Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2015

Open Access 01-12-2015 | Research

Progesterone, estradiol, arachidonic acid, oxytocin, forskolin and cAMP influence on aquaporin 1 and 5 expression in porcine uterine explants during the mid-luteal phase of the estrous cycle and luteolysis: an in vitro study

Authors: Agnieszka Skowronska, Patrycja Młotkowska, Bartosz Wojciechowicz, Stanisław Okrasa, Soren Nielsen, Mariusz T Skowronski

Published in: Reproductive Biology and Endocrinology | Issue 1/2015

Login to get access

Abstract

Background

The cell membrane water channel protein, aquaporins (AQPs), regulate cellular water transport and cell volume and play a key role in water homeostasis. Recently, AQPs are considered as important players in the field of reproduction. In previous studies, we have established the presence of AQP1 and 5 in porcine uterus. Their expression at protein level altered in distinct tissues of the female reproductive system depending on the phase of the estrous cycle. However, the regulation of aquaporin genes and proteins expression has not been examined in porcine uterine tissue. Therefore, we have designed an in vitro experiment to explain whether steroid hormones, progesterone (P4) and estradiol (E2), and other factors: oxytocine (OT), arachidonic acid (AA; substrate for prostaglandins synthesis) as well as forskolin (FSK; adenylate cyclase activator) and cAMP (second messenger, cyclic adenosine monophosphate) may impact AQPs expression.

Methods

Uterine tissues were collected on Days 10–12 and 14–16 of the estrous cycle representing the mid-luteal phase and luteolysis. Real-time PCR and Western blot analysis were performed to examine the expression of porcine AQP1 and AQP5. Their expression in the uterine explants was also evaluated by immunohistochemistry.

Results

The results indicated that uterine expression of AQP1 and AQP5 potentially remains under control of steroid hormones and AA-derived compounds (e.g. prostaglandins). P4, E2, AA, FSK and cAMP cause translocation of AQP5 from apical to the basolateral plasma membrane of the epithelial cells, which might affect the transcellular water movement (through epithelial cells) between uterine lumen and blood vessels. The AC/cAMP pathway is involved in the intracellular signals transduction connected with the regulation of AQPs expression in the pig uterus.

