PubMedCrossRef
26.
go back to reference Coburn GA, Cullen BR. Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. J Virol 2002 Sep; 76(18): 9225–31PubMedCrossRef Coburn GA, Cullen BR. Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. J Virol 2002 Sep; 76(18): 9225–31PubMedCrossRef
27.
go back to reference Lee MT, Coburn GA, McClure MO, et al. Inhibition of human immunodeficiency virus type 1 replication in primary macrophages by using Tat- or CCR5-specific small interfering RNAs expressed from a lentivirus vector. J Virol 2003 Nov; 77(22): 11964–72PubMedCrossRef Lee MT, Coburn GA, McClure MO, et al. Inhibition of human immunodeficiency virus type 1 replication in primary macrophages by using Tat- or CCR5-specific small interfering RNAs expressed from a lentivirus vector. J Virol 2003 Nov; 77(22): 11964–72PubMedCrossRef
28.
go back to reference Dave RS, Pomerantz RJ. Antiviral effects of human immunodeficiency virus type 1-specific small interfering RNAs against targets conserved in select neurotropic viral strains. J Virol 2004 Dec; 78(24): 13687–96PubMedCrossRef Dave RS, Pomerantz RJ. Antiviral effects of human immunodeficiency virus type 1-specific small interfering RNAs against targets conserved in select neurotropic viral strains. J Virol 2004 Dec; 78(24): 13687–96PubMedCrossRef
29.
go back to reference Li MJ, Kim J, Li S, et al. Long-term inhibition of HIV-1 infection in primary hematopoietic cells by lentiviral vector delivery of a triple combination of anti-HIV shRNA, anti-CCR5 ribozyme, and a nucleolar-localizing TAR decoy. Mol Ther 2005 Nov; 12(5): 900–9PubMedCrossRef Li MJ, Kim J, Li S, et al. Long-term inhibition of HIV-1 infection in primary hematopoietic cells by lentiviral vector delivery of a triple combination of anti-HIV shRNA, anti-CCR5 ribozyme, and a nucleolar-localizing TAR decoy. Mol Ther 2005 Nov; 12(5): 900–9PubMedCrossRef
30.
go back to reference Park J, Nadeau P, Zucali JR, et al. Inhibition of simian immunodeficiency virus by foamy virus vectors expressing siRNAs. Virology 2005 Dec 20; 343(2): 275–82PubMedCrossRef Park J, Nadeau P, Zucali JR, et al. Inhibition of simian immunodeficiency virus by foamy virus vectors expressing siRNAs. Virology 2005 Dec 20; 343(2): 275–82PubMedCrossRef
31.
go back to reference Park WS, Hayafune M, Miyano-Kurosaki N, et al. Specific HIV-1 env gene silencing by small interfering RNAs in human peripheral blood mononuclear cells. Gene Ther 2003 Nov; 10(24): 2046–50PubMedCrossRef Park WS, Hayafune M, Miyano-Kurosaki N, et al. Specific HIV-1 env gene silencing by small interfering RNAs in human peripheral blood mononuclear cells. Gene Ther 2003 Nov; 10(24): 2046–50PubMedCrossRef
32.
go back to reference Puerta-Fernandez E, Barroso-del Jesus A, Romero-Lopez C, et al. Inhibition of HIV-1 replication by RNA targeted against the LTR region. AIDS 2005 Jun 10; 19(9): 863–70PubMedCrossRef Puerta-Fernandez E, Barroso-del Jesus A, Romero-Lopez C, et al. Inhibition of HIV-1 replication by RNA targeted against the LTR region. AIDS 2005 Jun 10; 19(9): 863–70PubMedCrossRef
33.
go back to reference Novina CD, Murray MF, Dykxhoorn DM, et al. siRNA-directed inhibition of HIV-1 infection. Nat Med 2002 Jul; 8(7): 681–6PubMed Novina CD, Murray MF, Dykxhoorn DM, et al. siRNA-directed inhibition of HIV-1 infection. Nat Med 2002 Jul; 8(7): 681–6PubMed
34.
go back to reference Park WS, Miyano-Kurosaki N, Hayafune M, et al. Prevention of HIV-1 infection in human peripheral blood mononuclear cells by specific RNA interference. Nucleic Acids Res 2002 Nov 15; 30(22): 4830–5PubMedCrossRef Park WS, Miyano-Kurosaki N, Hayafune M, et al. Prevention of HIV-1 infection in human peripheral blood mononuclear cells by specific RNA interference. Nucleic Acids Res 2002 Nov 15; 30(22): 4830–5PubMedCrossRef
35.
