Skip to main content
Top
Published in: Knee Surgery, Sports Traumatology, Arthroscopy 5/2017

01-05-2017 | Knee

Preoperative prediction of anterior cruciate ligament tibial footprint size by anthropometric variables

Authors: Yong-Beom Park, Chul-Won Ha, Hyung-Joo Kim, Yong-Geun Park

Published in: Knee Surgery, Sports Traumatology, Arthroscopy | Issue 5/2017

Login to get access

Abstract

Purpose

The purpose of this study was to evaluate whether the ACL tibial footprint size can be predicted by anthropometric variables including height, weight, leg length, femur length, tibia length, and anteroposterior and mediolateral diameters of proximal tibia.

Methods

This study included 209 out of the 378 eligible patients. The inclusion criterion was ACL with normal gross appearance. Patients with conditions that could have affected the measurement were excluded: torn ACL, osteophyte formation around the ACL tibial attachment, presence of inflammatory arthritis, or history of knee joint infection. According to the above criteria, 169 patients were excluded from this study; 138 had torn ACL, 24 had osteophyte around the ACL footprint, 5 had history of rheumatoid arthritis, and 2 had history of previous knee joint infection. The ACL tibial footprint was carefully dissected and measured during total knee arthroplasty. Anthropometric variables regarding bone lengths were measured on radiography. The association of the ACL tibial footprint size (length and width) with anthropometric variables was analysed using simple and multiple linear regression analyses.

Results

The height, weight, leg length, femur length, tibia length, and the size of proximal tibia were associated with the ACL tibial footprint length and width. The ACL tibial footprint length could be predicted by the equation using tibia length: ACL tibial footprint length = −9.361 + 0.759 * (tibia length in cm) (R 2 = 0.44, P < 0.001) and width by the equation using weight and tibia length: ACL tibial footprint width = −0.5615 + 0.279 * (tibia length in cm) + 0.0333 * (weight in kgs) (R 2 = 0.17, P < 0.001). The concordance correlation coefficient for the measured and predicted values of ACL tibial footprint length and width showed moderate and low agreement, respectively (0.61, 95 % CI 0.53–0.68; 0.30, 95 % CI 0.21–0.38).

Conclusion

The ACL tibial footprint length and width are associated with anthropometric variables, especially with tibial length. The predictive equation developed from this study can serve as supplementary guides to determine the surgical techniques and graft options in preoperative planning of an individual ACL reconstruction.