Conclusions

This study documented specific patterns of AQP1 and AQP5 expression in response to P4, E2, AA, FSK and cAMP, thereby providing new indirect evidence of their role in maintaining the local fluid balance within the uterus during the mid-luteal phase of the estrous cycle and luteolysis in pigs.
Literature
1.
go back to reference Zhang D, Tan YJ, Qu F, Sheng JZ, Huang HF. Functions of water channels in male and female reproductive systems. Mol Asp Medic. 2012;33:676–90.CrossRef Zhang D, Tan YJ, Qu F, Sheng JZ, Huang HF. Functions of water channels in male and female reproductive systems. Mol Asp Medic. 2012;33:676–90.CrossRef
2.
go back to reference Hua Y, Jiang W, Zhang W, Shen Q, Chen M, Zhu X. Expression and significance of aquaporins during pregnancy. Front Biosc. 2013;18:1373–83.CrossRef Hua Y, Jiang W, Zhang W, Shen Q, Chen M, Zhu X. Expression and significance of aquaporins during pregnancy. Front Biosc. 2013;18:1373–83.CrossRef
3.
go back to reference Meng QX, Gao HJ, Xu CM, Dong MY, Sheng X, Sheng J-Z, et al. Reduced expression and function of aquaporin-3 in mouse metaphase-II oocytes induced by controlled ovarian hyperstimulation were associated with subsequent low fertilization rate. Cell Physiol Biochem. 2008;21:123–8.CrossRefPubMed Meng QX, Gao HJ, Xu CM, Dong MY, Sheng X, Sheng J-Z, et al. Reduced expression and function of aquaporin-3 in mouse metaphase-II oocytes induced by controlled ovarian hyperstimulation were associated with subsequent low fertilization rate. Cell Physiol Biochem. 2008;21:123–8.CrossRefPubMed
4.
go back to reference McConnell NA, Yunus RS, Gross SA, Bost KL, Clemens MG, Hughes Jr FM. Water permeability of an ovarian antral follicle is predominantly transcellular and mediated by aquaporins. Endocrinology. 2002;143:2905–12.CrossRefPubMed McConnell NA, Yunus RS, Gross SA, Bost KL, Clemens MG, Hughes Jr FM. Water permeability of an ovarian antral follicle is predominantly transcellular and mediated by aquaporins. Endocrinology. 2002;143:2905–12.CrossRefPubMed
5.
go back to reference Richard C, Gao JU, Brown N, Reese J. Aquaporin water channel genes are differentially expressed and regulated by ovarian steroids during the periimplantation period in the mouse. Endocrinology. 2003;144:1533–41.CrossRefPubMed Richard C, Gao JU, Brown N, Reese J. Aquaporin water channel genes are differentially expressed and regulated by ovarian steroids during the periimplantation period in the mouse. Endocrinology. 2003;144:1533–41.CrossRefPubMed
6.
go back to reference Lindsay LA, Murphy CR. Redistribution of aquaporins in uterine epithelial cells at the time of implantation in the rat. Acta Histochem. 2004;106:299–307.CrossRefPubMed Lindsay LA, Murphy CR. Redistribution of aquaporins in uterine epithelial cells at the time of implantation in the rat. Acta Histochem. 2004;106:299–307.CrossRefPubMed
7.
go back to reference Skowronski MT. Distribution and quantitative changes in amounts of aquaporin 1, 5 and 9 in the pig uterus during the estrous cycle and early pregnancy. Reprod Biol Endocrinol. 2010;8:109.CrossRefPubMedCentralPubMed Skowronski MT. Distribution and quantitative changes in amounts of aquaporin 1, 5 and 9 in the pig uterus during the estrous cycle and early pregnancy. Reprod Biol Endocrinol. 2010;8:109.CrossRefPubMedCentralPubMed
8.
go back to reference Damiano AE, Zotta E, Goldstein J, Reisin I, Ibarra C. Water channel proteins AQP3 and AQP9 are present in syncytiotrophoblast of human term placenta. Placenta. 2001;22:776–81.CrossRefPubMed Damiano AE, Zotta E, Goldstein J, Reisin I, Ibarra C. Water channel proteins AQP3 and AQP9 are present in syncytiotrophoblast of human term placenta. Placenta. 2001;22:776–81.CrossRefPubMed
