Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2015

Open Access 01-12-2015 | Research article

Prevention of cell-surface attachment and reduction of penicillin-binding protein 2a (PBP2a) level in methicillin-resistant Staphylococcus aureus biofilms by Acalypha wilkesiana

Authors: Carolina Santiago, Kuan-Hon Lim, Hwei-San Loh, Kang Nee Ting

Published in: BMC Complementary Medicine and Therapies | Issue 1/2015

Login to get access

Abstract

Background

Formation of biofilm is known to enhance the virulence of methicillin-resistance Staphylococcus aureus (MRSA), which is associated with persistent infections in hospital settings. The biofilm layer essentially forms a protective barrier encapsulating the bacterial colony and thus reduces the effectiveness of chemotherapeutics. We have isolated 9EA-FC-B bioactive fraction from Acalypha wilkesiana Müll. Arg. that reverses ampicillin resistant in MRSA through inhibition of the antibiotic resistant protein, penicillin-binding protein 2a (PBP2a). In this study, we aimed to investigate the effects of 9EA-FC-B on MRSA biofilm forming capacity.

Methods

Inhibition of biofilm production and microtiter attachment assays were employed to study the anti-biofilm activity of 9EA-FC-B, while latex agglutination test was performed to investigate the effect on PBP2a in the biofilm matrix. We also attempted to characterise the chemical components of the fraction using high performance liquid chromatography (HPLC) and phytochemical analysis.

Results

Fraction 9EA-FC-B and ampicillin exhibited similar inhibitory effect on MRSA’s biofilm production at their respective minimum inhibitory concentrations (81.56% vs 84.49%, respectively). However, the test fraction was more effective in suppressing cell surface attachment (90.85%) compared to ampicillin (37.8%). Interestingly, ampicillin enhanced the level PBP2a and in the contrary 9EA-FC-B attenuated the production of the resistant protein in the bioflim matrix. HPLC and phytochemical analysis revealed that 9EA-FC-B fraction is a complex mixture containing tannins, saponins, sterol/steroids, and glycosides.

