Skip to main content
Top
Published in: Journal of Artificial Organs 2/2011

01-06-2011 | Original Article

Preparation of double-raschel knitted silk vascular grafts and evaluation of short-term function in a rat abdominal aorta

Authors: Takahito Yagi, Michiko Sato, Yasumoto Nakazawa, Kimie Tanaka, Masataka Sata, Kenji Itoh, Yoshihide Takagi, Tetsuo Asakura

Published in: Journal of Artificial Organs | Issue 2/2011

Login to get access

Abstract

Silk fibroin fiber has a long history of use in sutures because of its high strength and toughness. In the work reported in this paper, small-diameter vascular grafts 1.5 mm in diameter and 10 mm in length were prepared by coating a double-raschel knitted silk fiber graft with silk fibroin aqueous solution containing poly(ethylene glycol diglycidyl ether) as a cross-linking agent. The most important character of silk fibroin graft is remodeling, which is never observed for polyester fiber or expanded polytetrafluoroethylene grafts. The double-raschel knitted silk fiber graft with coating has sufficient physical strength and protects the ladder from the end in the implantation process. The coating also gives protection against leakage of blood from the graft, and elasticity to the graft. Eight weeks after implantation of the grafts in rat abdominal aorta, early formation of thrombosis was avoided.
Literature
1.
go back to reference Yokota T, Ichikawa H, Matsumiya G, Kuratani T, Sakaguchi T, Iwai S, Shirakawa Y, Torikai K, Saito A, Uchimura E, Kawaguchi N, Matsuura N, Sawa Y. In situ tissue regeneration using a novel tissue-engineered, small-caliber vascular graft without cell seeding. J Thorac Cardiovasc Surg. 2008;136:900–7.PubMedCrossRef Yokota T, Ichikawa H, Matsumiya G, Kuratani T, Sakaguchi T, Iwai S, Shirakawa Y, Torikai K, Saito A, Uchimura E, Kawaguchi N, Matsuura N, Sawa Y. In situ tissue regeneration using a novel tissue-engineered, small-caliber vascular graft without cell seeding. J Thorac Cardiovasc Surg. 2008;136:900–7.PubMedCrossRef
2.
go back to reference Venkatraman S, Boey F, Lao LL. Implanted cardiovascular polymers: Natural, synthetic and bio-inspired. Prog Polym Sci. 2008;33:853–74.CrossRef Venkatraman S, Boey F, Lao LL. Implanted cardiovascular polymers: Natural, synthetic and bio-inspired. Prog Polym Sci. 2008;33:853–74.CrossRef
3.
go back to reference Francois S, Chakfe N, Durand B, Laroche G. A poly(l-lactic acid) nanofibre mesh scaffold for endothelial cells on vascular prostheses. Acta Biomater. 2009;5:2418–28.PubMedCrossRef Francois S, Chakfe N, Durand B, Laroche G. A poly(l-lactic acid) nanofibre mesh scaffold for endothelial cells on vascular prostheses. Acta Biomater. 2009;5:2418–28.PubMedCrossRef
4.
go back to reference Schumann DA, Wippermann J, Klemm DO, Kramer F, Koth D, Kosmehl H, Wahlers T, Salehi-Gelani S. Artificial vascular implants from bacterial cellulose: preliminary results of small arterial substitutes. Cellulose. 2009;16:877–85.CrossRef Schumann DA, Wippermann J, Klemm DO, Kramer F, Koth D, Kosmehl H, Wahlers T, Salehi-Gelani S. Artificial vascular implants from bacterial cellulose: preliminary results of small arterial substitutes. Cellulose. 2009;16:877–85.CrossRef
5.
go back to reference Qiu YZ, Zhang N, Kang Q, An YH, Wen XJ. Fabrication of permeable tubular constructs from chemically modified chitosan with enhanced antithrombogenic property. J Biomed Mater Res B Appl Biomater. 2009;90B:668–78.CrossRef Qiu YZ, Zhang N, Kang Q, An YH, Wen XJ. Fabrication of permeable tubular constructs from chemically modified chitosan with enhanced antithrombogenic property. J Biomed Mater Res B Appl Biomater. 2009;90B:668–78.CrossRef
6.
