Skip to main content
Top
Published in: Pediatric Radiology 2/2011

01-02-2011 | Review

Principles and basic concepts of molecular imaging

Authors: Nicolas Grenier, Peter Brader

Published in: Pediatric Radiology | Issue 2/2011

Login to get access

Abstract

Advanced knowledge in molecular biology and new technological developments in imaging modalities and contrast agents calls for molecular imaging (MI) to play a major role in the near future in many human diseases (Weissleder and Mahmood Radiology 219:316–333, 2001). Imaging systems are providing higher signal-to-noise ratio and higher spatial and/or temporal resolution. New specific contrast agents offer the opportunity to drive new challenges for obtaining functional and biological information on tissue characteristics and tissue processes. All this information could be relevant for diagnosis, prognosis and treatment follow-up and to drive local therapies, enhancing local drug/gene delivery. The recent explosion of all these developments is a radical change of perspective in our imaging community because they could have a tremendous impact on our clinical practice and on teaching programs and they call for a more prominent multidisciplinary approach in this field of research.
Literature
1.
go back to reference Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316–333PubMed Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316–333PubMed
2.
go back to reference Judenhofer MS, Wehrl HF, Newport DF et al (2008) Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 14:459–465CrossRefPubMed Judenhofer MS, Wehrl HF, Newport DF et al (2008) Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 14:459–465CrossRefPubMed
3.
go back to reference Hu S, Wang LV (2010) Photoacoustic imaging and characterization of the microvasculature. J Biomed Opt 15:011101CrossRefPubMed Hu S, Wang LV (2010) Photoacoustic imaging and characterization of the microvasculature. J Biomed Opt 15:011101CrossRefPubMed
4.
go back to reference Davis SC, Pogue BW, Springett R et al (2008) Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue. Rev Sci Instrum 79:064302CrossRefPubMed Davis SC, Pogue BW, Springett R et al (2008) Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue. Rev Sci Instrum 79:064302CrossRefPubMed
5.
go back to reference Cao L, Breithaupt M, Peter J (2010) Geometrical co-calibration of a tomographic optical system with CT for intrinsically co-registered imaging. Phys Med Biol 55:1591–1606CrossRefPubMed Cao L, Breithaupt M, Peter J (2010) Geometrical co-calibration of a tomographic optical system with CT for intrinsically co-registered imaging. Phys Med Biol 55:1591–1606CrossRefPubMed
6.
go back to reference Dobrucki LW, Sinusas AJ (2010) PET and SPECT in cardiovascular molecular imaging. Nat Rev Cardiol 7:38–47CrossRefPubMed Dobrucki LW, Sinusas AJ (2010) PET and SPECT in cardiovascular molecular imaging. Nat Rev Cardiol 7:38–47CrossRefPubMed
7.
go back to reference Choy G, Choyke P, Libutti SK (2003) Current advances in molecular imaging: noninvasive in vivo bioluminescent and fluorescent optical imaging in cancer research. Mol Imaging 2:303–312CrossRefPubMed Choy G, Choyke P, Libutti SK (2003) Current advances in molecular imaging: noninvasive in vivo bioluminescent and fluorescent optical imaging in cancer research. Mol Imaging 2:303–312CrossRefPubMed
8.
go back to reference van de Ven S, Wiethoff A, Nielsen T et al (2010) A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients. Mol Imaging Biol 12:343–348CrossRefPubMed van de Ven S, Wiethoff A, Nielsen T et al (2010) A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients. Mol Imaging Biol 12:343–348CrossRefPubMed
9.
go back to reference Dothager RS, Flentie K, Moss B et al (2009) Advances in bioluminescence imaging of live animal models. Curr Opin Biotechnol 20:45–53CrossRefPubMed Dothager RS, Flentie K, Moss B et al (2009) Advances in bioluminescence imaging of live animal models. Curr Opin Biotechnol 20:45–53CrossRefPubMed
10.
go back to reference Frangioni JV (2009) The problem is background, not signal. Mol Imaging 8:303–304PubMed Frangioni JV (2009) The problem is background, not signal. Mol Imaging 8:303–304PubMed
11.
