Skip to main content
Top
Published in: BMC Pediatrics 1/2022

Open Access 01-12-2022 | Probiotics | Research article

The difference of gut microbiome in different biliary diseases in infant before operation and the changes after operation

Authors: Xinhe Sun, Yaoyao Cai, Wenwen Dai, Weiwei Jiang, Weibing Tang

Published in: BMC Pediatrics | Issue 1/2022

Login to get access

Abstract

Background

Evidence supports an association between cholestatic liver disease and changes in microbiome composition. Nevertheless, the identification of this special type of biliary atresia from non-biliary atresia cholestasis is still a major clinical difficulty. The purpose of this study is to compare the differences in the composition of gut microbiome between infants with biliary atresia and infant with non-biliary atrestic cholestasis, to find new ways to identify and diagnose these two diseases early, to understand the influence of the presence or absence of bile on the composition of the gut microbiome in infants with cholestasis.

Methods

Using 16S rDNA gene sequencing technology to analyze the intestinal flora of the participants.

Results

In terms of diversity, there is an obvious structural separation in the intestinal microbiota of the BA group and the CD group, and this structural separation also exists in the comparison between the two groups before surgery. Taxonomic analysis demonstrated that the two groups showed an increase in Proteobacteria and Firmicutes before surgery, and the relative abundance of potential pathogens such as Shigella, Streptococcus, Klebsiella, etc. increased, potential probiotics such as Bifidobacteria and Lactobacillus decreased, but the relative abundance of each genus was different between groups. It was found that Enterococcus, Ralstonia, Nitriliruptoraceae, etc. were differentially enriched in the BA group, the CD group are mainly enriched in Veillonella, Clostridium_sensu_stricto_1 and Lactobacillus. Functional analysis of the groups showed that the BA group mainly focused on the processes of energy release processes, and the CD group mainly focused on the biosynthesis of amino-acids to consume energy.