Conclusions

Bioactive fraction 9EA-FC-B inhibited the production of MRSA biofilm by preventing the initial cell-surface attachment and reducing the amount PBP2a in the matrix. PBP2a found in the biofilm matrix is believed to have a role in the development of virulence in MRSA.
Literature
1.
go back to reference Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284:1318–22. doi:10.1126/science.284.5418.1318.CrossRefPubMed Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284:1318–22. doi:10.1126/science.284.5418.1318.CrossRefPubMed
3.
go back to reference Petrelli D, Repetto A, D’Ercole S, Rombini S, Ripa S, Prenna M, et al. Analysis of meticillin-susceptible and meticillin-resistant biofilm-forming Staphylococcus aureus from catheter infections isolated in a large Italian hospital. J Med Microbiol. 2008;57(Pt 3):364–72. doi:10.1099/jmm. 0.47621-0.CrossRefPubMed Petrelli D, Repetto A, D’Ercole S, Rombini S, Ripa S, Prenna M, et al. Analysis of meticillin-susceptible and meticillin-resistant biofilm-forming Staphylococcus aureus from catheter infections isolated in a large Italian hospital. J Med Microbiol. 2008;57(Pt 3):364–72. doi:10.1099/jmm. 0.47621-0.CrossRefPubMed
4.
go back to reference Mann EE, Rice KC, Boles BR, Endres JL, Ranjit D, Chandramohan L, et al. Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. PLoS One. 2009;4:e5822. doi:10.1371/journal.pone.0005822.CrossRefPubMedPubMedCentral Mann EE, Rice KC, Boles BR, Endres JL, Ranjit D, Chandramohan L, et al. Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. PLoS One. 2009;4:e5822. doi:10.1371/journal.pone.0005822.CrossRefPubMedPubMedCentral
5.
go back to reference Del Pozo JL, Patel R. The challenge of treating biofilm-associated bacterial infections. Clin Pharmacol Ther. 2007;82:204–9. doi:10.1038/sj.clpt.6100247.CrossRefPubMed Del Pozo JL, Patel R. The challenge of treating biofilm-associated bacterial infections. Clin Pharmacol Ther. 2007;82:204–9. doi:10.1038/sj.clpt.6100247.CrossRefPubMed
6.
go back to reference Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15:167–93. doi:10.1128/CMR. 15.2.167-193.2002.CrossRefPubMedPubMedCentral Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15:167–93. doi:10.1128/CMR. 15.2.167-193.2002.CrossRefPubMedPubMedCentral
7.
go back to reference Berger-Bächi B, Rohrer S. Factors influencing methicillin resistance in Staphylococci. Arch Microbiol. 2002;178:165–71. doi:10.1007/s00203-002-0436-0.CrossRefPubMed Berger-Bächi B, Rohrer S. Factors influencing methicillin resistance in Staphylococci. Arch Microbiol. 2002;178:165–71. doi:10.1007/s00203-002-0436-0.CrossRefPubMed
8.
go back to reference Pozzi C, Waters EM, Rudkin JK, Schaeffer CR, Lohan AJ, Tong P, et al. Methicillin resistance alters the biofilm phenotype and attenuates virulence in Staphylococcus aureus device-associated infections. PLoS Pathog. 2012;8:e1002626. doi:10.1371/journal.ppat.1002626.CrossRefPubMedPubMedCentral Pozzi C, Waters EM, Rudkin JK, Schaeffer CR, Lohan AJ, Tong P, et al. Methicillin resistance alters the biofilm phenotype and attenuates virulence in Staphylococcus aureus device-associated infections. PLoS Pathog. 2012;8:e1002626. doi:10.1371/journal.ppat.1002626.CrossRefPubMedPubMedCentral
9.
go back to reference Gibbons S. Anti-staphylococcal plant natural products. Nat Prod Rep. 2004;21:263–77. doi:10.1039/b212695h.CrossRefPubMed Gibbons S. Anti-staphylococcal plant natural products. Nat Prod Rep. 2004;21:263–77. doi:10.1039/b212695h.CrossRefPubMed
10.
go back to reference Saleem M, Nazir M, Ali MS, Hussain H, Lee YS, Riaz N, et al. Antimicrobial natural products: an update on future antibiotic drug candidates. Nat Prod Rep. 2010;27:238–54. doi:10.1039/b916096e.CrossRefPubMed Saleem M, Nazir M, Ali MS, Hussain H, Lee YS, Riaz N, et al. Antimicrobial natural products: an update on future antibiotic drug candidates. Nat Prod Rep. 2010;27:238–54. doi:10.1039/b916096e.CrossRefPubMed