go back to reference Gessner R, Dayton PA (2010) Advances in molecular imaging with ultrasound. Mol Imaging 9:117–127PubMed Gessner R, Dayton PA (2010) Advances in molecular imaging with ultrasound. Mol Imaging 9:117–127PubMed
12.
go back to reference Vande Velde G, Baekelandt V, Dresselaers T et al (2009) Magnetic resonance imaging and spectroscopy methods for molecular imaging. Q J Nucl Med Mol Imaging 53:565–585PubMed Vande Velde G, Baekelandt V, Dresselaers T et al (2009) Magnetic resonance imaging and spectroscopy methods for molecular imaging. Q J Nucl Med Mol Imaging 53:565–585PubMed
13.
go back to reference Blasberg RG, Tjuvajev JG (2003) Molecular-genetic imaging: current and future perspectives. J Clin Invest 111:1620–1629PubMed Blasberg RG, Tjuvajev JG (2003) Molecular-genetic imaging: current and future perspectives. J Clin Invest 111:1620–1629PubMed
14.
go back to reference Weissleder R, Ntziachristos V (2003) Shedding light onto live molecular targets. Nat Med 9:123–128CrossRefPubMed Weissleder R, Ntziachristos V (2003) Shedding light onto live molecular targets. Nat Med 9:123–128CrossRefPubMed
15.
go back to reference Penuelas I, Mazzolini G, Boan JF et al (2005) Positron emission tomography imaging of adenoviral-mediated transgene expression in liver cancer patients. Gastroenterology 128:1787–1795CrossRefPubMed Penuelas I, Mazzolini G, Boan JF et al (2005) Positron emission tomography imaging of adenoviral-mediated transgene expression in liver cancer patients. Gastroenterology 128:1787–1795CrossRefPubMed
16.
go back to reference Canet-Soulas E, Letourneur D (2007) Biomarkers of atherosclerosis and the potential of MRI for the diagnosis of vulnerable plaque. Magma 20:129–142CrossRefPubMed Canet-Soulas E, Letourneur D (2007) Biomarkers of atherosclerosis and the potential of MRI for the diagnosis of vulnerable plaque. Magma 20:129–142CrossRefPubMed
17.
go back to reference Woollard KJ, Geissmann F (2010) Monocytes in atherosclerosis: subsets and functions. Nat Rev Cardiol 7:77–86CrossRefPubMed Woollard KJ, Geissmann F (2010) Monocytes in atherosclerosis: subsets and functions. Nat Rev Cardiol 7:77–86CrossRefPubMed
18.
go back to reference Nahrendorf M, Sosnovik DE, French BA et al (2009) Multimodality cardiovascular molecular imaging, Part II. Circ Cardiovasc Imaging 2:56–70CrossRefPubMed Nahrendorf M, Sosnovik DE, French BA et al (2009) Multimodality cardiovascular molecular imaging, Part II. Circ Cardiovasc Imaging 2:56–70CrossRefPubMed
19.
go back to reference Sinusas AJ, Bengel F, Nahrendorf M et al (2008) Multimodality cardiovascular molecular imaging, part I. Circ Cardiovasc Imaging 1:244–256CrossRefPubMed Sinusas AJ, Bengel F, Nahrendorf M et al (2008) Multimodality cardiovascular molecular imaging, part I. Circ Cardiovasc Imaging 1:244–256CrossRefPubMed
20.
22.
go back to reference Corot C, Robert P, Idee JM et al (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471–1504CrossRefPubMed Corot C, Robert P, Idee JM et al (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471–1504CrossRefPubMed
23.
go back to reference McAteer MA, Akhtar AM, von Zur MC et al (2010) An approach to molecular imaging of atherosclerosis, thrombosis, and vascular inflammation using microparticles of iron oxide. Atherosclerosis 209:18–27CrossRefPubMed McAteer MA, Akhtar AM, von Zur MC et al (2010) An approach to molecular imaging of atherosclerosis, thrombosis, and vascular inflammation using microparticles of iron oxide. Atherosclerosis 209:18–27CrossRefPubMed
24.
go back to reference Modo M, Hoehn M, Bulte JW (2005) Cellular MR imaging. Mol Imaging 4:143–164PubMed Modo M, Hoehn M, Bulte JW (2005) Cellular MR imaging. Mol Imaging 4:143–164PubMed
25.