go back to reference Kitabwalla M, Ruprecht RM. RNA interference: a new weapon against HIV and beyond. N Engl J Med 2002 Oct 24; 347(17): 1364–7PubMedCrossRef Kitabwalla M, Ruprecht RM. RNA interference: a new weapon against HIV and beyond. N Engl J Med 2002 Oct 24; 347(17): 1364–7PubMedCrossRef
36.
go back to reference Martinez MA, Gutierrez A, Armand-Ugon M, et al. Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication. AIDS 2002 Dec 6; 16(18): 2385–90PubMedCrossRef Martinez MA, Gutierrez A, Armand-Ugon M, et al. Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication. AIDS 2002 Dec 6; 16(18): 2385–90PubMedCrossRef
37.
go back to reference Qin XF, An DS, Chen IS, et al. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci U S A 2003 Jan 7; 100(1): 183–8PubMedCrossRef Qin XF, An DS, Chen IS, et al. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci U S A 2003 Jan 7; 100(1): 183–8PubMedCrossRef
38.
go back to reference Moore JP. Coreceptors: implications for HIV pathogenesis and therapy. Science 1997 Apr 4; 276(5309): 51–2PubMedCrossRef Moore JP. Coreceptors: implications for HIV pathogenesis and therapy. Science 1997 Apr 4; 276(5309): 51–2PubMedCrossRef
39.
go back to reference Nibbs RJ, Kriehuber E, Ponath PD, et al. The beta-chemokine receptor D6 is expressed by lymphatic endothelium and a subset of vascular tumors. Am J Pathol 2001 Mar; 158(3): 867–77PubMedCrossRef Nibbs RJ, Kriehuber E, Ponath PD, et al. The beta-chemokine receptor D6 is expressed by lymphatic endothelium and a subset of vascular tumors. Am J Pathol 2001 Mar; 158(3): 867–77PubMedCrossRef
40.
go back to reference Neil SJ, Aasa-Chapman MM, Clapham PR, et al. The promiscuous CC chemokine receptor D6 is a functional coreceptor for primary isolates of human immunodeficiency virus type 1 (HIV-1) and HIV-2 on astrocytes. J Virol 2005 Aug; 79(15): 9618–24PubMedCrossRef Neil SJ, Aasa-Chapman MM, Clapham PR, et al. The promiscuous CC chemokine receptor D6 is a functional coreceptor for primary isolates of human immunodeficiency virus type 1 (HIV-1) and HIV-2 on astrocytes. J Virol 2005 Aug; 79(15): 9618–24PubMedCrossRef
41.
go back to reference Jacque JM, Triques K, Stevenson M. Modulation of HIV-1 replication by RNA interference. Nature 2002 Jul 25; 418(6896): 435–8PubMedCrossRef Jacque JM, Triques K, Stevenson M. Modulation of HIV-1 replication by RNA interference. Nature 2002 Jul 25; 418(6896): 435–8PubMedCrossRef
42.
go back to reference Capodici J, Kariko K, Weissman D. Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference. J Immunol 2002 Nov 1; 169(9): 5196–201PubMed Capodici J, Kariko K, Weissman D. Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference. J Immunol 2002 Nov 1; 169(9): 5196–201PubMed
43.
go back to reference Nishitsuji H, Ikeda T, Miyoshi H, et al. Expression of small hairpin RNA by lentivirus-based vector confers efficient and stable gene-suppression of HIV-1 on human cells including primary non-dividing cells. Microbes Infect 2004 Jan; 6(1): 76–85PubMedCrossRef Nishitsuji H, Ikeda T, Miyoshi H, et al. Expression of small hairpin RNA by lentivirus-based vector confers efficient and stable gene-suppression of HIV-1 on human cells including primary non-dividing cells. Microbes Infect 2004 Jan; 6(1): 76–85PubMedCrossRef
44.
go back to reference Surabhi RM, Gaynor RB. RNA interference directed against viral and cellular targets inhibits human immunodeficiency virus type 1 replication. J Virol 2002 Dec; 76(24): 12963–73PubMedCrossRef Surabhi RM, Gaynor RB. RNA interference directed against viral and cellular targets inhibits human immunodeficiency virus type 1 replication. J Virol 2002 Dec; 76(24): 12963–73PubMedCrossRef
45.