11.
go back to reference Abreu AC, McBain AJ, Simões M. Plants as sources of new antimicrobials and resistance-modifying agents. Nat Prod Rep. 2012;29:1007–21. doi:10.1039/c2np20035j.CrossRefPubMed Abreu AC, McBain AJ, Simões M. Plants as sources of new antimicrobials and resistance-modifying agents. Nat Prod Rep. 2012;29:1007–21. doi:10.1039/c2np20035j.CrossRefPubMed
12.
go back to reference Alande PI. Irobi: antimicrobial activities of crude leaf extracts of acalypha wilkesiana. J Ethnopharmacol. 1993;39:171–41. doi:10.1016/03788741(93)90033-2.CrossRef Alande PI. Irobi: antimicrobial activities of crude leaf extracts of acalypha wilkesiana. J Ethnopharmacol. 1993;39:171–41. doi:10.1016/03788741(93)90033-2.CrossRef
13.
go back to reference Akinde BE, Odeyemi OO. Extraction and microbiological evaluation of the oils from the leaves of Acalypha wilkesiana. Niger Med J. 1987;17:163–5. Akinde BE, Odeyemi OO. Extraction and microbiological evaluation of the oils from the leaves of Acalypha wilkesiana. Niger Med J. 1987;17:163–5.
14.
go back to reference Lim SW, Loh HS, Ting KN, Bradshaw TD, Zeenathul NA. Acalypha wilkesiana extracts induce apoptosis by causing single strand and double strand DNA breaks. J Ethnopharmacol. 2011;2:616–23. doi:10.1016/j.jep.2011.10.005.CrossRef Lim SW, Loh HS, Ting KN, Bradshaw TD, Zeenathul NA. Acalypha wilkesiana extracts induce apoptosis by causing single strand and double strand DNA breaks. J Ethnopharmacol. 2011;2:616–23. doi:10.1016/j.jep.2011.10.005.CrossRef
15.
go back to reference Santiago C, Pang EL, Lim KH, Loh HS, Ting KN. Reversal of Ampicillin Resistance in MRSA via Inhibition of Penicillin-Binding Protein 2a by Acalypha wilkesiana. BioMed Res Int 2014, ID 965348. doi:10.1155/2014/965348. Santiago C, Pang EL, Lim KH, Loh HS, Ting KN. Reversal of Ampicillin Resistance in MRSA via Inhibition of Penicillin-Binding Protein 2a by Acalypha wilkesiana. BioMed Res Int 2014, ID 965348. doi:10.1155/2014/965348.
16.
go back to reference Tiwari HK, Sen MR. Emergence of vancomycin resistant Staphylococcus aureus (VRSA) from a tertiary care hospital from northern part of India. BMC Infect Dis. 2006;6:156. doi:10.1186/1471-2334-6-156.CrossRefPubMedPubMedCentral Tiwari HK, Sen MR. Emergence of vancomycin resistant Staphylococcus aureus (VRSA) from a tertiary care hospital from northern part of India. BMC Infect Dis. 2006;6:156. doi:10.1186/1471-2334-6-156.CrossRefPubMedPubMedCentral
17.
go back to reference Mataraci E, Dosler S. In vitro activities of antibiotics and antimicrobial cationic peptides alone and in combination against methicillin-resistant Staphylococcus aureus biofilms. Antimicrob Agents Chemother. 2012;56:6366–71. doi:10.1128/AAC. 01180-12.CrossRefPubMedPubMedCentral Mataraci E, Dosler S. In vitro activities of antibiotics and antimicrobial cationic peptides alone and in combination against methicillin-resistant Staphylococcus aureus biofilms. Antimicrob Agents Chemother. 2012;56:6366–71. doi:10.1128/AAC. 01180-12.CrossRefPubMedPubMedCentral
18.
go back to reference Chung PY, Chung LY, Navaratnam P. Transcriptional profiles of the response of methicillin-resistant Staphylococcus aureus to pentacyclic triterpenoids. PLoS One. 2013;8:e56687. doi:10.1371/journal.pone.0056687.CrossRefPubMedPubMedCentral Chung PY, Chung LY, Navaratnam P. Transcriptional profiles of the response of methicillin-resistant Staphylococcus aureus to pentacyclic triterpenoids. PLoS One. 2013;8:e56687. doi:10.1371/journal.pone.0056687.CrossRefPubMedPubMedCentral
19.