go back to reference Hauger O, Delalande C, Deminiere C et al (2000) Nephrotoxic nephritis and obstructive nephropathy: evaluation with MR imaging enhanced with ultrasmall superparamagnetic iron oxide-preliminary findings in a rat model. Radiology 217:819–826PubMed Hauger O, Delalande C, Deminiere C et al (2000) Nephrotoxic nephritis and obstructive nephropathy: evaluation with MR imaging enhanced with ultrasmall superparamagnetic iron oxide-preliminary findings in a rat model. Radiology 217:819–826PubMed
26.
go back to reference Hauger O, Grenier N, Deminere C et al (2007) USPIO-enhanced MR imaging of macrophage infiltration in native and transplanted kidneys: initial results in humans. Eur Radiol 17:2898–2907CrossRefPubMed Hauger O, Grenier N, Deminere C et al (2007) USPIO-enhanced MR imaging of macrophage infiltration in native and transplanted kidneys: initial results in humans. Eur Radiol 17:2898–2907CrossRefPubMed
27.
go back to reference Dousset V, Brochet B, Deloire MS et al (2006) MR imaging of relapsing multiple sclerosis patients using ultra-small-particle iron oxide and compared with gadolinium. AJNR 27:1000–1005PubMed Dousset V, Brochet B, Deloire MS et al (2006) MR imaging of relapsing multiple sclerosis patients using ultra-small-particle iron oxide and compared with gadolinium. AJNR 27:1000–1005PubMed
28.
go back to reference Saleh A, Schroeter M, Ringelstein A et al (2007) Iron oxide particle-enhanced MRI suggests variability of brain inflammation at early stages after ischemic stroke. Stroke 38:2733–2737CrossRefPubMed Saleh A, Schroeter M, Ringelstein A et al (2007) Iron oxide particle-enhanced MRI suggests variability of brain inflammation at early stages after ischemic stroke. Stroke 38:2733–2737CrossRefPubMed
29.
go back to reference Sigovan M, Boussel L, Sulaiman A et al (2009) Rapid-clearance iron nanoparticles for inflammation imaging of atherosclerotic plaque: initial experience in animal model. Radiology 252:401–409CrossRefPubMed Sigovan M, Boussel L, Sulaiman A et al (2009) Rapid-clearance iron nanoparticles for inflammation imaging of atherosclerotic plaque: initial experience in animal model. Radiology 252:401–409CrossRefPubMed
30.
go back to reference Reiner CS, Lutz AM, Tschirch F et al (2009) USPIO-enhanced magnetic resonance imaging of the knee in asymptomatic volunteers. Eur Radiol 19:1715–1722CrossRefPubMed Reiner CS, Lutz AM, Tschirch F et al (2009) USPIO-enhanced magnetic resonance imaging of the knee in asymptomatic volunteers. Eur Radiol 19:1715–1722CrossRefPubMed
31.
go back to reference Bierry G, Jehl F, Boehm N et al (2008) Macrophage activity in infected areas of an experimental vertebral osteomyelitis model: USPIO-enhanced MR imaging–feasibility study. Radiology 248:114–123CrossRefPubMed Bierry G, Jehl F, Boehm N et al (2008) Macrophage activity in infected areas of an experimental vertebral osteomyelitis model: USPIO-enhanced MR imaging–feasibility study. Radiology 248:114–123CrossRefPubMed
32.
33.
go back to reference de Vries IJ, Lesterhuis WJ, Barentsz JO et al (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23:1407–1413CrossRefPubMed de Vries IJ, Lesterhuis WJ, Barentsz JO et al (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23:1407–1413CrossRefPubMed
34.
go back to reference Bessaad A, Sigovan M, Alsaid H et al (2010) M1-activated macrophages migration, a marker of aortic atheroma progression: a preclinical MRI study in mice. Invest Radiol 45:262–269CrossRefPubMed Bessaad A, Sigovan M, Alsaid H et al (2010) M1-activated macrophages migration, a marker of aortic atheroma progression: a preclinical MRI study in mice. Invest Radiol 45:262–269CrossRefPubMed
35.