Level of evidence

IV.
Literature
1.
go back to reference Araujo P, van Eck CF, Torabi M, Fu FH (2013) How to optimize the use of MRI in anatomic ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 21:1495–1501CrossRefPubMed Araujo P, van Eck CF, Torabi M, Fu FH (2013) How to optimize the use of MRI in anatomic ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 21:1495–1501CrossRefPubMed
2.
go back to reference Beyzadeoglu T, Akgun U, Tasdelen N, Karahan M (2012) Prediction of semitendinosus and gracilis autograft sizes for ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 20:1293–1297CrossRefPubMed Beyzadeoglu T, Akgun U, Tasdelen N, Karahan M (2012) Prediction of semitendinosus and gracilis autograft sizes for ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 20:1293–1297CrossRefPubMed
3.
go back to reference Conte EJ, Hyatt AE, Gatt CJ Jr, Dhawan A (2014) Hamstring autograft size can be predicted and is a potential risk factor for anterior cruciate ligament reconstruction failure. Arthroscopy 30:882–890CrossRefPubMed Conte EJ, Hyatt AE, Gatt CJ Jr, Dhawan A (2014) Hamstring autograft size can be predicted and is a potential risk factor for anterior cruciate ligament reconstruction failure. Arthroscopy 30:882–890CrossRefPubMed
4.
go back to reference De Mendonca MC (2000) Estimation of height from the length of long bones in a Portuguese adult population. Am J Phys Anthropol 112:39–48CrossRefPubMed De Mendonca MC (2000) Estimation of height from the length of long bones in a Portuguese adult population. Am J Phys Anthropol 112:39–48CrossRefPubMed
5.
go back to reference Dill T (2008) Contraindications to magnetic resonance imaging: non-invasive imaging. Heart 94:943–948CrossRefPubMed Dill T (2008) Contraindications to magnetic resonance imaging: non-invasive imaging. Heart 94:943–948CrossRefPubMed
6.
go back to reference Duyar I, Pelin C (2003) Body height estimation based on tibia length in different stature groups. Am J Phys Anthropol 122:23–27CrossRefPubMed Duyar I, Pelin C (2003) Body height estimation based on tibia length in different stature groups. Am J Phys Anthropol 122:23–27CrossRefPubMed
7.
go back to reference Edwards A, Bull AM, Amis AA (2007) The attachments of the anteromedial and posterolateral fibre bundles of the anterior cruciate ligament: part 1: tibial attachment. Knee Surg Sports Traumatol Arthrosc 15:1414–1421CrossRefPubMed Edwards A, Bull AM, Amis AA (2007) The attachments of the anteromedial and posterolateral fibre bundles of the anterior cruciate ligament: part 1: tibial attachment. Knee Surg Sports Traumatol Arthrosc 15:1414–1421CrossRefPubMed
8.
go back to reference Grood ES, Walz-Hasselfeld KA, Holden JP, Noyes FR, Levy MS, Butler DL, Jackson DW, Drez DJ (1992) The correlation between anterior and posterior translation and cross-sectional area of anterior cruciate ligament reconstructions. J Orthop Res 10:878–885CrossRefPubMed Grood ES, Walz-Hasselfeld KA, Holden JP, Noyes FR, Levy MS, Butler DL, Jackson DW, Drez DJ (1992) The correlation between anterior and posterior translation and cross-sectional area of anterior cruciate ligament reconstructions. J Orthop Res 10:878–885CrossRefPubMed
9.
go back to reference Han Y, Kurzencwyg D, Hart A, Powell T, Martineau PA (2012) Measuring the anterior cruciate ligament’s footprints by three-dimensional magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc 20:986–995CrossRefPubMed Han Y, Kurzencwyg D, Hart A, Powell T, Martineau PA (2012) Measuring the anterior cruciate ligament’s footprints by three-dimensional magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc 20:986–995CrossRefPubMed
10.
go back to reference Hasegawa A, Otsuki S, Pauli C, Miyaki S, Patil S, Steklov N, Kinoshita M, Koziol J, D’Lima DD, Lotz MK (2012) Anterior cruciate ligament changes in the human knee joint in aging and osteoarthritis. Arthritis Rheum 64:696–704CrossRefPubMedPubMedCentral Hasegawa A, Otsuki S, Pauli C, Miyaki S, Patil S, Steklov N, Kinoshita M, Koziol J, D’Lima DD, Lotz MK (2012) Anterior cruciate ligament changes in the human knee joint in aging and osteoarthritis. Arthritis Rheum 64:696–704CrossRefPubMedPubMedCentral
11.