9.
go back to reference Wang S, Amidi F, Beall M, Gui L, Ross MG. Aquaporin 3 expression in human fetal membranes and its up-regulation by cyclic adenosine monophosphate in amnion epithelial cell culture. J Soc Gynecol Investig. 2006;13:181–5.CrossRefPubMed Wang S, Amidi F, Beall M, Gui L, Ross MG. Aquaporin 3 expression in human fetal membranes and its up-regulation by cyclic adenosine monophosphate in amnion epithelial cell culture. J Soc Gynecol Investig. 2006;13:181–5.CrossRefPubMed
10.
go back to reference Zhu XQ, Jiang SS, Zhu XJ, Zou SW, Wang Y, Hu YC. Expression of aquaporin 1 and aquaporin 3 in fetal membranes and placenta in human term pregnancies with oligohydramnios. Placenta. 2009;30:670–6.CrossRefPubMed Zhu XQ, Jiang SS, Zhu XJ, Zou SW, Wang Y, Hu YC. Expression of aquaporin 1 and aquaporin 3 in fetal membranes and placenta in human term pregnancies with oligohydramnios. Placenta. 2009;30:670–6.CrossRefPubMed
11.
go back to reference Zou LB, Zhang RJ, Tan YJ, Ding GI, Shi S, Zhang D, et al. Identification of estrogen response element in the aquaporin −2 gene that mediates estrogen-induced cell migration and invasion in human endometrial carcinoma. J Clin Endocrinol Metab. 2011;96:E1399–408.CrossRefPubMed Zou LB, Zhang RJ, Tan YJ, Ding GI, Shi S, Zhang D, et al. Identification of estrogen response element in the aquaporin −2 gene that mediates estrogen-induced cell migration and invasion in human endometrial carcinoma. J Clin Endocrinol Metab. 2011;96:E1399–408.CrossRefPubMed
12.
go back to reference Agre P, King L, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, et al. Aquaporin water channels – from atomic structure to clinical medicine. J Physiol. 2002;542:3–16.CrossRefPubMedCentralPubMed Agre P, King L, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, et al. Aquaporin water channels – from atomic structure to clinical medicine. J Physiol. 2002;542:3–16.CrossRefPubMedCentralPubMed
13.
go back to reference Nielsen S, King LS, Christensen BM, Agre P. Aquaporins in complex tissue. II. Subcellular distribution in respiratory and glandular tissues of rat. Am J Physiol. 1997;273:C1549–61.PubMed Nielsen S, King LS, Christensen BM, Agre P. Aquaporins in complex tissue. II. Subcellular distribution in respiratory and glandular tissues of rat. Am J Physiol. 1997;273:C1549–61.PubMed
14.
go back to reference Verkman AS. More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci. 2005;118:3225–32.CrossRefPubMed Verkman AS. More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci. 2005;118:3225–32.CrossRefPubMed
15.
go back to reference Li X, Yu H, Koide SS. The water channel gene in human uterus. Biochem Mol Biol Int. 1994;32:371–7.PubMed Li X, Yu H, Koide SS. The water channel gene in human uterus. Biochem Mol Biol Int. 1994;32:371–7.PubMed
16.
go back to reference Li XJ, Yu HM, Koide SS. Regulation of water channel gene (AQP-CHIP) expression by estradiol and anordiol in rat uterus. Yao Xue Xue Bao. 1997;32:586–92.PubMed Li XJ, Yu HM, Koide SS. Regulation of water channel gene (AQP-CHIP) expression by estradiol and anordiol in rat uterus. Yao Xue Xue Bao. 1997;32:586–92.PubMed
17.
go back to reference Jablonski EM, McConnell NA, Hughes Jr FM, Huet-Hudson YM. Estrogen regulation of aquaporins in the mouse uterus: potential roles in uterine water movement. Biol Reprod. 2003;69:1481–7.CrossRefPubMed Jablonski EM, McConnell NA, Hughes Jr FM, Huet-Hudson YM. Estrogen regulation of aquaporins in the mouse uterus: potential roles in uterine water movement. Biol Reprod. 2003;69:1481–7.CrossRefPubMed