go back to reference Oude Engberink RD, van der Pol SM, Dopp EA et al (2007) Comparison of SPIO and USPIO for in vitro labeling of human monocytes: MR detection and cell function. Radiology 243:467–474CrossRefPubMed Oude Engberink RD, van der Pol SM, Dopp EA et al (2007) Comparison of SPIO and USPIO for in vitro labeling of human monocytes: MR detection and cell function. Radiology 243:467–474CrossRefPubMed
36.
go back to reference Tai JH, Foster P, Rosales A et al (2006) Imaging islets labeled with magnetic nanoparticles at 1.5 Tesla. Diabetes 55:2931–2938CrossRefPubMed Tai JH, Foster P, Rosales A et al (2006) Imaging islets labeled with magnetic nanoparticles at 1.5 Tesla. Diabetes 55:2931–2938CrossRefPubMed
37.
go back to reference Liu ZY, Wang Y, Liang CH et al (2009) In vitro labeling of mesenchymal stem cells with superparamagnetic iron oxide by means of microbubble-enhanced US exposure: initial experience. Radiology 253:153–159CrossRefPubMed Liu ZY, Wang Y, Liang CH et al (2009) In vitro labeling of mesenchymal stem cells with superparamagnetic iron oxide by means of microbubble-enhanced US exposure: initial experience. Radiology 253:153–159CrossRefPubMed
38.
go back to reference Bernsen MR, Moelker AD, Wielopolski PA et al (2010) Labelling of mammalian cells for visualisation by MRI. Eur Radiol 20:255–274CrossRefPubMed Bernsen MR, Moelker AD, Wielopolski PA et al (2010) Labelling of mammalian cells for visualisation by MRI. Eur Radiol 20:255–274CrossRefPubMed
39.
go back to reference Alsaid H, De Souza G, Bourdillon MC et al (2009) Biomimetic MRI contrast agent for imaging of inflammation in atherosclerotic plaque of ApoE-/- mice: a pilot study. Invest Radiol 44:151–158CrossRefPubMed Alsaid H, De Souza G, Bourdillon MC et al (2009) Biomimetic MRI contrast agent for imaging of inflammation in atherosclerotic plaque of ApoE-/- mice: a pilot study. Invest Radiol 44:151–158CrossRefPubMed
40.
go back to reference Chaubet F, Bertholon I, Serfaty JM et al (2007) A new macromolecular paramagnetic MR contrast agent binds to activated human platelets. Contrast Media Mol Imaging 2:178–188CrossRefPubMed Chaubet F, Bertholon I, Serfaty JM et al (2007) A new macromolecular paramagnetic MR contrast agent binds to activated human platelets. Contrast Media Mol Imaging 2:178–188CrossRefPubMed
41.
go back to reference Nahrendorf M, Jaffer FA, Kelly KA et al (2006) Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation 114:1504–1511CrossRefPubMed Nahrendorf M, Jaffer FA, Kelly KA et al (2006) Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation 114:1504–1511CrossRefPubMed
42.
go back to reference Choi KS, Kim SH, Cai QY et al (2007) Inflammation-specific T1 imaging using anti-intercellular adhesion molecule 1 antibody-conjugated gadolinium diethylenetriaminepentaacetic acid. Mol Imaging 6:75–84PubMed Choi KS, Kim SH, Cai QY et al (2007) Inflammation-specific T1 imaging using anti-intercellular adhesion molecule 1 antibody-conjugated gadolinium diethylenetriaminepentaacetic acid. Mol Imaging 6:75–84PubMed
43.
go back to reference Daldrup-Link HE, Meier R, Rudelius M et al (2005) In vivo tracking of genetically engineered, anti-HER2/neu directed natural killer cells to HER2/neu positive mammary tumors with magnetic resonance imaging. Eur Radiol 15:4–13CrossRefPubMed Daldrup-Link HE, Meier R, Rudelius M et al (2005) In vivo tracking of genetically engineered, anti-HER2/neu directed natural killer cells to HER2/neu positive mammary tumors with magnetic resonance imaging. Eur Radiol 15:4–13CrossRefPubMed
44.
go back to reference Towner RA, Smith N, Doblas S et al (2008) In vivo detection of c-Met expression in a rat C6 glioma model. J Cell Mol Med 12:174–186CrossRefPubMed Towner RA, Smith N, Doblas S et al (2008) In vivo detection of c-Met expression in a rat C6 glioma model. J Cell Mol Med 12:174–186CrossRefPubMed
45.
