Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2014

Open Access 01-12-2014 | Research article

Presenting simulation results in a nested loop plot

Authors: Gerta Rücker, Guido Schwarzer

Published in: BMC Medical Research Methodology | Issue 1/2014

Login to get access

Abstract

Background

Statisticians investigate new methods in simulations to evaluate their properties for future real data applications. Results are often presented in a number of figures, e.g., Trellis plots. We had conducted a simulation study on six statistical methods for estimating the treatment effect in binary outcome meta-analyses, where selection bias (e.g., publication bias) was suspected because of apparent funnel plot asymmetry. We varied five simulation parameters: true treatment effect, extent of selection, event proportion in control group, heterogeneity parameter, and number of studies in meta-analysis. In combination, this yielded a total number of 768 scenarios. To present all results using Trellis plots, 12 figures were needed.

Methods

Choosing bias as criterion of interest, we present a ‘nested loop plot’, a diagram type that aims to have all simulation results in one plot. The idea was to bring all scenarios into a lexicographical order and arrange them consecutively on the horizontal axis of a plot, whereas the treatment effect estimate is presented on the vertical axis.

Results

The plot illustrates how parameters simultaneously influenced the estimate. It can be combined with a Trellis plot in a so-called hybrid plot. Nested loop plots may also be applied to other criteria such as the variance of estimation.