go back to reference Westerhout EM, ter Brake O, Berkhout B. The virion-associated incoming HIV-1 RNA genome is not targeted by RNA interference. Retrovirology 2006; 3: 57PubMedCrossRef Westerhout EM, ter Brake O, Berkhout B. The virion-associated incoming HIV-1 RNA genome is not targeted by RNA interference. Retrovirology 2006; 3: 57PubMedCrossRef
46.
go back to reference Li CJ. Therapeutic biology: checkpoint pathway activation therapy, HIV Tat, and transkingdom RNA interference. J Cell Physiol 2006 Dec; 209(3): 695–700PubMedCrossRef Li CJ. Therapeutic biology: checkpoint pathway activation therapy, HIV Tat, and transkingdom RNA interference. J Cell Physiol 2006 Dec; 209(3): 695–700PubMedCrossRef
47.
go back to reference Komano J, Miyauchi K, Matsuda Z, et al. Inhibiting the Arp2/3 complex limits infection of both intracellular mature vaccinia virus and primate lentiviruses. Mol Biol Cell 2004 Dec; 15(12): 5197–207PubMedCrossRef Komano J, Miyauchi K, Matsuda Z, et al. Inhibiting the Arp2/3 complex limits infection of both intracellular mature vaccinia virus and primate lentiviruses. Mol Biol Cell 2004 Dec; 15(12): 5197–207PubMedCrossRef
48.
go back to reference Kameoka M, Nukuzuma S, Itaya A, et al. RNA interference directed against Poly(ADP-Ribose) polymerase 1 efficiently suppresses human immunodeficiency virus type 1 replication in human cells. J Virol 2004 Aug; 78(16): 8931–4PubMedCrossRef Kameoka M, Nukuzuma S, Itaya A, et al. RNA interference directed against Poly(ADP-Ribose) polymerase 1 efficiently suppresses human immunodeficiency virus type 1 replication in human cells. J Virol 2004 Aug; 78(16): 8931–4PubMedCrossRef
49.
go back to reference Chiu YL, Cao H, Jacque JM, et al. Inhibition of human immunodeficiency virus type 1 replication by RNA interference directed against human transcription elongation factor P-TEFb (CDK9/CyclinT1). J Virol 2004 Mar; 78(5): 2517–29PubMedCrossRef Chiu YL, Cao H, Jacque JM, et al. Inhibition of human immunodeficiency virus type 1 replication by RNA interference directed against human transcription elongation factor P-TEFb (CDK9/CyclinT1). J Virol 2004 Mar; 78(5): 2517–29PubMedCrossRef
50.
go back to reference Price DH. P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol Cell Biol 2000 Apr; 20(8): 2629–34PubMedCrossRef Price DH. P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol Cell Biol 2000 Apr; 20(8): 2629–34PubMedCrossRef
51.
go back to reference Garrus JE, von Schwedler UK, Pornillos OW, et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 2001 Oct 5; 107(1): 55–65PubMedCrossRef Garrus JE, von Schwedler UK, Pornillos OW, et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 2001 Oct 5; 107(1): 55–65PubMedCrossRef
52.
53.
go back to reference Yu Z, Sanchez-Velar N, Catrina IE, et al. The cellular HIV-1 Rev cofactor hRIP is required for viral replication. Proc Natl Acad Sci U S A 2005 Mar 15; 102(11): 4027–32PubMedCrossRef Yu Z, Sanchez-Velar N, Catrina IE, et al. The cellular HIV-1 Rev cofactor hRIP is required for viral replication. Proc Natl Acad Sci U S A 2005 Mar 15; 102(11): 4027–32PubMedCrossRef
54.
go back to reference Modem S, Badri KR, Holland TC, et al. Sam68 is absolutely required for Rev function and HIV-1 production. Nucleic Acids Res 2005; 33(3): 873–9PubMedCrossRef Modem S, Badri KR, Holland TC, et al. Sam68 is absolutely required for Rev function and HIV-1 production. Nucleic Acids Res 2005; 33(3): 873–9PubMedCrossRef
55.
go back to reference Liu S, Asparuhova M, Brondani V, et al. Inhibition of HIV-1 multiplication by antisense U7 snRNAs and siRNAs targeting cyclophilin A. Nucleic Acids Res 2004; 32(12): 3752–9PubMedCrossRef Liu S, Asparuhova M, Brondani V, et al. Inhibition of HIV-1 multiplication by antisense U7 snRNAs and siRNAs targeting cyclophilin A. Nucleic Acids Res 2004; 32(12): 3752–9PubMedCrossRef
56.