go back to reference Pirollo KF, Dagata J, Wang P et al (2006) A tumor-targeted nanodelivery system to improve early MRI detection of cancer. Mol Imaging 5:41–52PubMed Pirollo KF, Dagata J, Wang P et al (2006) A tumor-targeted nanodelivery system to improve early MRI detection of cancer. Mol Imaging 5:41–52PubMed
46.
go back to reference Heroux J, Gharib AM, Danthi NS et al (2010) High-affinity alphavbeta3 integrin targeted optical probe as a new imaging biomarker for early atherosclerosis: initial studies in Watanabe rabbits. Mol Imaging Biol 12:2–8CrossRefPubMed Heroux J, Gharib AM, Danthi NS et al (2010) High-affinity alphavbeta3 integrin targeted optical probe as a new imaging biomarker for early atherosclerosis: initial studies in Watanabe rabbits. Mol Imaging Biol 12:2–8CrossRefPubMed
47.
go back to reference Artemov D, Mori N, Okollie B et al (2003) MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magn Reson Med 49:403–408CrossRefPubMed Artemov D, Mori N, Okollie B et al (2003) MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magn Reson Med 49:403–408CrossRefPubMed
48.
go back to reference Funovics MA, Kapeller B, Hoeller C et al (2004) MR imaging of the her2/neu and 9.2.27 tumor antigens using immunospecific contrast agents. Magn Reson Imaging 22:843–850CrossRefPubMed Funovics MA, Kapeller B, Hoeller C et al (2004) MR imaging of the her2/neu and 9.2.27 tumor antigens using immunospecific contrast agents. Magn Reson Imaging 22:843–850CrossRefPubMed
49.
go back to reference Gee MS, Upadhyay R, Bergquist H et al (2008) Human breast cancer tumor models: molecular imaging of drug susceptibility and dosing during HER2/neu-targeted therapy. Radiology 248:925–935CrossRefPubMed Gee MS, Upadhyay R, Bergquist H et al (2008) Human breast cancer tumor models: molecular imaging of drug susceptibility and dosing during HER2/neu-targeted therapy. Radiology 248:925–935CrossRefPubMed
50.
go back to reference Wang X, DeFrances MC, Dai Y et al (2002) A mechanism of cell survival: sequestration of Fas by the HGF receptor Met. Mol Cell 9:411–421CrossRefPubMed Wang X, DeFrances MC, Dai Y et al (2002) A mechanism of cell survival: sequestration of Fas by the HGF receptor Met. Mol Cell 9:411–421CrossRefPubMed
51.
go back to reference Towner RA, Smith N, Tesiram YA et al (2007) In vivo detection of c-MET expression in a rat hepatocarcinogenesis model using molecularly targeted magnetic resonance imaging. Mol Imaging 6:18–29PubMed Towner RA, Smith N, Tesiram YA et al (2007) In vivo detection of c-MET expression in a rat hepatocarcinogenesis model using molecularly targeted magnetic resonance imaging. Mol Imaging 6:18–29PubMed
52.
go back to reference Weissleder R, Moore A, Mahmood U et al (2000) In vivo magnetic resonance imaging of transgene expression. Nat Med 6:351–355CrossRefPubMed Weissleder R, Moore A, Mahmood U et al (2000) In vivo magnetic resonance imaging of transgene expression. Nat Med 6:351–355CrossRefPubMed
53.
54.
go back to reference Serda RE, Adolphi NL, Bisoffi M et al (2007) Targeting and cellular trafficking of magnetic nanoparticles for prostate cancer imaging. Mol Imaging 6:277–288PubMed Serda RE, Adolphi NL, Bisoffi M et al (2007) Targeting and cellular trafficking of magnetic nanoparticles for prostate cancer imaging. Mol Imaging 6:277–288PubMed
55.
go back to reference Neubauer AM, Myerson J, Caruthers SD et al (2008) Gadolinium-modulated 19F signals from perfluorocarbon nanoparticles as a new strategy for molecular imaging. Magn Reson Med 60:1066–1072CrossRefPubMed Neubauer AM, Myerson J, Caruthers SD et al (2008) Gadolinium-modulated 19F signals from perfluorocarbon nanoparticles as a new strategy for molecular imaging. Magn Reson Med 60:1066–1072CrossRefPubMed
56.