Conclusions

The composition of intestinal flora is different between biliary atresia and non-biliary atretic cholestasis. Enterococcus, Ralstonia, etc. may become biomarkers for the identification and diagnosis of both.
Literature
1.
go back to reference Fawaz R, Baumann U, Ekong U, et al. Guideline for the evaluation of cholestatic jaundice in infants: joint recommendations of the north American society for pediatric gastroenterology, hepatology, and nutrition and the European society for pediatric gastroenterology, hepatology, and nutrition[J]. J Pediatr Gastroenterol Nutr. 2017;64(1):154–68.CrossRef Fawaz R, Baumann U, Ekong U, et al. Guideline for the evaluation of cholestatic jaundice in infants: joint recommendations of the north American society for pediatric gastroenterology, hepatology, and nutrition and the European society for pediatric gastroenterology, hepatology, and nutrition[J]. J Pediatr Gastroenterol Nutr. 2017;64(1):154–68.CrossRef
2.
go back to reference Fischler B, Lamireau T. Cholestasis in the newborn and infant[J]. Clin Res Hepatol Gastroenterol. 2014;38(3):263–7.CrossRef Fischler B, Lamireau T. Cholestasis in the newborn and infant[J]. Clin Res Hepatol Gastroenterol. 2014;38(3):263–7.CrossRef
3.
go back to reference Gotze T, Blessing H, Grillhosl C, et al. Neonatal cholestasis - differential diagnoses, current diagnostic procedures, and treatment[J]. Front Pediatr. 2015;3:43.PubMedPubMedCentral Gotze T, Blessing H, Grillhosl C, et al. Neonatal cholestasis - differential diagnoses, current diagnostic procedures, and treatment[J]. Front Pediatr. 2015;3:43.PubMedPubMedCentral
4.
go back to reference Feldman AG, Sokol RJ. Recent developments in diagnostics and treatment of neonatal cholestasis[J]. Semin Pediatr Surg. 2020;29(4):150945.CrossRef Feldman AG, Sokol RJ. Recent developments in diagnostics and treatment of neonatal cholestasis[J]. Semin Pediatr Surg. 2020;29(4):150945.CrossRef
5.
go back to reference Safwan M, Ramachandran P, Vij M, et al. Impact of ductal plate malformation on survival with native liver in children with biliary atresia[J]. Pediatr Surg Int. 2015;31(9):837–43.CrossRef Safwan M, Ramachandran P, Vij M, et al. Impact of ductal plate malformation on survival with native liver in children with biliary atresia[J]. Pediatr Surg Int. 2015;31(9):837–43.CrossRef
6.
go back to reference Asai A, Miethke A, Bezerra JA. Pathogenesis of biliary atresia: defining biology to understand clinical phenotypes[J]. Nat Rev Gastroenterol Hepatol. 2015;12(6):342–52.CrossRef Asai A, Miethke A, Bezerra JA. Pathogenesis of biliary atresia: defining biology to understand clinical phenotypes[J]. Nat Rev Gastroenterol Hepatol. 2015;12(6):342–52.CrossRef
7.
go back to reference Feldman AG, Mack CL. Biliary Atresia: Clinical Lessons Learned[J]. J Pediatr Gastroenterol Nutr. 2015;61(2):167–75.CrossRef Feldman AG, Mack CL. Biliary Atresia: Clinical Lessons Learned[J]. J Pediatr Gastroenterol Nutr. 2015;61(2):167–75.CrossRef
8.
go back to reference Stanislawski MA, Dabelea D, Lange LA, et al. Gut microbiota phenotypes of obesity[J]. NPJ Biofilms Microbiomes. 2019;5(1):18.CrossRef Stanislawski MA, Dabelea D, Lange LA, et al. Gut microbiota phenotypes of obesity[J]. NPJ Biofilms Microbiomes. 2019;5(1):18.CrossRef
9.
go back to reference Locantore P, Del Gatto V, Gelli S, et al. The interplay between immune system and microbiota in osteoporosis[J]. Mediators Inflamm. 2020;2020:3686749.CrossRef Locantore P, Del Gatto V, Gelli S, et al. The interplay between immune system and microbiota in osteoporosis[J]. Mediators Inflamm. 2020;2020:3686749.CrossRef
10.
go back to reference Fassatoui M, Lopez-Siles M, Diaz-Rizzolo D A, et al. Gut microbiota imbalances in Tunisian participants with type 1 and type 2 diabetes mellitus[J]. Biosci Rep. 2019;39(6):BSR20182348. Fassatoui M, Lopez-Siles M, Diaz-Rizzolo D A, et al. Gut microbiota imbalances in Tunisian participants with type 1 and type 2 diabetes mellitus[J]. Biosci Rep. 2019;39(6):BSR20182348.
11.
go back to reference Zhang M, Zhao D, Zhou G, et al. Dietary pattern, gut microbiota, and Alzheimer’s disease[J]. J Agric Food Chem. 2020;68(46):12800–9.CrossRef Zhang M, Zhao D, Zhou G, et al. Dietary pattern, gut microbiota, and Alzheimer’s disease[J]. J Agric Food Chem. 2020;68(46):12800–9.CrossRef
12.