go back to reference Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 2003 May; 4(5): 346–58PubMedCrossRef Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 2003 May; 4(5): 346–58PubMedCrossRef
57.
go back to reference Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science 2002 Apr 19; 296(5567): 550–3PubMedCrossRef Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science 2002 Apr 19; 296(5567): 550–3PubMedCrossRef
58.
go back to reference Paddison PJ, Caudy AA, Bernstein E, et al. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 2002 Apr 15; 16(8): 948–58PubMedCrossRef Paddison PJ, Caudy AA, Bernstein E, et al. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 2002 Apr 15; 16(8): 948–58PubMedCrossRef
59.
go back to reference Morrissey DV, Lockridge JA, Shaw L, et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 2005 Aug; 23(8): 1002–7PubMedCrossRef Morrissey DV, Lockridge JA, Shaw L, et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 2005 Aug; 23(8): 1002–7PubMedCrossRef
60.
go back to reference Soutschek J, Akinc A, Bramlage B, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004 Nov 11; 432(7014): 173–8PubMedCrossRef Soutschek J, Akinc A, Bramlage B, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004 Nov 11; 432(7014): 173–8PubMedCrossRef
61.
go back to reference Zimmermann TS, Lee AC, Akinc A, et al. RNAi-mediated gene silencing in non-human primates. Nature 2006 May 4; 441(7089): 111–4PubMedCrossRef Zimmermann TS, Lee AC, Akinc A, et al. RNAi-mediated gene silencing in non-human primates. Nature 2006 May 4; 441(7089): 111–4PubMedCrossRef
62.
go back to reference Kim DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nat Rev Genet 2007 Mar; 8(3): 173–84PubMedCrossRef Kim DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nat Rev Genet 2007 Mar; 8(3): 173–84PubMedCrossRef
63.
go back to reference McNamara II JO, Andrechek ER, Wang Y, et al. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol 2006 Aug; 24(8): 1005–15PubMedCrossRef McNamara II JO, Andrechek ER, Wang Y, et al. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol 2006 Aug; 24(8): 1005–15PubMedCrossRef
64.
go back to reference Hu-Lieskovan S, Heidel JD, Bartlett DW, et al. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing's sarcoma. Cancer Res 2005 Oct 1; 65(19): 8984–92PubMedCrossRef Hu-Lieskovan S, Heidel JD, Bartlett DW, et al. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing's sarcoma. Cancer Res 2005 Oct 1; 65(19): 8984–92PubMedCrossRef
65.
go back to reference Zhou J, Swiderski P, Li H, et al. Selection, characterization and application of new RNA HIV gp 120 aptamers for facile delivery of Dicer substrate siRNAs into HIV infected cells. Nucleic Acids Res 2009; 37(9): 3094–109PubMedCrossRef Zhou J, Swiderski P, Li H, et al. Selection, characterization and application of new RNA HIV gp 120 aptamers for facile delivery of Dicer substrate siRNAs into HIV infected cells. Nucleic Acids Res 2009; 37(9): 3094–109PubMedCrossRef
66.
go back to reference Anderson J, Banerjea A, Akkina R. Bispecific short hairpin siRNA constructs targeted to CD4, CXCR4, and CCR5 confer HIV-1 resistance. Oligonucleotides 2003; 13(5): 303–12PubMedCrossRef Anderson J, Banerjea A, Akkina R. Bispecific short hairpin siRNA constructs targeted to CD4, CXCR4, and CCR5 confer HIV-1 resistance. Oligonucleotides 2003; 13(5): 303–12PubMedCrossRef
67.
go back to reference Anderson J, Akkina R. HIV-1 resistance conferred by siRNA cosuppression of CXCR4 and CCR5 coreceptors by a bispecific lentiviral vector. AIDS Res Ther 2005 Jan 13; 2(1): 1PubMedCrossRef Anderson J, Akkina R. HIV-1 resistance conferred by siRNA cosuppression of CXCR4 and CCR5 coreceptors by a bispecific lentiviral vector. AIDS Res Ther 2005 Jan 13; 2(1): 1PubMedCrossRef
68.