go back to reference Schmieder AH, Winter PM, Caruthers SD et al (2005) Molecular MR imaging of melanoma angiogenesis with alphanubeta3-targeted paramagnetic nanoparticles. Magn Reson Med 53:621–627CrossRefPubMed Schmieder AH, Winter PM, Caruthers SD et al (2005) Molecular MR imaging of melanoma angiogenesis with alphanubeta3-targeted paramagnetic nanoparticles. Magn Reson Med 53:621–627CrossRefPubMed
57.
go back to reference Burtea C, Laurent S, Murariu O et al (2008) Molecular imaging of alpha v beta3 integrin expression in atherosclerotic plaques with a mimetic of RGD peptide grafted to Gd-DTPA. Cardiovasc Res 78:148–157CrossRefPubMed Burtea C, Laurent S, Murariu O et al (2008) Molecular imaging of alpha v beta3 integrin expression in atherosclerotic plaques with a mimetic of RGD peptide grafted to Gd-DTPA. Cardiovasc Res 78:148–157CrossRefPubMed
58.
go back to reference Kaufmann BA, Sanders JM, Davis C et al (2007) Molecular imaging of inflammation in atherosclerosis with targeted ultrasound detection of vascular cell adhesion molecule-1. Circulation 116:276–284CrossRefPubMed Kaufmann BA, Sanders JM, Davis C et al (2007) Molecular imaging of inflammation in atherosclerosis with targeted ultrasound detection of vascular cell adhesion molecule-1. Circulation 116:276–284CrossRefPubMed
59.
go back to reference Kang HW, Torres D, Wald L et al (2006) Targeted imaging of human endothelial-specific marker in a model of adoptive cell transfer. Lab Invest 86:599–609PubMed Kang HW, Torres D, Wald L et al (2006) Targeted imaging of human endothelial-specific marker in a model of adoptive cell transfer. Lab Invest 86:599–609PubMed
60.
go back to reference Boutry S, Laurent S, Elst LV et al (2006) Specific E-selectin targeting with a superparamagnetic MRI contrast agent. Contrast Media Mol Imaging 1:15–22CrossRefPubMed Boutry S, Laurent S, Elst LV et al (2006) Specific E-selectin targeting with a superparamagnetic MRI contrast agent. Contrast Media Mol Imaging 1:15–22CrossRefPubMed
61.
go back to reference Radermacher KA, Beghein N, Boutry S et al (2009) In vivo detection of inflammation using pegylated iron oxide particles targeted at E-selectin: a multimodal approach using MR imaging and EPR spectroscopy. Invest Radiol 44:398–404CrossRefPubMed Radermacher KA, Beghein N, Boutry S et al (2009) In vivo detection of inflammation using pegylated iron oxide particles targeted at E-selectin: a multimodal approach using MR imaging and EPR spectroscopy. Invest Radiol 44:398–404CrossRefPubMed
62.
go back to reference Shaw SY (2009) Molecular imaging in cardiovascular disease: targets and opportunities. Nat Rev Cardiol 6:569–579CrossRefPubMed Shaw SY (2009) Molecular imaging in cardiovascular disease: targets and opportunities. Nat Rev Cardiol 6:569–579CrossRefPubMed
63.
go back to reference Amirbekian V, Lipinski MJ, Briley-Saebo KC et al (2007) Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc Natl Acad Sci USA 104:961–966CrossRefPubMed Amirbekian V, Lipinski MJ, Briley-Saebo KC et al (2007) Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc Natl Acad Sci USA 104:961–966CrossRefPubMed
65.
go back to reference Hersey P, Zhang XD (2003) Resistance of follicular lymphoma cells to chemotherapy is more than just BCL-2. Cancer Biol Ther 2:541–543PubMed Hersey P, Zhang XD (2003) Resistance of follicular lymphoma cells to chemotherapy is more than just BCL-2. Cancer Biol Ther 2:541–543PubMed
66.
