Skip to main content
Top
Published in: Neuroradiology 10/2008

01-10-2008 | Paediatric Neuroradiology

Prenatal magnetic resonance imaging: brain normal linear biometric values below 24 gestational weeks

Authors: C. Parazzini, A. Righini, M. Rustico, D. Consonni, F. Triulzi

Published in: Neuroradiology | Issue 10/2008

Login to get access

Abstract

Introduction

Prenatal magnetic resonance (MR) imaging is currently used to measure quantitative data concerning brain structural development. At present, morphometric MR imaging studies have been focused mostly on the third trimester of gestational age. However, in many countries, because of legal restriction on abortion timing, the majority of MR imaging fetal examination has to be carried out during the last part of the second trimester of pregnancy (i.e., before the 24th week of gestation). Accurate and reliable normative data of the brain between 20 and 24 weeks of gestation is not available. This report provides easy and practical parametric support to assess those normative data.

Materials and methods

From a database of 1,200 fetal MR imaging studies, we retrospectively selected 84 studies of the brain of fetuses aged 20–24 weeks of gestation that resulted normal on clinical and radiological follow-up. Fetuses with proved or suspected infections, twin pregnancy, and fetuses of mothers affected by pathology that might have influenced fetal growth were excluded. Linear biometrical measurements of the main cerebral structures were obtained by three experienced pediatric neuroradiologists.

Results

A substantial interobserver agreement for each measurements was reached, and normative data with median, maximum, and minimum value were obtained for brain structures.