go back to reference Anderson J, Akkina R. CXCR4 and CCR5 shRNA transgenic CD34+ cell derived macrophages are functionally normal and resist HIV-1 infection. Retrovirology 2005; 2: 53PubMedCrossRef Anderson J, Akkina R. CXCR4 and CCR5 shRNA transgenic CD34+ cell derived macrophages are functionally normal and resist HIV-1 infection. Retrovirology 2005; 2: 53PubMedCrossRef
69.
go back to reference Kumar P, Ban HS, Kim SS, et al. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 2008 Aug 22; 134(4): 577–86PubMedCrossRef Kumar P, Ban HS, Kim SS, et al. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 2008 Aug 22; 134(4): 577–86PubMedCrossRef
70.
go back to reference Gitlin L, Karelsky S, Andino R. Short interfering RNA confers intracellular antiviral immunity in human cells. Nature 2002 Jul 25; 418(6896): 430–4PubMedCrossRef Gitlin L, Karelsky S, Andino R. Short interfering RNA confers intracellular antiviral immunity in human cells. Nature 2002 Jul 25; 418(6896): 430–4PubMedCrossRef
71.
go back to reference Michienzi A, Castanotto D, Lee N, et al. RNA-mediated inhibition of HIV in a gene therapy setting. Ann N Y Acad Sci 2003 Dec; 1002: 63–71PubMedCrossRef Michienzi A, Castanotto D, Lee N, et al. RNA-mediated inhibition of HIV in a gene therapy setting. Ann N Y Acad Sci 2003 Dec; 1002: 63–71PubMedCrossRef
72.
go back to reference Singh SK. RNA interference and its therapeutic potential against HIV infection. Expert Opin Biol Ther 2008 Apr; 8(4): 449–61PubMedCrossRef Singh SK. RNA interference and its therapeutic potential against HIV infection. Expert Opin Biol Ther 2008 Apr; 8(4): 449–61PubMedCrossRef
73.
go back to reference Bennasser Y, Le SY, Benkirane M, et al. Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing. Immunity 2005 May; 22(5): 607–19PubMedCrossRef Bennasser Y, Le SY, Benkirane M, et al. Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing. Immunity 2005 May; 22(5): 607–19PubMedCrossRef
74.
75.
go back to reference Nekhai S, Jerebtsova M. Therapies for HIV with RNAi. Curr Opin Mol Ther 2006 Feb; 8(1): 52–61PubMed Nekhai S, Jerebtsova M. Therapies for HIV with RNAi. Curr Opin Mol Ther 2006 Feb; 8(1): 52–61PubMed
76.
go back to reference Haasnoot J, de Vries W, Geutjes EJ, et al. The Ebola virus VP35 protein is a suppressor of RNA silencing. PLoS Pathog 2007 Jun; 3(6): e86PubMedCrossRef Haasnoot J, de Vries W, Geutjes EJ, et al. The Ebola virus VP35 protein is a suppressor of RNA silencing. PLoS Pathog 2007 Jun; 3(6): e86PubMedCrossRef
77.
go back to reference Li WX, Li H, Lu R, et al. Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing. Proc Natl Acad Sci U S A 2004 Feb 3; 101(5): 1350–5PubMedCrossRef Li WX, Li H, Lu R, et al. Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing. Proc Natl Acad Sci U S A 2004 Feb 3; 101(5): 1350–5PubMedCrossRef
78.
go back to reference Xu N, Segerman B, Zhou X, et al. Adenovirus virus-associated RNAII-derived small RNAs are efficiently incorporated into the RNA-induced silencing complex and associate with polyribosomes. J Virol 2007 Oct; 81(19): 10540–9PubMedCrossRef Xu N, Segerman B, Zhou X, et al. Adenovirus virus-associated RNAII-derived small RNAs are efficiently incorporated into the RNA-induced silencing complex and associate with polyribosomes. J Virol 2007 Oct; 81(19): 10540–9PubMedCrossRef
79.
go back to reference Boden D, Pusch O, Lee F, et al. Human immunodeficiency virus type 1 escape from RNA interference. J Virol 2003 Nov; 77(21): 11531–5PubMedCrossRef Boden D, Pusch O, Lee F, et al. Human immunodeficiency virus type 1 escape from RNA interference. J Virol 2003 Nov; 77(21): 11531–5PubMedCrossRef
80.
go back to reference Das AT, Brummelkamp TR, Westerhout EM, et al. Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J Virol 2004 Mar; 78(5): 2601–5PubMedCrossRef Das AT, Brummelkamp TR, Westerhout EM, et al. Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J Virol 2004 Mar; 78(5): 2601–5PubMedCrossRef
81.