go back to reference Rana A, Sathyanarayana P, Lieberthal W (2001) Role of apoptosis of renal tubular cells in acute renal failure: therapeutic implications. Apoptosis 6:83–102CrossRefPubMed Rana A, Sathyanarayana P, Lieberthal W (2001) Role of apoptosis of renal tubular cells in acute renal failure: therapeutic implications. Apoptosis 6:83–102CrossRefPubMed
67.
go back to reference Hakumaki JM, Brindle KM (2003) Techniques: Visualizing apoptosis using nuclear magnetic resonance. Trends Pharmacol Sci 24:146–149CrossRefPubMed Hakumaki JM, Brindle KM (2003) Techniques: Visualizing apoptosis using nuclear magnetic resonance. Trends Pharmacol Sci 24:146–149CrossRefPubMed
68.
go back to reference Krishnan AS, Neves AA, de Backer MM et al (2008) Detection of cell death in tumors by using MR imaging and a gadolinium-based targeted contrast agent. Radiology 246:854–862CrossRefPubMed Krishnan AS, Neves AA, de Backer MM et al (2008) Detection of cell death in tumors by using MR imaging and a gadolinium-based targeted contrast agent. Radiology 246:854–862CrossRefPubMed
69.
go back to reference Sarda-Mantel L, Coutard M, Rouzet F et al (2006) 99mTc-annexin-V functional imaging of luminal thrombus activity in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 26:2153–2159CrossRefPubMed Sarda-Mantel L, Coutard M, Rouzet F et al (2006) 99mTc-annexin-V functional imaging of luminal thrombus activity in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 26:2153–2159CrossRefPubMed
70.
go back to reference Laufer EM, Winkens HM, Corsten MF et al (2009) PET and SPECT imaging of apoptosis in vulnerable atherosclerotic plaques with radiolabeled Annexin A5. Q J Nucl Med Mol Imaging 53:26–34PubMed Laufer EM, Winkens HM, Corsten MF et al (2009) PET and SPECT imaging of apoptosis in vulnerable atherosclerotic plaques with radiolabeled Annexin A5. Q J Nucl Med Mol Imaging 53:26–34PubMed
71.
go back to reference Zhao M, Beauregard DA, Loizou L et al (2001) Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat Med 7:1241–1244CrossRefPubMed Zhao M, Beauregard DA, Loizou L et al (2001) Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat Med 7:1241–1244CrossRefPubMed
72.
go back to reference Lancelot E, Amirbekian V, Brigger I et al (2008) Evaluation of matrix metalloproteinases in atherosclerosis using a novel noninvasive imaging approach. Arterioscler Thromb Vasc Biol 28:425–432CrossRefPubMed Lancelot E, Amirbekian V, Brigger I et al (2008) Evaluation of matrix metalloproteinases in atherosclerosis using a novel noninvasive imaging approach. Arterioscler Thromb Vasc Biol 28:425–432CrossRefPubMed
73.
go back to reference Lepage M, Dow WC, Melchior M et al (2007) Noninvasive detection of matrix metalloproteinase activity in vivo using a novel magnetic resonance imaging contrast agent with a solubility switch. Mol Imaging 6:393–403PubMed Lepage M, Dow WC, Melchior M et al (2007) Noninvasive detection of matrix metalloproteinase activity in vivo using a novel magnetic resonance imaging contrast agent with a solubility switch. Mol Imaging 6:393–403PubMed
74.
go back to reference Schellenberger E, Rudloff F, Warmuth C et al (2008) Protease-specific nanosensors for magnetic resonance imaging. Bioconjug Chem 19:2440–2445CrossRefPubMed Schellenberger E, Rudloff F, Warmuth C et al (2008) Protease-specific nanosensors for magnetic resonance imaging. Bioconjug Chem 19:2440–2445CrossRefPubMed
75.
go back to reference Chen JW, Querol Sans M, Bogdanov A Jr et al (2006) Imaging of myeloperoxidase in mice by using novel amplifiable paramagnetic substrates. Radiology 240:473–481CrossRefPubMed Chen JW, Querol Sans M, Bogdanov A Jr et al (2006) Imaging of myeloperoxidase in mice by using novel amplifiable paramagnetic substrates. Radiology 240:473–481CrossRefPubMed
76.