Conclusion

The knowledge of a range of normality and interindividual variability of linear biometrical values for the developing brain between 20th and 24th weeks of gestation may be valuable in assessing normal brain development in clinical settings.
Literature
1.
go back to reference Kubik-Huch RA, Huisman TA, Wisser J et al (2000) Ultrafast MR imaging of the fetus. AJR Am J Roentgenol 174(6):1599–1606 JunPubMed Kubik-Huch RA, Huisman TA, Wisser J et al (2000) Ultrafast MR imaging of the fetus. AJR Am J Roentgenol 174(6):1599–1606 JunPubMed
2.
go back to reference Bekker MN, van Vugt JM (2001) The role of magnetic resonance imaging in prenatal diagnosis of fetal anomalies. Eur J Obstet Gynecol Reprod Biol 96(2):173–178 JunPubMedCrossRef Bekker MN, van Vugt JM (2001) The role of magnetic resonance imaging in prenatal diagnosis of fetal anomalies. Eur J Obstet Gynecol Reprod Biol 96(2):173–178 JunPubMedCrossRef
3.
go back to reference Breysem L, Bosmans H, Dymarkowski S et al (2003) The value of fast MR imaging as an adjunct to ultrasound in prenatal diagnosis. Eur Radiol 13(7):1538–1548 JulPubMedCrossRef Breysem L, Bosmans H, Dymarkowski S et al (2003) The value of fast MR imaging as an adjunct to ultrasound in prenatal diagnosis. Eur Radiol 13(7):1538–1548 JulPubMedCrossRef
4.
go back to reference Levine D, Barnes PD, Robertson RR et al (2003) Fast MR imaging of central nervous system abnormalities. Radiology 229(1):51–61 OctPubMedCrossRef Levine D, Barnes PD, Robertson RR et al (2003) Fast MR imaging of central nervous system abnormalities. Radiology 229(1):51–61 OctPubMedCrossRef
5.
go back to reference Frates MC, Kumar AJ, Benson CB et al (2004) Fetal anomalies: comparison of MR imaging and US for diagnosis. Radiology 232(2):398–404 AugPubMedCrossRef Frates MC, Kumar AJ, Benson CB et al (2004) Fetal anomalies: comparison of MR imaging and US for diagnosis. Radiology 232(2):398–404 AugPubMedCrossRef
6.
go back to reference Whitby EH, Paley MN, Sprigg A et al (2004) Comparison of ultrasound and magnetic resonance imaging in 100 singleton pregnancies with suspected brain abnormalities. BJOG 111(8):784–792 AugPubMedCrossRef Whitby EH, Paley MN, Sprigg A et al (2004) Comparison of ultrasound and magnetic resonance imaging in 100 singleton pregnancies with suspected brain abnormalities. BJOG 111(8):784–792 AugPubMedCrossRef
7.
go back to reference Garel C, Chantrel E, Elmaleh M et al (2003) Fetal MRI: normal gestational landmarks for cerebral biometry, gyration and myelination. Childs Nerv Syst 19(7–8):422–425 AugPubMedCrossRef Garel C, Chantrel E, Elmaleh M et al (2003) Fetal MRI: normal gestational landmarks for cerebral biometry, gyration and myelination. Childs Nerv Syst 19(7–8):422–425 AugPubMedCrossRef
8.
go back to reference Garel C (2005) Fetal cerebral biometry: normal parenchymal findings and ventricular size. Eur Radiol 15:809–813PubMedCrossRef Garel C (2005) Fetal cerebral biometry: normal parenchymal findings and ventricular size. Eur Radiol 15:809–813PubMedCrossRef
9.
go back to reference Watanabe Y, Abe S, Takagi K et al (2005) Evolution of subarachnoid space in normal fetuses using magnetic resonance imaging. Prenat Diag 25:1217–1222CrossRef Watanabe Y, Abe S, Takagi K et al (2005) Evolution of subarachnoid space in normal fetuses using magnetic resonance imaging. Prenat Diag 25:1217–1222CrossRef
10.
go back to reference Twickler DM, Reichel T, McIntire DD et al (2002) Fetal central nervous system ventricle and cisterna magna measurements by magnetic resonance imaging. Am J Obstet Gynecol 187:927–931PubMedCrossRef Twickler DM, Reichel T, McIntire DD et al (2002) Fetal central nervous system ventricle and cisterna magna measurements by magnetic resonance imaging. Am J Obstet Gynecol 187:927–931PubMedCrossRef
11.
go back to reference Levine D, Hatabu H, Gaa J et al (1996) Fetal anatomy revealed with fast MR sequences. AJR Am J Roentgenol 167:905–908 OctoberPubMed Levine D, Hatabu H, Gaa J et al (1996) Fetal anatomy revealed with fast MR sequences. AJR Am J Roentgenol 167:905–908 OctoberPubMed
12.
go back to reference Prayer D, Kasprian G, Krampl E et al (2006) MRI of normal fetal brain development. Eur J Radiol 57:199–216PubMedCrossRef Prayer D, Kasprian G, Krampl E et al (2006) MRI of normal fetal brain development. Eur J Radiol 57:199–216PubMedCrossRef
13.
go back to reference Claude I, Daire JL, Sebag G (2004) Fetal brain MRI: segmentation and biometric analysis of the posterior fossa. IEEE Trans Biomed Eng 51(4):617–626 AprPubMedCrossRef Claude I, Daire JL, Sebag G (2004) Fetal brain MRI: segmentation and biometric analysis of the posterior fossa. IEEE Trans Biomed Eng 51(4):617–626 AprPubMedCrossRef
14.
go back to reference Guibaud L (2004) Practical approach to prenatal posterior fossa abnormalities using MRI. Pediatr Radiol 34:700–711PubMedCrossRef Guibaud L (2004) Practical approach to prenatal posterior fossa abnormalities using MRI. Pediatr Radiol 34:700–711PubMedCrossRef
15.
go back to reference Garel C (2004) MRI of the fetal brain. Springer, Berlin, p 29 Garel C (2004) MRI of the fetal brain. Springer, Berlin, p 29
16.
go back to reference Stazzone MM, Hubbard AM, Bilaniuk LT et al (2000) Ultrafast MR imaging of the normal posterior fossa in fetuses. AJR Am J Roentgenol 175:835–839 SeptemberPubMed Stazzone MM, Hubbard AM, Bilaniuk LT et al (2000) Ultrafast MR imaging of the normal posterior fossa in fetuses. AJR Am J Roentgenol 175:835–839 SeptemberPubMed
17.
18.
go back to reference Hertzberg BS, Kliewer MA, Freed KS et al (1997) Third ventricle: size and appearance in normal fetuses through gestation. Radiology 203(3):641–644PubMed Hertzberg BS, Kliewer MA, Freed KS et al (1997) Third ventricle: size and appearance in normal fetuses through gestation. Radiology 203(3):641–644PubMed
19.
go back to reference Amin RS, Nikolaidis P, Kawashima A et al (1999) Normal anatomy of the fetus at MR imaging. Radiographics 19:S201–S214PubMed Amin RS, Nikolaidis P, Kawashima A et al (1999) Normal anatomy of the fetus at MR imaging. Radiographics 19:S201–S214PubMed
20.
go back to reference Zalel Y, Seidman DS, Brandt N et al (2002) The development of the fetal vermis: an in-utero sonographic evaluation. Ultrasound Obstet Gynecol 19:136–139PubMedCrossRef Zalel Y, Seidman DS, Brandt N et al (2002) The development of the fetal vermis: an in-utero sonographic evaluation. Ultrasound Obstet Gynecol 19:136–139PubMedCrossRef
21.
go back to reference Triulzi F, Parazzini C, Righini A (2005) MRI of fetal and neonatal cerebellar development. Semin Fetal Neonatal Med 10:411–420PubMed Triulzi F, Parazzini C, Righini A (2005) MRI of fetal and neonatal cerebellar development. Semin Fetal Neonatal Med 10:411–420PubMed
22.
go back to reference Chong BW, Babcook CJ, Pang D, Ellis WG (1997) A magnetic resonance template for normal cerebellar development in the human fetus. Neurosurgery 41(4):924–929 OctPubMedCrossRef Chong BW, Babcook CJ, Pang D, Ellis WG (1997) A magnetic resonance template for normal cerebellar development in the human fetus. Neurosurgery 41(4):924–929 OctPubMedCrossRef
23.
go back to reference Malinger G, Zakut H (1993) The corpus callosum: normal fetal development as shown by transvaginal sonography. AJR Am J Roentgenol 161:1041–1043PubMed Malinger G, Zakut H (1993) The corpus callosum: normal fetal development as shown by transvaginal sonography. AJR Am J Roentgenol 161:1041–1043PubMed
24.
go back to reference Garel C, Brisse H, Sebag G et al (1998) Magnetic resonance imaging of the fetus. Pediatr Radiol 28:201–211PubMedCrossRef Garel C, Brisse H, Sebag G et al (1998) Magnetic resonance imaging of the fetus. Pediatr Radiol 28:201–211PubMedCrossRef
Metadata
Title
Prenatal magnetic resonance imaging: brain normal linear biometric values below 24 gestational weeks
Authors
C. Parazzini
A. Righini
M. Rustico
D. Consonni
F. Triulzi
Publication date
01-10-2008
Publisher
Springer-Verlag
Published in
Neuroradiology / Issue 10/2008
Print ISSN: 0028-3940
Electronic ISSN: 1432-1920
DOI
https://doi.org/10.1007/s00234-008-0421-7

Other articles of this Issue 10/2008

Neuroradiology 10/2008 Go to the issue