go back to reference Zhao Y, Wang C, Goel A. Role of gut microbiota in epigenetic regulation of colorectal cancer[J]. Biochim Biophys Acta Rev Cancer. 2021;1875(1):188490.CrossRef Zhao Y, Wang C, Goel A. Role of gut microbiota in epigenetic regulation of colorectal cancer[J]. Biochim Biophys Acta Rev Cancer. 2021;1875(1):188490.CrossRef
13.
go back to reference Li G, Lin J, Zhang C, et al. Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease[J]. Gut Microbes. 2021;13(1):1968257.CrossRef Li G, Lin J, Zhang C, et al. Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease[J]. Gut Microbes. 2021;13(1):1968257.CrossRef
14.
go back to reference Juanola O, Hassan M, Kumar P, et al. Intestinal microbiota drives cholestasis-induced specific hepatic gene expression patterns[J]. Gut Microbes. 2021;13(1):1–20.CrossRef Juanola O, Hassan M, Kumar P, et al. Intestinal microbiota drives cholestasis-induced specific hepatic gene expression patterns[J]. Gut Microbes. 2021;13(1):1–20.CrossRef
15.
go back to reference Isaacs-Ten A, Echeandia M, Moreno-Gonzalez M, et al. Intestinal Microbiome-Macrophage Crosstalk Contributes to Cholestatic Liver Disease by Promoting Intestinal Permeability in Mice[J]. Hepatology. 2020;72(6):2090–108.CrossRef Isaacs-Ten A, Echeandia M, Moreno-Gonzalez M, et al. Intestinal Microbiome-Macrophage Crosstalk Contributes to Cholestatic Liver Disease by Promoting Intestinal Permeability in Mice[J]. Hepatology. 2020;72(6):2090–108.CrossRef
16.
go back to reference Wang J, Qian T, Jiang J, et al. Gut microbial profile in biliary atresia: a case-control study[J]. J Gastroenterol Hepatol. 2020;35(2):334–42.CrossRef Wang J, Qian T, Jiang J, et al. Gut microbial profile in biliary atresia: a case-control study[J]. J Gastroenterol Hepatol. 2020;35(2):334–42.CrossRef
17.
go back to reference Logue JB, Stedmon CA, Kellerman AM, et al. Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter[J]. ISME J. 2016;10(3):533–45.CrossRef Logue JB, Stedmon CA, Kellerman AM, et al. Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter[J]. ISME J. 2016;10(3):533–45.CrossRef
18.
go back to reference Takai K, Horikoshi K. Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes[J]. Appl Environ Microbiol. 2000;66(11):5066–72.CrossRef Takai K, Horikoshi K. Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes[J]. Appl Environ Microbiol. 2000;66(11):5066–72.CrossRef
19.
go back to reference Walters W, Hyde ER, Berg-Lyons D, et al. Improved Bacterial 16S rRNA Gene (V4 and V4–5) and Fungal Internal Transcribed Spacer Marker Gene Primers for Microbial Community Surveys[J]. mSystems. 2016;1(1):e00009-15.CrossRef Walters W, Hyde ER, Berg-Lyons D, et al. Improved Bacterial 16S rRNA Gene (V4 and V4–5) and Fungal Internal Transcribed Spacer Marker Gene Primers for Microbial Community Surveys[J]. mSystems. 2016;1(1):e00009-15.CrossRef
20.
go back to reference Callahan BJ, Mcmurdie PJ, Rosen MJ, et al. DADA2: High-resolution sample inference from Illumina amplicon data[J]. Nat Methods. 2016;13(7):581–3.CrossRef Callahan BJ, Mcmurdie PJ, Rosen MJ, et al. DADA2: High-resolution sample inference from Illumina amplicon data[J]. Nat Methods. 2016;13(7):581–3.CrossRef
21.
go back to reference Bolyen E, Rideout JR, Dillon MR, et al. Author Correction: reproducible, interactive, scalable and extensible microbiome data science using QIIME 2[J]. Nat Biotechnol. 2019;37(9):1091.CrossRef Bolyen E, Rideout JR, Dillon MR, et al. Author Correction: reproducible, interactive, scalable and extensible microbiome data science using QIIME 2[J]. Nat Biotechnol. 2019;37(9):1091.CrossRef
22.
go back to reference Langille MG, Zaneveld J, Caporaso JG, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nat Biotechnol. 2013;31(9):814–21.CrossRef Langille MG, Zaneveld J, Caporaso JG, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nat Biotechnol. 2013;31(9):814–21.CrossRef
23.
go back to reference Parks DH, Tyson GW, Hugenholtz P, et al. STAMP: statistical analysis of taxonomic and functional profiles[J]. Bioinformatics. 2014;30(21):3123–4.CrossRef Parks DH, Tyson GW, Hugenholtz P, et al. STAMP: statistical analysis of taxonomic and functional profiles[J]. Bioinformatics. 2014;30(21):3123–4.CrossRef
24.
go back to reference Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis[J]. Nat Rev Gastroenterol Hepatol. 2018;15(2):111–28.CrossRef Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis[J]. Nat Rev Gastroenterol Hepatol. 2018;15(2):111–28.CrossRef
25.