go back to reference Hofbauer M, Muller B, Murawski CD, van Eck CF, Fu FH (2014) The concept of individualized anatomic anterior cruciate ligament (ACL) reconstruction. Knee Surg Sports Traumatol Arthrosc 22:979–986PubMed Hofbauer M, Muller B, Murawski CD, van Eck CF, Fu FH (2014) The concept of individualized anatomic anterior cruciate ligament (ACL) reconstruction. Knee Surg Sports Traumatol Arthrosc 22:979–986PubMed
12.
go back to reference Ichiba A, Kido H, Tokuyama F, Makuya K, Oda K (2014) Sagittal view of the tibial attachment of the anterior cruciate ligament on magnetic resonance imaging and the relationship between anterior cruciate ligament size and the physical characteristics of patients. J Orthop Sci 19:97–103CrossRefPubMed Ichiba A, Kido H, Tokuyama F, Makuya K, Oda K (2014) Sagittal view of the tibial attachment of the anterior cruciate ligament on magnetic resonance imaging and the relationship between anterior cruciate ligament size and the physical characteristics of patients. J Orthop Sci 19:97–103CrossRefPubMed
13.
go back to reference Iriuchishima T, Shirakura K, Fu FH (2013) Graft impingement in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 21:664–670CrossRefPubMed Iriuchishima T, Shirakura K, Fu FH (2013) Graft impingement in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 21:664–670CrossRefPubMed
15.
go back to reference King TS, Chinchilli VM (2001) A generalized concordance correlation coefficient for continuous and categorical data. Stat Med 20:2131–2147CrossRefPubMed King TS, Chinchilli VM (2001) A generalized concordance correlation coefficient for continuous and categorical data. Stat Med 20:2131–2147CrossRefPubMed
16.
go back to reference Kopf S, Pombo MW, Szczodry M, Irrgang JJ, Fu FH (2011) Size variability of the human anterior cruciate ligament insertion sites. Am J Sports Med 39:108–113CrossRefPubMed Kopf S, Pombo MW, Szczodry M, Irrgang JJ, Fu FH (2011) Size variability of the human anterior cruciate ligament insertion sites. Am J Sports Med 39:108–113CrossRefPubMed
17.
go back to reference Kyung HS, Baek SG, Lee BJ, Lee CH (2015) Single-bundle anterior cruciate ligament reconstruction with semitendinosus tendon using the pinn-acl crosspin system: minimum 4-Year follow-up. Knee Surg Relat Res 27:43–48CrossRefPubMedPubMedCentral Kyung HS, Baek SG, Lee BJ, Lee CH (2015) Single-bundle anterior cruciate ligament reconstruction with semitendinosus tendon using the pinn-acl crosspin system: minimum 4-Year follow-up. Knee Surg Relat Res 27:43–48CrossRefPubMedPubMedCentral
18.
go back to reference LaPrade CM, Smith SD, Rasmussen MT, Hamming MG, Wijdicks CA, Engebretsen L, Feagin JA, LaPrade RF (2015) Consequences of tibial tunnel reaming on the meniscal roots during cruciate ligament reconstruction in a cadaveric model, part 1: the anterior cruciate ligament. Am J Sports Med 43:200–206CrossRefPubMed LaPrade CM, Smith SD, Rasmussen MT, Hamming MG, Wijdicks CA, Engebretsen L, Feagin JA, LaPrade RF (2015) Consequences of tibial tunnel reaming on the meniscal roots during cruciate ligament reconstruction in a cadaveric model, part 1: the anterior cruciate ligament. Am J Sports Med 43:200–206CrossRefPubMed
19.
go back to reference Ma CB, Keifa E, Dunn W, Fu FH, Harner CD (2010) Can pre-operative measures predict quadruple hamstring graft diameter? Knee 17:81–83CrossRefPubMed Ma CB, Keifa E, Dunn W, Fu FH, Harner CD (2010) Can pre-operative measures predict quadruple hamstring graft diameter? Knee 17:81–83CrossRefPubMed
20.
go back to reference Magnussen RA, Lawrence JT, West RL, Toth AP, Taylor DC, Garrett WE (2012) Graft size and patient age are predictors of early revision after anterior cruciate ligament reconstruction with hamstring autograft. Arthroscopy 28:526–531CrossRefPubMed Magnussen RA, Lawrence JT, West RL, Toth AP, Taylor DC, Garrett WE (2012) Graft size and patient age are predictors of early revision after anterior cruciate ligament reconstruction with hamstring autograft. Arthroscopy 28:526–531CrossRefPubMed
21.
go back to reference Muller B, Hofbauer M, Wongcharoenwatana J, Fu FH (2013) Indications and contraindications for double-bundle ACL reconstruction. Int Orthop 37:239–246CrossRefPubMed Muller B, Hofbauer M, Wongcharoenwatana J, Fu FH (2013) Indications and contraindications for double-bundle ACL reconstruction. Int Orthop 37:239–246CrossRefPubMed