go back to reference Liu Y, Vrana NE, Cahill PA, McGuinness GB. Physically crosslinked composite hydrogels of PVA with natural macromolecules: structure, mechanical properties, and endothelial cell compatibility. J Biomed Mater Res B Appl Biomater. 2009;90B:492–502.CrossRef Liu Y, Vrana NE, Cahill PA, McGuinness GB. Physically crosslinked composite hydrogels of PVA with natural macromolecules: structure, mechanical properties, and endothelial cell compatibility. J Biomed Mater Res B Appl Biomater. 2009;90B:492–502.CrossRef
7.
go back to reference Mirensky TL, Nelson GN, Brennan MP, Roh JD, Hibino N, Yi T, Shinoka T, Breuer CK. Tissue-engineered arterial grafts: long-term results after implantation in a small animal model. J Pediatr Surg. 2009;44:1127–33.PubMedCrossRef Mirensky TL, Nelson GN, Brennan MP, Roh JD, Hibino N, Yi T, Shinoka T, Breuer CK. Tissue-engineered arterial grafts: long-term results after implantation in a small animal model. J Pediatr Surg. 2009;44:1127–33.PubMedCrossRef
8.
go back to reference Grasl C, Bergmeister H, Stoiber M, Schima H, Weigel G. Electrospun polyurethane vascular grafts: in vitro mechanical behavior and endothelial adhesion molecule expression. J Biomed Mater Res A. 2010;93A:716–23. Grasl C, Bergmeister H, Stoiber M, Schima H, Weigel G. Electrospun polyurethane vascular grafts: in vitro mechanical behavior and endothelial adhesion molecule expression. J Biomed Mater Res A. 2010;93A:716–23.
9.
go back to reference Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL. Silk-based biomaterials. Biomaterials. 2003;24:401–16.PubMedCrossRef Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL. Silk-based biomaterials. Biomaterials. 2003;24:401–16.PubMedCrossRef
10.
go back to reference Enomoto S, Sumi M, Kajimoto K, Nakazawa Y, Takahashi R, Takabayashi C, Asakura T, Sata M. Long-term patency of small-diameter vascular graft made from fibroin, a silk-based biodegradable material. J Vasc Surg. 2010;51:155–64.PubMedCrossRef Enomoto S, Sumi M, Kajimoto K, Nakazawa Y, Takahashi R, Takabayashi C, Asakura T, Sata M. Long-term patency of small-diameter vascular graft made from fibroin, a silk-based biodegradable material. J Vasc Surg. 2010;51:155–64.PubMedCrossRef
11.
go back to reference Pektok E, Cikirikcioglu M, Tille JC, Kalangos A, Walpoth BH. Alcohol pretreatment of small-diameter expanded polytetrafluoroethylene grafts: quantitative analysis of graft healing characteristics in the rat abdominal aorta interposition model. Artif Organs. 2009;33:532–7.PubMedCrossRef Pektok E, Cikirikcioglu M, Tille JC, Kalangos A, Walpoth BH. Alcohol pretreatment of small-diameter expanded polytetrafluoroethylene grafts: quantitative analysis of graft healing characteristics in the rat abdominal aorta interposition model. Artif Organs. 2009;33:532–7.PubMedCrossRef
12.
go back to reference CDRH. Guidance for industry and FDA staff guidance document for vascular prostheses. 1999. CDRH. Guidance for industry and FDA staff guidance document for vascular prostheses. 1999.
13.
go back to reference Hayashi F, Okuda Y, Nakata M, Natori K. Development of small-diameter ePTFE vascular graft. SEI Tech Rev. 2002;161:102–6. Hayashi F, Okuda Y, Nakata M, Natori K. Development of small-diameter ePTFE vascular graft. SEI Tech Rev. 2002;161:102–6.
14.
go back to reference Minoura N, Aiba S, Gotoh Y, Tsukada M, Imai Y. Attachment and growth of cultured fibroblast cells on silk protein matrices. J Biomed Mater Res. 1995;29:1215–21.PubMedCrossRef Minoura N, Aiba S, Gotoh Y, Tsukada M, Imai Y. Attachment and growth of cultured fibroblast cells on silk protein matrices. J Biomed Mater Res. 1995;29:1215–21.PubMedCrossRef
15.
go back to reference Sofia S, McCarthy MB, Gronowicz G, Kaplan DL. Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res. 2001;54:139–48.PubMedCrossRef Sofia S, McCarthy MB, Gronowicz G, Kaplan DL. Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res. 2001;54:139–48.PubMedCrossRef
16.