go back to reference Jackson AL, Burchard J, Schelter J, et al. Widespread siRNA ‘off-target’ transcript silencing mediated by seed region sequence complementarity. RNA 2006 Jul; 12(7): 1179–87PubMedCrossRef Jackson AL, Burchard J, Schelter J, et al. Widespread siRNA ‘off-target’ transcript silencing mediated by seed region sequence complementarity. RNA 2006 Jul; 12(7): 1179–87PubMedCrossRef
82.
go back to reference Birmingham A, Anderson EM, Reynolds A, et al. 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods 2006 Mar; 3(3): 199–204PubMedCrossRef Birmingham A, Anderson EM, Reynolds A, et al. 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods 2006 Mar; 3(3): 199–204PubMedCrossRef
83.
go back to reference Manche L, Green SR, Schmedt C, et al. Interactions between double-stranded RNA regulators and the protein kinase DAI. Mol Cell Biol 1992 Nov; 12(11): 5238–48PubMed Manche L, Green SR, Schmedt C, et al. Interactions between double-stranded RNA regulators and the protein kinase DAI. Mol Cell Biol 1992 Nov; 12(11): 5238–48PubMed
84.
go back to reference Singh SK, Girschick HJ. Toll-like receptors in Borrelia burgdorferi-induced inflammation. Clin Microbiol Infect 2006 Aug; 12(8): 705–17PubMed Singh SK, Girschick HJ. Toll-like receptors in Borrelia burgdorferi-induced inflammation. Clin Microbiol Infect 2006 Aug; 12(8): 705–17PubMed
85.
go back to reference Hornung V, Guenthner-Biller M, Bourquin C, et al. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 2005 Mar; 11(3): 263–70PubMedCrossRef Hornung V, Guenthner-Biller M, Bourquin C, et al. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 2005 Mar; 11(3): 263–70PubMedCrossRef
86.
go back to reference Kim DH, Longo M, Han Y, et al. Interferon induction by siRNAs and ssRNAs synthesized by phage polymerase. Nat Biotechnol 2004 Mar; 22(3): 321–5PubMedCrossRef Kim DH, Longo M, Han Y, et al. Interferon induction by siRNAs and ssRNAs synthesized by phage polymerase. Nat Biotechnol 2004 Mar; 22(3): 321–5PubMedCrossRef
87.
go back to reference Marques JT, Devosse T, Wang D, et al. A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. Nat Biotechnol 2006 May; 24(5): 559–65PubMedCrossRef Marques JT, Devosse T, Wang D, et al. A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. Nat Biotechnol 2006 May; 24(5): 559–65PubMedCrossRef
88.
go back to reference Robbins MA, Li M, Leung I, et al. Stable expression of shRNAs in human CD34+ progenitor cells can avoid induction of interferon responses to siRNAs in vitro. Nat Biotechnol 2006 May; 24(5): 566–71PubMedCrossRef Robbins MA, Li M, Leung I, et al. Stable expression of shRNAs in human CD34+ progenitor cells can avoid induction of interferon responses to siRNAs in vitro. Nat Biotechnol 2006 May; 24(5): 566–71PubMedCrossRef
89.
go back to reference Grimm D, Streetz KL, Jopling CL, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006 May 25; 441(7092): 537–41PubMedCrossRef Grimm D, Streetz KL, Jopling CL, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006 May 25; 441(7092): 537–41PubMedCrossRef
90.
go back to reference An DS, Qin FX, Auyeung VC, et al. Optimization and functional effects of stable short hairpin RNA expression in primary human lymphocytes via lentiviral vectors. Mol Ther 2006 Oct; 14(4): 494–504PubMedCrossRef An DS, Qin FX, Auyeung VC, et al. Optimization and functional effects of stable short hairpin RNA expression in primary human lymphocytes via lentiviral vectors. Mol Ther 2006 Oct; 14(4): 494–504PubMedCrossRef
Metadata
Title
Progress towards Therapeutic Application of RNA Interference for HIV Infection
Authors
Sunit K. Singh
Dr Rajesh K. Gaur
Publication date
01-10-2009
Publisher
Springer International Publishing
Published in
BioDrugs / Issue 5/2009
Print ISSN: 1173-8804
Electronic ISSN: 1179-190X
DOI
https://doi.org/10.2165/11317120-000000000-00000

Other articles of this Issue 5/2009

BioDrugs 5/2009 Go to the issue