18.
go back to reference Lindsay LA, Murphy CR. Redistribution of aquaporins 1 and 5 in the rat uterus is dependent on progesterone: a study with light and electron microscopy. Reproduction. 2006;131:369–78.CrossRefPubMed Lindsay LA, Murphy CR. Redistribution of aquaporins 1 and 5 in the rat uterus is dependent on progesterone: a study with light and electron microscopy. Reproduction. 2006;131:369–78.CrossRefPubMed
19.
go back to reference Aralla M, Borromeo V, Groppetti D, Secchi C, Cremonesi F, Arrighi S. A collaboration of aquaporins handles water transport in relation to the estrous cycle in the bitch uterus. Theriogenology. 2009;72:310–21.CrossRefPubMed Aralla M, Borromeo V, Groppetti D, Secchi C, Cremonesi F, Arrighi S. A collaboration of aquaporins handles water transport in relation to the estrous cycle in the bitch uterus. Theriogenology. 2009;72:310–21.CrossRefPubMed
20.
go back to reference Klein C, Troedsson MHT, Rutllant J. Expression of aquaporin water channels in equine endometrium is differentially regulated during the oestrous cycle and early pregnancy. Reprod Dom Anim. 2013;48:529–37.CrossRef Klein C, Troedsson MHT, Rutllant J. Expression of aquaporin water channels in equine endometrium is differentially regulated during the oestrous cycle and early pregnancy. Reprod Dom Anim. 2013;48:529–37.CrossRef
21.
go back to reference Wang S, Chen J, Au KT, Ross MG. Expression of aquaporin 8 and its up-regulation by cyclic adenosine monophosphate in human WISH cells. Am J Obstet Gynecol. 2003;188:997–1001.CrossRefPubMed Wang S, Chen J, Au KT, Ross MG. Expression of aquaporin 8 and its up-regulation by cyclic adenosine monophosphate in human WISH cells. Am J Obstet Gynecol. 2003;188:997–1001.CrossRefPubMed
22.
go back to reference Wang S, Amidi F, Yin S, Beall M, Ross MG. Cyclic adenosine monophosphate regulation of aquaporin gene expression in human amnion epithelia. Reprod Sci. 2007;14:234–40.CrossRef Wang S, Amidi F, Yin S, Beall M, Ross MG. Cyclic adenosine monophosphate regulation of aquaporin gene expression in human amnion epithelia. Reprod Sci. 2007;14:234–40.CrossRef
23.
go back to reference Yang F, Kawedia JD, Menon AG. Cyclic AMP regulates aquaporin 5 expression at both transcriptional and post-transcriptional levels through a protein kinase A pathway. J Biol Chem. 2003;278:32173–80.CrossRefPubMed Yang F, Kawedia JD, Menon AG. Cyclic AMP regulates aquaporin 5 expression at both transcriptional and post-transcriptional levels through a protein kinase A pathway. J Biol Chem. 2003;278:32173–80.CrossRefPubMed
24.
go back to reference Belkacemi L, Beall MH, Magee TR, Pourtemour M, Ross MG. AQP1 gene expression is up-regulated by arginine vasopressin and cyclic AMP agonist in trophoblast cells. Life Sci. 2008;82:1272–80.CrossRefPubMed Belkacemi L, Beall MH, Magee TR, Pourtemour M, Ross MG. AQP1 gene expression is up-regulated by arginine vasopressin and cyclic AMP agonist in trophoblast cells. Life Sci. 2008;82:1272–80.CrossRefPubMed
25.
go back to reference Hildenbrand A, Lalitkumar L, Nielsen S, Gemzell-Danielsson K, Stavreus-Evers A. Expression of aquaporin 2 in human endometrium. Reprod Endocrinol. 2006;86:1452–8. Hildenbrand A, Lalitkumar L, Nielsen S, Gemzell-Danielsson K, Stavreus-Evers A. Expression of aquaporin 2 in human endometrium. Reprod Endocrinol. 2006;86:1452–8.
26.