go back to reference Nahrendorf M, Sosnovik D, Chen JW et al (2008) Activatable magnetic resonance imaging agent reports myeloperoxidase activity in healing infarcts and noninvasively detects the antiinflammatory effects of atorvastatin on ischemia-reperfusion injury. Circulation 117:1153–1160CrossRefPubMed Nahrendorf M, Sosnovik D, Chen JW et al (2008) Activatable magnetic resonance imaging agent reports myeloperoxidase activity in healing infarcts and noninvasively detects the antiinflammatory effects of atorvastatin on ischemia-reperfusion injury. Circulation 117:1153–1160CrossRefPubMed
77.
go back to reference [?twb=.27w]?>Chen JW, Breckwoldt MO, Aikawa E et al (2008) Myeloperoxidase-targeted imaging of active inflammatory lesions in murine experimental autoimmune encephalomyelitis. Brain 131:1123–1133CrossRefPubMed [?twb=.27w]?>Chen JW, Breckwoldt MO, Aikawa E et al (2008) Myeloperoxidase-targeted imaging of active inflammatory lesions in murine experimental autoimmune encephalomyelitis. Brain 131:1123–1133CrossRefPubMed
78.
go back to reference Wu JC, Tseng JR, Gambhir SS (2004) Molecular imaging of cardiovascular gene products. J Nucl Cardiol 11:491–505CrossRefPubMed Wu JC, Tseng JR, Gambhir SS (2004) Molecular imaging of cardiovascular gene products. J Nucl Cardiol 11:491–505CrossRefPubMed
79.
go back to reference Louie AY, Huber MM, Ahrens ET et al (2000) In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 18:321–325CrossRefPubMed Louie AY, Huber MM, Ahrens ET et al (2000) In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 18:321–325CrossRefPubMed
80.
go back to reference Edelstein ML, Abedi MR, Wixon J (2007) Gene therapy clinical trials worldwide to 2007—an update. J Gene Med 9:833–842CrossRefPubMed Edelstein ML, Abedi MR, Wixon J (2007) Gene therapy clinical trials worldwide to 2007—an update. J Gene Med 9:833–842CrossRefPubMed
81.
go back to reference MacLaren DC, Gambhir SS, Satyamurthy N et al (1999) Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther 6:785–791CrossRefPubMed MacLaren DC, Gambhir SS, Satyamurthy N et al (1999) Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther 6:785–791CrossRefPubMed
82.
go back to reference Rome C, Couillaud F, Moonen CT (2007) Gene expression and gene therapy imaging. Eur Radiol 17:305–319CrossRefPubMed Rome C, Couillaud F, Moonen CT (2007) Gene expression and gene therapy imaging. Eur Radiol 17:305–319CrossRefPubMed
83.
go back to reference Grenier N, Hauger O, Eker O et al (2008) Molecular magnetic resonance imaging of the genitourinary tract: recent results and future directions. Magn Reson Imaging Clin N Am 16:627–641, viiiCrossRefPubMed Grenier N, Hauger O, Eker O et al (2008) Molecular magnetic resonance imaging of the genitourinary tract: recent results and future directions. Magn Reson Imaging Clin N Am 16:627–641, viiiCrossRefPubMed
84.
go back to reference Quesson B, Vimeux F, Salomir R et al (2002) Automatic control of hyperthermic therapy based on real-time Fourier analysis of MR temperature maps. Magn Reson Med 47:1065–1072CrossRefPubMed Quesson B, Vimeux F, Salomir R et al (2002) Automatic control of hyperthermic therapy based on real-time Fourier analysis of MR temperature maps. Magn Reson Med 47:1065–1072CrossRefPubMed
85.
go back to reference Eker O, Quesson B, Rome C et al (2010) Combination of cell delivery and thermo-inducible transcription for in vivo spatio-temporal control of gene expression: a feasibility study. Radiology In press Eker O, Quesson B, Rome C et al (2010) Combination of cell delivery and thermo-inducible transcription for in vivo spatio-temporal control of gene expression: a feasibility study. Radiology In press
Metadata
Title
Principles and basic concepts of molecular imaging
Authors
Nicolas Grenier
Peter Brader
Publication date
01-02-2011
Publisher
Springer-Verlag
Published in
Pediatric Radiology / Issue 2/2011
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-010-1835-z

Other articles of this Issue 2/2011

Pediatric Radiology 2/2011 Go to the issue