22.
go back to reference Nha KW, Han JH, Kwon JH, Kang KW, Park HJ, Song JG (2015) Anatomical single-bundle anterior cruciate ligament reconstruction using a freehand transtibial technique. Knee Surg Relat Res 27:117–122CrossRefPubMedPubMedCentral Nha KW, Han JH, Kwon JH, Kang KW, Park HJ, Song JG (2015) Anatomical single-bundle anterior cruciate ligament reconstruction using a freehand transtibial technique. Knee Surg Relat Res 27:117–122CrossRefPubMedPubMedCentral
23.
go back to reference Park YB, Song YS, Kim SC, Park YG, Ha CW (2015) The size of tibial footprint of anterior cruciate ligament and association with physical characteristics in Asian females. Arch Orthop Trauma Surg 135:985–992CrossRefPubMed Park YB, Song YS, Kim SC, Park YG, Ha CW (2015) The size of tibial footprint of anterior cruciate ligament and association with physical characteristics in Asian females. Arch Orthop Trauma Surg 135:985–992CrossRefPubMed
24.
go back to reference Pollard ME, Kang Q, Berg EE (1995) Radiographic sizing for meniscal transplantation. Arthroscopy 11:684–687CrossRefPubMed Pollard ME, Kang Q, Berg EE (1995) Radiographic sizing for meniscal transplantation. Arthroscopy 11:684–687CrossRefPubMed
25.
go back to reference Sabharwal S, Zhao C, McKeon J, Melaghari T, Blacksin M, Wenekor C (2007) Reliability analysis for radiographic measurement of limb length discrepancy: full-length standing anteroposterior radiograph versus scanogram. J Pediatr Orthop 27:46–50CrossRefPubMed Sabharwal S, Zhao C, McKeon J, Melaghari T, Blacksin M, Wenekor C (2007) Reliability analysis for radiographic measurement of limb length discrepancy: full-length standing anteroposterior radiograph versus scanogram. J Pediatr Orthop 27:46–50CrossRefPubMed
27.
go back to reference Shellock FG, Crues JV (2004) MR procedures: biologic effects, safety, and patient care. Radiology 232:635–652CrossRefPubMed Shellock FG, Crues JV (2004) MR procedures: biologic effects, safety, and patient care. Radiology 232:635–652CrossRefPubMed
28.
go back to reference Siebold R (2011) The concept of complete footprint restoration with guidelines for single- and double-bundle ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 19:699–706CrossRefPubMed Siebold R (2011) The concept of complete footprint restoration with guidelines for single- and double-bundle ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 19:699–706CrossRefPubMed
29.
go back to reference Siebold R, Ellert T, Metz S, Metz J (2008) Tibial insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: morphometry, arthroscopic landmarks, and orientation model for bone tunnel placement. Arthroscopy 24:154–161CrossRefPubMed Siebold R, Ellert T, Metz S, Metz J (2008) Tibial insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: morphometry, arthroscopic landmarks, and orientation model for bone tunnel placement. Arthroscopy 24:154–161CrossRefPubMed
30.
go back to reference Siebold R, Schuhmacher P (2012) Restoration of the tibial ACL footprint area and geometry using the modified insertion site table. Knee Surg Sports Traumatol Arthrosc 20:1845–1849CrossRefPubMed Siebold R, Schuhmacher P (2012) Restoration of the tibial ACL footprint area and geometry using the modified insertion site table. Knee Surg Sports Traumatol Arthrosc 20:1845–1849CrossRefPubMed
31.
go back to reference Starman JS, Vanbeek C, Armfield DR, Sahasrabudhe A, Baker CL 3rd, Irrgang JJ, Fu FH (2007) Assessment of normal ACL double bundle anatomy in standard viewing planes by magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc 15:493–499CrossRefPubMed Starman JS, Vanbeek C, Armfield DR, Sahasrabudhe A, Baker CL 3rd, Irrgang JJ, Fu FH (2007) Assessment of normal ACL double bundle anatomy in standard viewing planes by magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc 15:493–499CrossRefPubMed
32.
go back to reference Steckel H, Vadala G, Davis D, Fu FH (2006) 2D and 3D 3-tesla magnetic resonance imaging of the double bundle structure in anterior cruciate ligament anatomy. Knee Surg Sports Traumatol Arthrosc 14:1151–1158CrossRefPubMed Steckel H, Vadala G, Davis D, Fu FH (2006) 2D and 3D 3-tesla magnetic resonance imaging of the double bundle structure in anterior cruciate ligament anatomy. Knee Surg Sports Traumatol Arthrosc 14:1151–1158CrossRefPubMed