go back to reference Feng C, Sun CC, Wang TT, He RH, Sheng JZ, Huang HF. Decreased expression of endometrial vessel AQP1 and endometrial epithelium AQP2 related to an ovulatory uterine bleeding in premenopausal women. Menopause. 2011;15:648–54.CrossRef Feng C, Sun CC, Wang TT, He RH, Sheng JZ, Huang HF. Decreased expression of endometrial vessel AQP1 and endometrial epithelium AQP2 related to an ovulatory uterine bleeding in premenopausal women. Menopause. 2011;15:648–54.CrossRef
27.
go back to reference Skowronski MT, Kwon TH, Nielsen S. Immunolocalization of aquaporin 1, 5, and 9 in the female pig reproductive system. J Histochem Cytochem. 2009;57:61–7.CrossRefPubMedCentralPubMed Skowronski MT, Kwon TH, Nielsen S. Immunolocalization of aquaporin 1, 5, and 9 in the female pig reproductive system. J Histochem Cytochem. 2009;57:61–7.CrossRefPubMedCentralPubMed
28.
go back to reference Akins EL, Morrisete MC. Gross ovarian changes during the estrous cycle of swine. Am J Vet Res. 1968;29:1953–7.PubMed Akins EL, Morrisete MC. Gross ovarian changes during the estrous cycle of swine. Am J Vet Res. 1968;29:1953–7.PubMed
29.
go back to reference Skowronski MT, Lebeck J, Rojek A, Praetorius J, Fuchtbauer EM, Frokiaer J, et al. AQP7 is localized in capillaries of adipose tissue, cardiac and striated muscle: implications in glycerol metabolism. Am J Physiol Renal Physiol. 2007;292:F956–65.CrossRefPubMed Skowronski MT, Lebeck J, Rojek A, Praetorius J, Fuchtbauer EM, Frokiaer J, et al. AQP7 is localized in capillaries of adipose tissue, cardiac and striated muscle: implications in glycerol metabolism. Am J Physiol Renal Physiol. 2007;292:F956–65.CrossRefPubMed
30.
go back to reference Terris J, Ecelbarger CA, Nielsen S, Knepper MA. Long-term regulation of four renal aquaporins in rats. Am J Physiol. 1996;271:F414–22.PubMed Terris J, Ecelbarger CA, Nielsen S, Knepper MA. Long-term regulation of four renal aquaporins in rats. Am J Physiol. 1996;271:F414–22.PubMed
31.
go back to reference Kobayashi M, Takahashi E, Miyagawa S, Watanabe H, Iguchi T. Chromatin immunoprecipitation-mediated target identification proved aquaporin 5 is regulated directly by estrogen in the uterus. Genes Cells. 2006;11:1133–43.CrossRefPubMed Kobayashi M, Takahashi E, Miyagawa S, Watanabe H, Iguchi T. Chromatin immunoprecipitation-mediated target identification proved aquaporin 5 is regulated directly by estrogen in the uterus. Genes Cells. 2006;11:1133–43.CrossRefPubMed
32.
go back to reference Ing NH. Steroid hormones regulate gene expression posttranscriptionally by altering the stabilities of messenger RNAs. Biol Reprod. 2005;72:1290–6.CrossRefPubMed Ing NH. Steroid hormones regulate gene expression posttranscriptionally by altering the stabilities of messenger RNAs. Biol Reprod. 2005;72:1290–6.CrossRefPubMed
33.
go back to reference Krzymowski T, Stefanczyk-Krzymowska S. The role of endometrium in endocrine regulation of the animal oestrous cycle. Reprod Dom Anim. 2008;43:80–91. Krzymowski T, Stefanczyk-Krzymowska S. The role of endometrium in endocrine regulation of the animal oestrous cycle. Reprod Dom Anim. 2008;43:80–91.
34.
go back to reference Finlay TH, Katz J, Kirsh L, Levitz M, Nathoo SA, Seiler S. Estrogen-stimulated uptake of plasminogen by the mouse uterus. Endocrinology. 1983;112:856–61.CrossRefPubMed Finlay TH, Katz J, Kirsh L, Levitz M, Nathoo SA, Seiler S. Estrogen-stimulated uptake of plasminogen by the mouse uterus. Endocrinology. 1983;112:856–61.CrossRefPubMed
35.