go back to reference Huletsky A, Giroux R, Rossbach V, Gagnon M, Vaillancourt M, Bernier M, et al. New real-time PCR assay for rapid detection of methicillin-resistant Staphylococcus aureus directly from specimens containing a mixture of staphylococci. J Clin Microbiol. 2004;42:1875–84. doi:10.1128/JCM. 42.5.1875-1884.2004.CrossRefPubMedPubMedCentral Huletsky A, Giroux R, Rossbach V, Gagnon M, Vaillancourt M, Bernier M, et al. New real-time PCR assay for rapid detection of methicillin-resistant Staphylococcus aureus directly from specimens containing a mixture of staphylococci. J Clin Microbiol. 2004;42:1875–84. doi:10.1128/JCM. 42.5.1875-1884.2004.CrossRefPubMedPubMedCentral
20.
go back to reference Jones WP, Kinghorn AD. Extraction of Plant Metabolites. In: Sarker SD, Latif AI, Gray AI, editors. Natural Product Isolation. New Jersey: Humana Press; 2005. p. 323–51. Jones WP, Kinghorn AD. Extraction of Plant Metabolites. In: Sarker SD, Latif AI, Gray AI, editors. Natural Product Isolation. New Jersey: Humana Press; 2005. p. 323–51.
21.
go back to reference Othman M, Loh HS, Wiart C, Khoo TJ, Lim KH, Ting KN. Optimal methods for evaluating antimicrobial activities from plant extracts. J Microbiol Methods. 2011;84:161–6. doi:10.1016/j.mimet.2010.11.008.CrossRefPubMed Othman M, Loh HS, Wiart C, Khoo TJ, Lim KH, Ting KN. Optimal methods for evaluating antimicrobial activities from plant extracts. J Microbiol Methods. 2011;84:161–6. doi:10.1016/j.mimet.2010.11.008.CrossRefPubMed
22.
go back to reference Durham-Colleran MW, Verhoeven AB, van Hoek ML. Francisella novicida forms in vitro biofilms mediated by an orphan response regulator. Microb Ecol. 2010;59:457–65. doi:10.1007/s00248-009-9586-9.CrossRefPubMed Durham-Colleran MW, Verhoeven AB, van Hoek ML. Francisella novicida forms in vitro biofilms mediated by an orphan response regulator. Microb Ecol. 2010;59:457–65. doi:10.1007/s00248-009-9586-9.CrossRefPubMed
23.
go back to reference Overhage J, Campisano A, Bains M, Torfs ECW, Rehm BHA, Hancock REW. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun. 2008;76:4176–82. doi:10.1128/IAI. 00318-08.CrossRefPubMedPubMedCentral Overhage J, Campisano A, Bains M, Torfs ECW, Rehm BHA, Hancock REW. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun. 2008;76:4176–82. doi:10.1128/IAI. 00318-08.CrossRefPubMedPubMedCentral
24.
go back to reference Zhao W, Hu Z, Okubo S, Hara Y. Mechanism of synergy between epigallocatechin gallate and β -Lactams against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2001;45:1737–42. doi:10.1128/AAC. 45.6.1737-1742.2001.CrossRefPubMedPubMedCentral Zhao W, Hu Z, Okubo S, Hara Y. Mechanism of synergy between epigallocatechin gallate and β -Lactams against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2001;45:1737–42. doi:10.1128/AAC. 45.6.1737-1742.2001.CrossRefPubMedPubMedCentral
25.
go back to reference Olson KM, Starks CM, Williams RB, O’Neil-Johnson M, Huang Z, Ellis M, et al. Novel pentadecenyl tetrazole enhances susceptibility of methicillin-resistant Staphylococcus aureus biofilms to gentamicin. Antimicrob Agents Chemother. 2011;55:3691–5. doi:10.1128/AAC. 00302-11.CrossRefPubMedPubMedCentral Olson KM, Starks CM, Williams RB, O’Neil-Johnson M, Huang Z, Ellis M, et al. Novel pentadecenyl tetrazole enhances susceptibility of methicillin-resistant Staphylococcus aureus biofilms to gentamicin. Antimicrob Agents Chemother. 2011;55:3691–5. doi:10.1128/AAC. 00302-11.CrossRefPubMedPubMedCentral
26.
go back to reference Al-Bakri AG, Othman G, Afifi FU. Determination of the antibiofilm, antiadhesive, and anti-MRSA activities of seven Salvia species. Pharmacogn Mag. 2010;6:264–70. doi:10.4103/0973-1296.71786.CrossRefPubMedPubMedCentral Al-Bakri AG, Othman G, Afifi FU. Determination of the antibiofilm, antiadhesive, and anti-MRSA activities of seven Salvia species. Pharmacogn Mag. 2010;6:264–70. doi:10.4103/0973-1296.71786.CrossRefPubMedPubMedCentral
27.