Conclusion

The nested loop plot, similar to a time series graph, summarizes all information about the results of a simulation study with respect to a chosen criterion in one picture and provides a suitable alternative or an addition to Trellis plots.
Appendix
Available only for authorised users
Literature
1.
go back to reference Burton A, Altman DG, Royston P, Holder RL: The design of simulation studies in medical statistics. Stat Med. 2006, 25: 4279-4292. 10.1002/sim.2673.CrossRefPubMed Burton A, Altman DG, Royston P, Holder RL: The design of simulation studies in medical statistics. Stat Med. 2006, 25: 4279-4292. 10.1002/sim.2673.CrossRefPubMed
2.
go back to reference Koehler E, Brown E, Haneuse SJPA: On the assessment of Monte Carlo error in simulation-based statistical analyses. Am Stat. 2009, 63 (2): 155-162. 10.1198/tast.2009.0030.CrossRefPubMedPubMedCentral Koehler E, Brown E, Haneuse SJPA: On the assessment of Monte Carlo error in simulation-based statistical analyses. Am Stat. 2009, 63 (2): 155-162. 10.1198/tast.2009.0030.CrossRefPubMedPubMedCentral
3.
go back to reference White IR: simsum: Analyses of simulation studies including Monte Carlo error. Stat J. 2010, 10 (3): 369-38517. White IR: simsum: Analyses of simulation studies including Monte Carlo error. Stat J. 2010, 10 (3): 369-38517.
4.
go back to reference Harbord RM, Egger M, Sterne JAC: A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. Stat Med. 2006, 25 (20): 3443-3457. 10.1002/sim.2380.CrossRefPubMed Harbord RM, Egger M, Sterne JAC: A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. Stat Med. 2006, 25 (20): 3443-3457. 10.1002/sim.2380.CrossRefPubMed
5.
go back to reference Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L: Comparison of two methods to detect publication bias in meta-analysis. J Am Med Assoc. 2006, 295: 676-680. 10.1001/jama.295.6.676.CrossRef Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L: Comparison of two methods to detect publication bias in meta-analysis. J Am Med Assoc. 2006, 295: 676-680. 10.1001/jama.295.6.676.CrossRef
6.
go back to reference Schwarzer G, Antes G, Schumacher M: A test for publication bias in meta-analysis with sparse binary data. Stat Med. 2007, 26: 721-733. 10.1002/sim.2588.CrossRefPubMed Schwarzer G, Antes G, Schumacher M: A test for publication bias in meta-analysis with sparse binary data. Stat Med. 2007, 26: 721-733. 10.1002/sim.2588.CrossRefPubMed
7.
go back to reference Rücker G, Schwarzer G, Carpenter JR: Arcsine test for publication bias in meta-analyses with binary outcomes. Stat Med. 2008, 27 (5): 746-763. 10.1002/sim.2971.CrossRefPubMed Rücker G, Schwarzer G, Carpenter JR: Arcsine test for publication bias in meta-analyses with binary outcomes. Stat Med. 2008, 27 (5): 746-763. 10.1002/sim.2971.CrossRefPubMed
8.
go back to reference Moreno SG, Sutton AJ, Ades AE, Stanley TD, Abrams KR, Peters JL, Cooper NJ: Assessment of regression-based methods to adjust for publication bias through a comprehensive simulation study. BMC Med Res Methodol. 2009, 9: 2-10.1186/1471-2288-9-2.CrossRefPubMedPubMedCentral Moreno SG, Sutton AJ, Ades AE, Stanley TD, Abrams KR, Peters JL, Cooper NJ: Assessment of regression-based methods to adjust for publication bias through a comprehensive simulation study. BMC Med Res Methodol. 2009, 9: 2-10.1186/1471-2288-9-2.CrossRefPubMedPubMedCentral
9.
go back to reference Rücker G, Schwarzer G, Carpenter J, Binder H, Schumacher M: Treatment effect estimates adjusted for small-study effects via a limit meta-analysis. Biostatistics. 2010, 12 (1): 122-142. doi:10.1136/jme.2008.024521CrossRefPubMed Rücker G, Schwarzer G, Carpenter J, Binder H, Schumacher M: Treatment effect estimates adjusted for small-study effects via a limit meta-analysis. Biostatistics. 2010, 12 (1): 122-142. doi:10.1136/jme.2008.024521CrossRefPubMed
10.
go back to reference Rücker G, Carpenter J, Schwarzer G: Detecting and adjusting for small-study effects in meta-analysis. Biom J. 2011, 53 (2): 351-368. 10.1002/bimj.201000151.CrossRefPubMed Rücker G, Carpenter J, Schwarzer G: Detecting and adjusting for small-study effects in meta-analysis. Biom J. 2011, 53 (2): 351-368. 10.1002/bimj.201000151.CrossRefPubMed
11.
go back to reference Bradburn MJ, Deeks JJ, Berlin JA, Localio AR: Much ado about nothing: a comparison of the performance of meta-analytical methods with rare events. Stat Med. 2007, 26: 53-77. 10.1002/sim.2528.CrossRefPubMed Bradburn MJ, Deeks JJ, Berlin JA, Localio AR: Much ado about nothing: a comparison of the performance of meta-analytical methods with rare events. Stat Med. 2007, 26: 53-77. 10.1002/sim.2528.CrossRefPubMed
12.
go back to reference Rücker G, Schwarzer G, Carpenter J, Olkin I: Why add anything to nothing? The arcsine difference as a measure of treatment effect in meta-analysis with zero cells. Stat Med. 2009, 28 (5): 721-738. 10.1002/sim.3511.CrossRefPubMed Rücker G, Schwarzer G, Carpenter J, Olkin I: Why add anything to nothing? The arcsine difference as a measure of treatment effect in meta-analysis with zero cells. Stat Med. 2009, 28 (5): 721-738. 10.1002/sim.3511.CrossRefPubMed
13.
go back to reference Kulinskaya E, Morgenthaler S, Staudte RG: Combining the evidence using stable weights. Res Synth Methods. 2011, 3–4: 284-296. Kulinskaya E, Morgenthaler S, Staudte RG: Combining the evidence using stable weights. Res Synth Methods. 2011, 3–4: 284-296.
14.
go back to reference Yusuf S, Peto R, Lewis J, Collins R, Sleight P: Beta blockade during and after myocardial infarction: an overview of the randomized trials. Prog Cardiovasc Dis. 1985, 27: 335-371. 10.1016/S0033-0620(85)80003-7.CrossRefPubMed Yusuf S, Peto R, Lewis J, Collins R, Sleight P: Beta blockade during and after myocardial infarction: an overview of the randomized trials. Prog Cardiovasc Dis. 1985, 27: 335-371. 10.1016/S0033-0620(85)80003-7.CrossRefPubMed
15.
go back to reference Duval S, Tweedie R: A nonparametric “Trim and Fill” method of accounting for publication bias in meta-analysis. J Am Stat Assoc. 2000, 95: 89-98. Duval S, Tweedie R: A nonparametric “Trim and Fill” method of accounting for publication bias in meta-analysis. J Am Stat Assoc. 2000, 95: 89-98.
16.
go back to reference Sweeting MJ, Sutton AJ, Lambert PC: What to add to nothing? Use and avoidance of continuity corrections in meta-analysis of sparse data. Stat Med. 2004, 23: 1351-1375. 10.1002/sim.1761.CrossRefPubMed Sweeting MJ, Sutton AJ, Lambert PC: What to add to nothing? Use and avoidance of continuity corrections in meta-analysis of sparse data. Stat Med. 2004, 23: 1351-1375. 10.1002/sim.1761.CrossRefPubMed
Metadata
Title
Presenting simulation results in a nested loop plot
Authors
Gerta Rücker
Guido Schwarzer
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2014
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/1471-2288-14-129

Other articles of this Issue 1/2014

BMC Medical Research Methodology 1/2014 Go to the issue