go back to reference Norman SJ, Poyser N. Effects of inhibitors of arachidonic acid turnover on the production of prostaglandins by the guinea-pig uterus. J Reprod Fertil. 2000;118:181–6.CrossRefPubMed Norman SJ, Poyser N. Effects of inhibitors of arachidonic acid turnover on the production of prostaglandins by the guinea-pig uterus. J Reprod Fertil. 2000;118:181–6.CrossRefPubMed
36.
go back to reference Hertelendy F, Zakar T. Prostaglandins and the myometrium and cervix. Prostaglandin Leukotriens Essential Fatty Acids. 2004;70:207–22.CrossRef Hertelendy F, Zakar T. Prostaglandins and the myometrium and cervix. Prostaglandin Leukotriens Essential Fatty Acids. 2004;70:207–22.CrossRef
37.
go back to reference Franczak A, Kotwica G, Kurowicka B, Oponowicz A, Wacławek-Potocka J, Petroff BK. Expression of enzymes of cyclooxygenase pathway and secretion of prostaglandin E2 and F2α by porcine myometrium during luteolysis and early pregnancy. Theriogenology. 2006;66:1049–56.CrossRefPubMed Franczak A, Kotwica G, Kurowicka B, Oponowicz A, Wacławek-Potocka J, Petroff BK. Expression of enzymes of cyclooxygenase pathway and secretion of prostaglandin E2 and F2α by porcine myometrium during luteolysis and early pregnancy. Theriogenology. 2006;66:1049–56.CrossRefPubMed
39.
go back to reference Blitek A, Waclawik A, Kaczmarek MM, Stadejek T, Pejsak Z, Ziecik AJ. Expression of cyclooxygenase-1 and −2 in the porcine endometrium during the oestrous cycle and early pregnancy. Reprod Dom Anim. 2006;41:251–7.CrossRef Blitek A, Waclawik A, Kaczmarek MM, Stadejek T, Pejsak Z, Ziecik AJ. Expression of cyclooxygenase-1 and −2 in the porcine endometrium during the oestrous cycle and early pregnancy. Reprod Dom Anim. 2006;41:251–7.CrossRef
40.
go back to reference Blitek A, Ziecik A. Prostaglandins F2α and E2 secretion by porcine epithelial and stromal endometrial cells on different days of the oestrus cycle. Reprod Dom Anim. 2004;39:340–6.CrossRef Blitek A, Ziecik A. Prostaglandins F and E2 secretion by porcine epithelial and stromal endometrial cells on different days of the oestrus cycle. Reprod Dom Anim. 2004;39:340–6.CrossRef
41.
go back to reference Gleeson AR, Thorburn GD, Cox RI. Prostaglandin F concentrations in the utero-ovarian venous plasma of the sow during the late luteal phase of the oestrous cycle. Prostaglandins. 1974;5:521–9.CrossRefPubMed Gleeson AR, Thorburn GD, Cox RI. Prostaglandin F concentrations in the utero-ovarian venous plasma of the sow during the late luteal phase of the oestrous cycle. Prostaglandins. 1974;5:521–9.CrossRefPubMed
42.
go back to reference Zelenina M, Christensen BM, Palmer J, Nairn AC, Nielsen S, Aperia A. Prostaglandin E2 interaction with AVP: effects on AQP2 phosphorylation and distribution. Am J Physiol Renal Physiol. 2000;278:F388–94.PubMed Zelenina M, Christensen BM, Palmer J, Nairn AC, Nielsen S, Aperia A. Prostaglandin E2 interaction with AVP: effects on AQP2 phosphorylation and distribution. Am J Physiol Renal Physiol. 2000;278:F388–94.PubMed
43.
go back to reference Uzumcu M, Braileanu GT, Carnahan KG, Ludwig TE, Mirando MA. Oxytocin –stimulated phosphoinositide hydrolysis and prostaglandin F secretion by luminal epithelial, glandular epithelial and stromal cells from pig endometrium. I. Response of cyclic pig on day 16 postestrus. Biol Reprod. 1998;59:1259–65.CrossRefPubMed Uzumcu M, Braileanu GT, Carnahan KG, Ludwig TE, Mirando MA. Oxytocin –stimulated phosphoinositide hydrolysis and prostaglandin F secretion by luminal epithelial, glandular epithelial and stromal cells from pig endometrium. I. Response of cyclic pig on day 16 postestrus. Biol Reprod. 1998;59:1259–65.CrossRefPubMed
44.
