Skip to main content
Top
Published in: Experimental Brain Research 2/2005

01-11-2005 | Research Article

Primary sensorimotor cortex activation with task-performance after fatiguing hand exercise

Authors: Nicola M. Benwell, Michelle L. Byrnes, Frank L. Mastaglia, Gary W. Thickbroom

Published in: Experimental Brain Research | Issue 2/2005

Login to get access

Abstract

We have compared functional MRI signals in primary sensorimotor cortex (SM1) during a paced motor task of each hand before and after unimanual (right hand) fatiguing exercise. Our aims were to determine whether the degree of activation is different when a motor task is performed after a fatiguing exercise, and whether there are any differences in activation between movement of the fatigued and non-fatigued hands. There was a significant reduction in the number of voxels activated in SM1 in the hemisphere contralateral to movement of both the fatigued hand (38±5 pre-exercise versus 21±3 post-exercise; P<0.05) and the non-fatigued hand (32±4 pre-exercise vs 18±4 post-exercise; P<0.05). There was no significant difference in the magnitude of the functional magnetic resonance imaging signal before or after exercise, however, the variance increased significantly after exercise (6.0±0.5 pre-exercise vs 7.3±0.6 post-exercise; P<0.01). Reduced functional activation in SM1 may reflect increased variability in the activation rather than a reduction in activation of cortical motor networks after fatigue.
Literature
go back to reference Baker AJ, Kostov KG, Miller RG, Weiner MW (1993) Slow force recovery after long-duration exercise: metabolic and activation factors in muscle fatigue. J Appl Physiol 74:2294–2300CrossRefPubMed Baker AJ, Kostov KG, Miller RG, Weiner MW (1993) Slow force recovery after long-duration exercise: metabolic and activation factors in muscle fatigue. J Appl Physiol 74:2294–2300CrossRefPubMed
go back to reference Benwell NM, Thickbroom GW, Sacco P, Hammond G, Byrnes ML, Mastaglia FL (2003) Changes in intracortical inhibition with fatigue of the hand. Proceedings of the Australian Neuroscience Society 14:O-06 Benwell NM, Thickbroom GW, Sacco P, Hammond G, Byrnes ML, Mastaglia FL (2003) Changes in intracortical inhibition with fatigue of the hand. Proceedings of the Australian Neuroscience Society 14:O-06
go back to reference Bonato C, Zanette G, Manganotti P, Tinazzi M, Bongiovanni G, Polo A, Fiaschi A (1996) ‘Direct’ and ‘crossed’ modulation of human motor cortex excitability following exercise. Neurosci Lett 216:97–100PubMed Bonato C, Zanette G, Manganotti P, Tinazzi M, Bongiovanni G, Polo A, Fiaschi A (1996) ‘Direct’ and ‘crossed’ modulation of human motor cortex excitability following exercise. Neurosci Lett 216:97–100PubMed
go back to reference Brasil-Neto JP, Pascual-Leone A, Valls-Sole J, Cammarota A, Cohen LG, Hallett M (1993) Post-exercise depression of motor evoked potentials: a measure of central nervous system fatigue. Exp Brain Res 93:181–184CrossRefPubMed Brasil-Neto JP, Pascual-Leone A, Valls-Sole J, Cammarota A, Cohen LG, Hallett M (1993) Post-exercise depression of motor evoked potentials: a measure of central nervous system fatigue. Exp Brain Res 93:181–184CrossRefPubMed
go back to reference Fitts RH (1994) Cellular mechanisms of muscle fatigue. Physiol Rev 74:49–94PubMed Fitts RH (1994) Cellular mechanisms of muscle fatigue. Physiol Rev 74:49–94PubMed
go back to reference Gandevia SC, Allen GM, Butler JE, Taylor JL (1996) Supraspinal factors in human muscle fatigue: evidence for suboptimal output from the motor cortex. J Physiol (Lond) 490:529–536 Gandevia SC, Allen GM, Butler JE, Taylor JL (1996) Supraspinal factors in human muscle fatigue: evidence for suboptimal output from the motor cortex. J Physiol (Lond) 490:529–536
go back to reference Gonzalez-Alonso J, Dalsgaard MK, Osada T, Volianitis S, Dawson EA, Yoshiga CC, Secher NH (2004) Brain and central haemodynamics and oxygenation during maximal exercise in humans. J Physiol 557:331–342CrossRefPubMed Gonzalez-Alonso J, Dalsgaard MK, Osada T, Volianitis S, Dawson EA, Yoshiga CC, Secher NH (2004) Brain and central haemodynamics and oxygenation during maximal exercise in humans. J Physiol 557:331–342CrossRefPubMed