go back to reference Zhuang L, Chen H, Zhang S, et al. Intestinal Microbiota in Early Life and Its Implications on Childhood Health[J]. Genomics Proteomics Bioinformatics. 2019;17(1):13–25.CrossRef Zhuang L, Chen H, Zhang S, et al. Intestinal Microbiota in Early Life and Its Implications on Childhood Health[J]. Genomics Proteomics Bioinformatics. 2019;17(1):13–25.CrossRef
26.
go back to reference Rizzatti G, Lopetuso LR, Gibiino G, et al. Proteobacteria: a common factor in human diseases[J]. Biomed Res Int. 2017;2017:9351507.CrossRef Rizzatti G, Lopetuso LR, Gibiino G, et al. Proteobacteria: a common factor in human diseases[J]. Biomed Res Int. 2017;2017:9351507.CrossRef
27.
go back to reference Shin NR, Whon TW, Bae JW. Proteobacteria: microbial signature of dysbiosis in gut microbiota[J]. Trends Biotechnol. 2015;33(9):496–503.CrossRef Shin NR, Whon TW, Bae JW. Proteobacteria: microbial signature of dysbiosis in gut microbiota[J]. Trends Biotechnol. 2015;33(9):496–503.CrossRef
28.
go back to reference Guo C, Li Y, Wang P, et al. Alterations of Gut Microbiota in Cholestatic Infants and Their Correlation With Hepatic Function[J]. Front Microbiol. 2018;9:2682.CrossRef Guo C, Li Y, Wang P, et al. Alterations of Gut Microbiota in Cholestatic Infants and Their Correlation With Hepatic Function[J]. Front Microbiol. 2018;9:2682.CrossRef
29.
go back to reference Owusu M, Acheampong G, Annan A, et al. Ralstonia mannitolilytica sepsis: a case report[J]. J Med Case Rep. 2019;13(1):318.CrossRef Owusu M, Acheampong G, Annan A, et al. Ralstonia mannitolilytica sepsis: a case report[J]. J Med Case Rep. 2019;13(1):318.CrossRef
30.
go back to reference Prior AR, Gunaratnam C, Humphreys H. Ralstonia species - do these bacteria matter in cystic fibrosis?[J]. Paediatr Respir Rev. 2017;23:78–83.PubMed Prior AR, Gunaratnam C, Humphreys H. Ralstonia species - do these bacteria matter in cystic fibrosis?[J]. Paediatr Respir Rev. 2017;23:78–83.PubMed
31.
go back to reference Ji YC, Sun Q, Fu CY, et al. Exogenous autoinducer-2 rescues intestinal dysbiosis and intestinal inflammation in a neonatal mouse necrotizing enterocolitis model[J]. Front Cell Infect Microbiol. 2021;11:694395.CrossRef Ji YC, Sun Q, Fu CY, et al. Exogenous autoinducer-2 rescues intestinal dysbiosis and intestinal inflammation in a neonatal mouse necrotizing enterocolitis model[J]. Front Cell Infect Microbiol. 2021;11:694395.CrossRef
32.
go back to reference Liu Y, Li W, Yang H, et al. Leveraging 16S rRNA Microbiome Sequencing Data to Identify Bacterial Signatures for Irritable Bowel Syndrome[J]. Front Cell Infect Microbiol. 2021;11:645951.CrossRef Liu Y, Li W, Yang H, et al. Leveraging 16S rRNA Microbiome Sequencing Data to Identify Bacterial Signatures for Irritable Bowel Syndrome[J]. Front Cell Infect Microbiol. 2021;11:645951.CrossRef
33.
go back to reference Yu D, Yu X, Ye A, et al. Profiling of gut microbial dysbiosis in adults with myeloid leukemia[J]. FEBS Open Bio. 2021;11(7):2050–9.CrossRef Yu D, Yu X, Ye A, et al. Profiling of gut microbial dysbiosis in adults with myeloid leukemia[J]. FEBS Open Bio. 2021;11(7):2050–9.CrossRef
34.
go back to reference Foley MH, O’f’laherty S, Allen G, et al. Lactobacillus bile salt hydrolase substrate specificity governs bacterial fitness and host colonization[J]. Proc Natl Acad Sci U S A. 2021;118(6):e2017709118.CrossRef Foley MH, O’f’laherty S, Allen G, et al. Lactobacillus bile salt hydrolase substrate specificity governs bacterial fitness and host colonization[J]. Proc Natl Acad Sci U S A. 2021;118(6):e2017709118.CrossRef
35.
go back to reference Zou M, Cai Y, Hu P, et al. Analysis of the Composition and Functions of the Microbiome in Diabetic Foot Osteomyelitis Based on 16S rRNA and Metagenome Sequencing Technology[J]. Diabetes. 2020;69(11):2423–39.CrossRef Zou M, Cai Y, Hu P, et al. Analysis of the Composition and Functions of the Microbiome in Diabetic Foot Osteomyelitis Based on 16S rRNA and Metagenome Sequencing Technology[J]. Diabetes. 2020;69(11):2423–39.CrossRef
Metadata
Title
The difference of gut microbiome in different biliary diseases in infant before operation and the changes after operation
Authors
Xinhe Sun
Yaoyao Cai
Wenwen Dai
Weiwei Jiang
Weibing Tang
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2022
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-022-03570-1

Other articles of this Issue 1/2022

BMC Pediatrics 1/2022 Go to the issue