33.
go back to reference Terry MA, Winell JJ, Green DW, Schneider R, Peterson M, Marx RG, Widmann RF (2005) Measurement variance in limb length discrepancy: clinical and radiographic assessment of interobserver and intraobserver variability. J Pediatr Orthop 25:197–201CrossRefPubMed Terry MA, Winell JJ, Green DW, Schneider R, Peterson M, Marx RG, Widmann RF (2005) Measurement variance in limb length discrepancy: clinical and radiographic assessment of interobserver and intraobserver variability. J Pediatr Orthop 25:197–201CrossRefPubMed
34.
go back to reference Udagawa K, Niki Y, Enomoto H, Toyama Y, Suda Y (2014) Factors influencing graft impingement on the wall of the intercondylar notch after anatomic double-bundle anterior cruciate ligament reconstruction. Am J Sports Med 42:2219–2225CrossRefPubMed Udagawa K, Niki Y, Enomoto H, Toyama Y, Suda Y (2014) Factors influencing graft impingement on the wall of the intercondylar notch after anatomic double-bundle anterior cruciate ligament reconstruction. Am J Sports Med 42:2219–2225CrossRefPubMed
35.
go back to reference van Eck CF, Lesniak BP, Schreiber VM, Fu FH (2010) Anatomic single- and double-bundle anterior cruciate ligament reconstruction flowchart. Arthroscopy 26:258–268CrossRefPubMed van Eck CF, Lesniak BP, Schreiber VM, Fu FH (2010) Anatomic single- and double-bundle anterior cruciate ligament reconstruction flowchart. Arthroscopy 26:258–268CrossRefPubMed
36.
go back to reference van Eck CF, Samuelsson K, Vyas SM, van Dijk CN, Karlsson J, Fu FH (2011) Systematic review on cadaveric studies of anatomic anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 19(Suppl 1):S101–S108PubMed van Eck CF, Samuelsson K, Vyas SM, van Dijk CN, Karlsson J, Fu FH (2011) Systematic review on cadaveric studies of anatomic anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 19(Suppl 1):S101–S108PubMed
37.
go back to reference van Eck CF, Widhalm H, Murawski C, Fu FH (2015) Individualized anatomic anterior cruciate ligament reconstruction. Phys Sportsmed 43:87–92CrossRefPubMed van Eck CF, Widhalm H, Murawski C, Fu FH (2015) Individualized anatomic anterior cruciate ligament reconstruction. Phys Sportsmed 43:87–92CrossRefPubMed
38.
go back to reference Wernecke G, Harris IA, Houang MT, Seeto BG, Chen DB, MacDessi SJ (2011) Using magnetic resonance imaging to predict adequate graft diameters for autologous hamstring double-bundle anterior cruciate ligament reconstruction. Arthroscopy 27:1055–1059CrossRefPubMed Wernecke G, Harris IA, Houang MT, Seeto BG, Chen DB, MacDessi SJ (2011) Using magnetic resonance imaging to predict adequate graft diameters for autologous hamstring double-bundle anterior cruciate ligament reconstruction. Arthroscopy 27:1055–1059CrossRefPubMed
39.
go back to reference Wolf MR, Murawski CD, van Diek FM, van Eck CF, Huang Y, Fu FH (2015) Intercondylar notch dimensions and graft failure after single- and double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 23:680–686CrossRefPubMed Wolf MR, Murawski CD, van Diek FM, van Eck CF, Huang Y, Fu FH (2015) Intercondylar notch dimensions and graft failure after single- and double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 23:680–686CrossRefPubMed
40.
go back to reference Yoshioka Y, Siu DW, Scudamore RA, Cooke TD (1989) Tibial anatomy and functional axes. J Orthop Res 7:132–137CrossRefPubMed Yoshioka Y, Siu DW, Scudamore RA, Cooke TD (1989) Tibial anatomy and functional axes. J Orthop Res 7:132–137CrossRefPubMed
Metadata
Title
Preoperative prediction of anterior cruciate ligament tibial footprint size by anthropometric variables
Authors
Yong-Beom Park
Chul-Won Ha
Hyung-Joo Kim
Yong-Geun Park
Publication date
01-05-2017
Publisher
Springer Berlin Heidelberg
Published in
Knee Surgery, Sports Traumatology, Arthroscopy / Issue 5/2017
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-016-4164-4

Other articles of this Issue 5/2017

Knee Surgery, Sports Traumatology, Arthroscopy 5/2017 Go to the issue