go back to reference Quave CL, Plano LRW, Pantuso T, Bennett BC. Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus. J Ethnopharmacol. 2008;118:418–28. doi:10.1016/j.jep.2008.05.005.CrossRefPubMedPubMedCentral Quave CL, Plano LRW, Pantuso T, Bennett BC. Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus. J Ethnopharmacol. 2008;118:418–28. doi:10.1016/j.jep.2008.05.005.CrossRefPubMedPubMedCentral
28.
go back to reference Lim SW, Loh HW, Ting KN, Bradshaw TD, Zeenathul NA. Acalypha wilkesiana ethyl acetate extract enhances the in vitro cytotoxic effects of α-tocopherol in human brain and lung cancer cells. Int J Biosci Biochem Bioinforma. 2013;3:335–40. doi:10.7763/IJBBB.2013.V3.226. Lim SW, Loh HW, Ting KN, Bradshaw TD, Zeenathul NA. Acalypha wilkesiana ethyl acetate extract enhances the in vitro cytotoxic effects of α-tocopherol in human brain and lung cancer cells. Int J Biosci Biochem Bioinforma. 2013;3:335–40. doi:10.7763/IJBBB.2013.V3.226.
29.
go back to reference Din WM, Jin KT, Ramli R, Khaithir TMN, Wiart C. Antibacterial effects of ellagitannins from Acalypha wilkesiana var. macafeana hort.: surface morphology analysis with environmental scanning electron microscopy and synergy with antibiotics. Phytother Res. 2013;27:1313–20. doi:10.1002/ptr.4876.CrossRefPubMed Din WM, Jin KT, Ramli R, Khaithir TMN, Wiart C. Antibacterial effects of ellagitannins from Acalypha wilkesiana var. macafeana hort.: surface morphology analysis with environmental scanning electron microscopy and synergy with antibiotics. Phytother Res. 2013;27:1313–20. doi:10.1002/ptr.4876.CrossRefPubMed
30.
go back to reference Carpentier B, Cerf O. Biofilms and their consequences, with particular reference to hygiene in the food industry. J Appl Bacteriol. 1993;75:499–511. doi:10.1111/j.1365-2672.1993.tb01587.x.CrossRefPubMed Carpentier B, Cerf O. Biofilms and their consequences, with particular reference to hygiene in the food industry. J Appl Bacteriol. 1993;75:499–511. doi:10.1111/j.1365-2672.1993.tb01587.x.CrossRefPubMed
31.
go back to reference Zhao WH, Hu ZQ, Hara Y, Shimamura T. Inhibition of penicillinase by epigallocatechin gallate resulting in restoration of antibacterial activity of penicillin against penicillinase-producing Staphylococcus aureus. Antimicrob Agents Chemother. 2002;46:2266–8. doi:10.1128/AAC. 46.7.2266-2268.2002.CrossRefPubMedPubMedCentral Zhao WH, Hu ZQ, Hara Y, Shimamura T. Inhibition of penicillinase by epigallocatechin gallate resulting in restoration of antibacterial activity of penicillin against penicillinase-producing Staphylococcus aureus. Antimicrob Agents Chemother. 2002;46:2266–8. doi:10.1128/AAC. 46.7.2266-2268.2002.CrossRefPubMedPubMedCentral
32.
go back to reference Yoda Y, Hu ZQ, Zhao WH, Shimamura T. Different susceptibilities of Staphylococcus and gram-negative rods to epigallocatechin gallate. J Infect Chemother. 2004;10:55–8. doi:10.1007/s10156-003-0284-0.CrossRefPubMed Yoda Y, Hu ZQ, Zhao WH, Shimamura T. Different susceptibilities of Staphylococcus and gram-negative rods to epigallocatechin gallate. J Infect Chemother. 2004;10:55–8. doi:10.1007/s10156-003-0284-0.CrossRefPubMed
33.
go back to reference O’Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annu Rev Microbiol. 2000;54:49–79. doi:10.1146/annurev.micro.54.1.49.CrossRefPubMed O’Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annu Rev Microbiol. 2000;54:49–79. doi:10.1146/annurev.micro.54.1.49.CrossRefPubMed
Metadata
Title
Prevention of cell-surface attachment and reduction of penicillin-binding protein 2a (PBP2a) level in methicillin-resistant Staphylococcus aureus biofilms by Acalypha wilkesiana
Authors
Carolina Santiago
Kuan-Hon Lim
Hwei-San Loh
Kang Nee Ting
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2015
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-015-0615-6

Other articles of this Issue 1/2015

BMC Complementary Medicine and Therapies 1/2015 Go to the issue