go back to reference Lawrence BD, Marchant JK, Pindrus MA, Omenetto FG, Kaplan DL. Silk film biomaterials for cornea tissue engineering. Biomaterials. 2009;30:1299–308.PubMedCrossRef Lawrence BD, Marchant JK, Pindrus MA, Omenetto FG, Kaplan DL. Silk film biomaterials for cornea tissue engineering. Biomaterials. 2009;30:1299–308.PubMedCrossRef
17.
go back to reference Mandal BB, Kundu SC. Calcium alginate beads embedded in silk fibroin as 3D dual drug releasing scaffolds. Biomaterials. 2009;30:5170–7.PubMedCrossRef Mandal BB, Kundu SC. Calcium alginate beads embedded in silk fibroin as 3D dual drug releasing scaffolds. Biomaterials. 2009;30:5170–7.PubMedCrossRef
18.
go back to reference Meinel L, Hofmann S, Karageorgiou V, Kirker-Head C, McCool J, Gronowicz G, Zichner L, Langer R, Vunjak-Novakovic G, Kaplan DL. The inflammatory responses to silk films in vitro and in vivo. Biomaterials. 2005;26:147–55.PubMedCrossRef Meinel L, Hofmann S, Karageorgiou V, Kirker-Head C, McCool J, Gronowicz G, Zichner L, Langer R, Vunjak-Novakovic G, Kaplan DL. The inflammatory responses to silk films in vitro and in vivo. Biomaterials. 2005;26:147–55.PubMedCrossRef
19.
go back to reference Horan RL, Antle K, Collette AL, Huang YZ, Huang J, Moreau JE, Volloch V, Kaplan DL, Altman GH. In vitro degradation of silk fibroin. Biomaterials. 2005;26:3385–93.PubMedCrossRef Horan RL, Antle K, Collette AL, Huang YZ, Huang J, Moreau JE, Volloch V, Kaplan DL, Altman GH. In vitro degradation of silk fibroin. Biomaterials. 2005;26:3385–93.PubMedCrossRef
20.
go back to reference Min SJ, Gao X, Liu L, Tian L, Zhu LJ, Zhang HP, Yao J. Fabrication and characterization of porous tubular silk fibroin scaffolds. J Biomater Sci Polym Ed. 2009;20:1961–74.PubMedCrossRef Min SJ, Gao X, Liu L, Tian L, Zhu LJ, Zhang HP, Yao J. Fabrication and characterization of porous tubular silk fibroin scaffolds. J Biomater Sci Polym Ed. 2009;20:1961–74.PubMedCrossRef
21.
go back to reference Zhao CH, Yao JM, Masuda H, Kishore R, Asakura T. Structural characterization and artificial fiber formation of Bombyx mori silk fibroin in hexafluoro-iso-propanol solvent system. Biopolymers. 2003;69:253–9.PubMedCrossRef Zhao CH, Yao JM, Masuda H, Kishore R, Asakura T. Structural characterization and artificial fiber formation of Bombyx mori silk fibroin in hexafluoro-iso-propanol solvent system. Biopolymers. 2003;69:253–9.PubMedCrossRef
22.
go back to reference Abbott WM, Megerman J, Hasson JE, Litalien G, Warnock DF. Effect of compliance mismatch on vascular graft patency. J Vasc Surg. 1987;5:376–82.PubMedCrossRef Abbott WM, Megerman J, Hasson JE, Litalien G, Warnock DF. Effect of compliance mismatch on vascular graft patency. J Vasc Surg. 1987;5:376–82.PubMedCrossRef
23.
go back to reference Losi P, Lombardi S, Briganti E, Soldani G. Luminal surface microgeometry affects platelet adhesion in small-diameter synthetic grafts. Biomaterials. 2004;25:4447–55.PubMedCrossRef Losi P, Lombardi S, Briganti E, Soldani G. Luminal surface microgeometry affects platelet adhesion in small-diameter synthetic grafts. Biomaterials. 2004;25:4447–55.PubMedCrossRef
24.
go back to reference Sarkar S, Sales KM, Hamilton G, Seifalian AM. Addressing thrombogenicity in vascular graft construction. J Biomed Mater Res B Appl Biomater. 2007;82B:100–8.CrossRef Sarkar S, Sales KM, Hamilton G, Seifalian AM. Addressing thrombogenicity in vascular graft construction. J Biomed Mater Res B Appl Biomater. 2007;82B:100–8.CrossRef
Metadata
Title
Preparation of double-raschel knitted silk vascular grafts and evaluation of short-term function in a rat abdominal aorta
Authors
Takahito Yagi
Michiko Sato
Yasumoto Nakazawa
Kimie Tanaka
Masataka Sata
Kenji Itoh
Yoshihide Takagi
Tetsuo Asakura
Publication date
01-06-2011
Publisher
Springer Japan
Published in
Journal of Artificial Organs / Issue 2/2011
Print ISSN: 1434-7229
Electronic ISSN: 1619-0904
DOI
https://doi.org/10.1007/s10047-011-0554-z

Other articles of this Issue 2/2011

Journal of Artificial Organs 2/2011 Go to the issue