go back to reference Lazarski JP, Ridding MC, Miles TS (2002) Dexterity is not affected by fatigue-induced depression of human motor cortex excitability. Neurosci Lett 321:69–72CrossRefPubMed Lazarski JP, Ridding MC, Miles TS (2002) Dexterity is not affected by fatigue-induced depression of human motor cortex excitability. Neurosci Lett 321:69–72CrossRefPubMed
go back to reference Liu JZ, Dai TH, Sahgal V, Brown RW, Yue GH (2002) Nonlinear cortical modulation of muscle fatigue: a functional MRI study. Brain Res 957:320–329CrossRefPubMed Liu JZ, Dai TH, Sahgal V, Brown RW, Yue GH (2002) Nonlinear cortical modulation of muscle fatigue: a functional MRI study. Brain Res 957:320–329CrossRefPubMed
go back to reference Liu JZ, Shan ZY, Zhang LD, Sahgal V, Brown RW, Yue GH (2003) Human brain activation during sustained and intermittent submaximal fatigue muscle contractions: an FMRI study. J Neurophysiol 90:300–312PubMedCrossRef Liu JZ, Shan ZY, Zhang LD, Sahgal V, Brown RW, Yue GH (2003) Human brain activation during sustained and intermittent submaximal fatigue muscle contractions: an FMRI study. J Neurophysiol 90:300–312PubMedCrossRef
go back to reference McLester JR Jr (1997) Muscle contraction and fatigue. The role of adenosine 5′-diphosphate and inorganic phosphate. Sports Med 23:287–305PubMedCrossRef McLester JR Jr (1997) Muscle contraction and fatigue. The role of adenosine 5′-diphosphate and inorganic phosphate. Sports Med 23:287–305PubMedCrossRef
go back to reference Sacco P, Thickbroom GW, Thompson ML, Mastaglia FL (1997) Changes in corticomotor excitation and inhibition during prolonged sub-maximal muscle contractions. Muscle Nerve 20:1158–1166CrossRefPubMed Sacco P, Thickbroom GW, Thompson ML, Mastaglia FL (1997) Changes in corticomotor excitation and inhibition during prolonged sub-maximal muscle contractions. Muscle Nerve 20:1158–1166CrossRefPubMed
go back to reference Samii A, Wassermann EM, Ikoma K, Mercuri B, Hallett M (1996) Characterization of postexercise facilitation and depression of motor evoked potentials to transcranial magnetic stimulation. Neurology 46:1376–1382PubMed Samii A, Wassermann EM, Ikoma K, Mercuri B, Hallett M (1996) Characterization of postexercise facilitation and depression of motor evoked potentials to transcranial magnetic stimulation. Neurology 46:1376–1382PubMed
go back to reference Samii A, Canos M, Ikoma K, Wassermann EM, Hallett M (1997) Absence of facilitation or depression of motor evoked potentials after contralateral homologous muscle activation. Electroencephalogr Clin Neurophysiol 105:241–245CrossRefPubMed Samii A, Canos M, Ikoma K, Wassermann EM, Hallett M (1997) Absence of facilitation or depression of motor evoked potentials after contralateral homologous muscle activation. Electroencephalogr Clin Neurophysiol 105:241–245CrossRefPubMed
go back to reference Taylor JL, Butler JE, Allen GM, Gandevia SC (1996) Changes in motor cortical excitability during human muscle fatigue. J Physiol (Lond) 490:519–528 Taylor JL, Butler JE, Allen GM, Gandevia SC (1996) Changes in motor cortical excitability during human muscle fatigue. J Physiol (Lond) 490:519–528
go back to reference Thickbroom GW, Phillips BA, Morris I, Byrnes ML, Sacco P, Mastaglia FL (1999) Differences in functional magnetic resonance imaging of sensorimotor cortex during static and dynamic finger flexion. Exp Brain Res 126:431–438PubMedCrossRef Thickbroom GW, Phillips BA, Morris I, Byrnes ML, Sacco P, Mastaglia FL (1999) Differences in functional magnetic resonance imaging of sensorimotor cortex during static and dynamic finger flexion. Exp Brain Res 126:431–438PubMedCrossRef
go back to reference Waldvogel D, van Gelderen P, Muellbacher W, Ziemann U, Immisch I, Hallett M (2000) The relative metabolic demand of inhibition and excitation. Nature 406:995–998CrossRefPubMed Waldvogel D, van Gelderen P, Muellbacher W, Ziemann U, Immisch I, Hallett M (2000) The relative metabolic demand of inhibition and excitation. Nature 406:995–998CrossRefPubMed
Metadata
Title
Primary sensorimotor cortex activation with task-performance after fatiguing hand exercise
Authors
Nicola M. Benwell
Michelle L. Byrnes
Frank L. Mastaglia
Gary W. Thickbroom
Publication date
01-11-2005
Publisher
Springer-Verlag
Published in
Experimental Brain Research / Issue 2/2005
Print ISSN: 0014-4819
Electronic ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-005-0013-2

Other articles of this Issue 2/2005

Experimental Brain Research 2/2005 Go to the issue