go back to reference Trout WE, Smith GW, Gentry PC, Galvin JM, Keisler DH. Oxytocin secretion by the endometrium of the pig during maternal recognition of pregnancy. Biol Reprod. 1995;52 Suppl 1:189. abstract. Trout WE, Smith GW, Gentry PC, Galvin JM, Keisler DH. Oxytocin secretion by the endometrium of the pig during maternal recognition of pregnancy. Biol Reprod. 1995;52 Suppl 1:189. abstract.
45.
go back to reference Whiteaker SS, Mirando MA, Becker WC, Hostetler CE. Detection of functional oxytocin receptors on endometrium of pigs. Biol Reprod. 1994;51:92–8.CrossRefPubMed Whiteaker SS, Mirando MA, Becker WC, Hostetler CE. Detection of functional oxytocin receptors on endometrium of pigs. Biol Reprod. 1994;51:92–8.CrossRefPubMed
46.
go back to reference Okano A, Okuda K, Takahashi M, Schams D. Oxytocin receptors in porcine endometrium during the estrous cycle and early pregnancy. Animal Reprod Sci. 1996;41:61–70.CrossRef Okano A, Okuda K, Takahashi M, Schams D. Oxytocin receptors in porcine endometrium during the estrous cycle and early pregnancy. Animal Reprod Sci. 1996;41:61–70.CrossRef
47.
go back to reference Gilbert CL, Jenkins, Wathes DC. Pulsatile release of oxytocin into the circulation of the ewe during oestrous, mating and the early luteal phase. J Reprod Fertil. 1991;91:337–46.CrossRefPubMed Gilbert CL, Jenkins, Wathes DC. Pulsatile release of oxytocin into the circulation of the ewe during oestrous, mating and the early luteal phase. J Reprod Fertil. 1991;91:337–46.CrossRefPubMed
48.
go back to reference Ducza E, Seres AB, Hajagos-Toth J, Falkay G, Gaspar R. Oxytocin regulates the expression of aquaporin 5 in the late-pregnant rat uterus. Mol Reprod Dev. 2014;81:524–30.CrossRefPubMed Ducza E, Seres AB, Hajagos-Toth J, Falkay G, Gaspar R. Oxytocin regulates the expression of aquaporin 5 in the late-pregnant rat uterus. Mol Reprod Dev. 2014;81:524–30.CrossRefPubMed
49.
go back to reference Wang S, Kallichanda N, Song W, Ramierez B, Ross MG. Expression of aquaporin 8 in human placenta and chorioamniotic membranes: evidence of molecular mechanism for intramembranous amniotic fluid resorbtion. Am J Obstet Gynecol. 2001;185:1226–31.CrossRefPubMed Wang S, Kallichanda N, Song W, Ramierez B, Ross MG. Expression of aquaporin 8 in human placenta and chorioamniotic membranes: evidence of molecular mechanism for intramembranous amniotic fluid resorbtion. Am J Obstet Gynecol. 2001;185:1226–31.CrossRefPubMed
50.
go back to reference Garcia F, Kierbel A, Larocca MC, Gradilone SA, Splinter P, LaRusso NF, et al. The water channel aquaporin-8 is mainly intracellular in rat hepatocytes and its plasma membrane insertion is stimulated by cyclic AMP. J Biol Chem. 2001;276:12147–52.CrossRefPubMed Garcia F, Kierbel A, Larocca MC, Gradilone SA, Splinter P, LaRusso NF, et al. The water channel aquaporin-8 is mainly intracellular in rat hepatocytes and its plasma membrane insertion is stimulated by cyclic AMP. J Biol Chem. 2001;276:12147–52.CrossRefPubMed
Metadata
Title
Progesterone, estradiol, arachidonic acid, oxytocin, forskolin and cAMP influence on aquaporin 1 and 5 expression in porcine uterine explants during the mid-luteal phase of the estrous cycle and luteolysis: an in vitro study
Authors
Agnieszka Skowronska
Patrycja Młotkowska
Bartosz Wojciechowicz
Stanisław Okrasa
Soren Nielsen
Mariusz T Skowronski
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2015
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-015-0004-5

Other articles of this Issue 1/2015

Reproductive Biology and Endocrinology 1/2015 Go to the issue