Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2021

Open Access 01-12-2021 | Research

Predictors of the surgical outcome of propeller perforator flap reconstruction, focusing on the effective safe distance between the perforator and the wound edge

Authors: Peng Wang, Fang Lin, Yunhong Ma, Jianbing Wang, Ming Zhou, Yongjun Rui

Published in: BMC Musculoskeletal Disorders | Issue 1/2021

Login to get access

Abstract

Background

Soft tissue defects in the distal third of the leg and malleolus are difficult to cover and often require free tissue transfer, even for small-sized defects. Propeller flaps were designed as an alternative to free tissue transfer, but are reportedly associated with high complication rates. The aim of our study was to assess our institutional experience with the propeller flap technique and to predict its outcome in lower-limb reconstruction.

Methods

All patients who had undergone propeller flap reconstruction of a distal leg defect between 2013 and 2018 were included. Demographic, clinical, and follow-up data were analyzed.

Results

Complications occurred in 17 of 82 propeller flaps (20.7%), comprising 11 cases of partial necrosis and six of total necrosis. There were no significant differences in age, sex, body mass index smoking, diabetes mellitus, and soft tissue defect sites between the groups of patients with versus without flap necrosis (p > 0.05). In univariate analysis, there were also no significant differences between these two groups in the length and width of the fascial pedicle, and the ratio of the flap length to the flap width (p > 0.05). Interestingly, there were significant differences between the two groups in the distance between the flap perforator, the shortest distance from the perforator to the defect location, and the rotation angle of the flap (p < 0.05). In multivariable logistic regression analysis with odds ratios (ORs) and 95% confidence intervals (95% CIs), the shortest distance from the perforator to the defect location was a significant risk factor for flap complications (p = 0.000; OR = 0.806). Receiver operating characteristic curve analysis showed that when the shortest distance from the flap to the wound was less than 3.5 cm, the necrosis rate of the flap was markedly increased (AUC = 76.1); this suggests that the effective safe flap–wound distance was 3.5 cm.

Conclusions

Propeller flaps are a reliable option for reconstruction in carefully selected patients with traumatic defects of the lower limb and malleolus. We found that the effective safe distance was 3.5 cm from the flap to the wound.
Literature
1.
go back to reference Sisti A, D’aniello C, Fortezza L, et al. Propeller flaps:a literature review. In Vivo. 2016;30(4):351–73.PubMed Sisti A, D’aniello C, Fortezza L, et al. Propeller flaps:a literature review. In Vivo. 2016;30(4):351–73.PubMed
2.
go back to reference Bekara F, Herlin C, Somda S, et al. Free versus perforator-pedicled propeller flaps in lower extremity reconstruction: What is the safest coverage? A meta-analysis. Mierosurgery. 2018;38(1):109–19.CrossRef Bekara F, Herlin C, Somda S, et al. Free versus perforator-pedicled propeller flaps in lower extremity reconstruction: What is the safest coverage? A meta-analysis. Mierosurgery. 2018;38(1):109–19.CrossRef
3.
go back to reference Tos P, Innocenti M, Artiaco S, et al. Perforator-based propeller flaps treating loss of substance in the lower limb. J Orthop Traumatol. 2011;12(2):93–9.PubMedPubMedCentralCrossRef Tos P, Innocenti M, Artiaco S, et al. Perforator-based propeller flaps treating loss of substance in the lower limb. J Orthop Traumatol. 2011;12(2):93–9.PubMedPubMedCentralCrossRef
4.
go back to reference Scaglioni MF, Giuseppe AD, Chang EI. Propeller flap reconstruction of abdominal defects: review of the literature and case report. Microsurgery. 2015;35(1):72–8.PubMedCrossRef Scaglioni MF, Giuseppe AD, Chang EI. Propeller flap reconstruction of abdominal defects: review of the literature and case report. Microsurgery. 2015;35(1):72–8.PubMedCrossRef
5.
go back to reference D’Arpa S, Cordova A, Pignatti M, et al. Freestyle pedicled perforator flaps: safety, prevention of complications, and management based on 85 consecutive cases. Plast Reconstr Surg. 2011;128(4):892–906.PubMedCrossRef D’Arpa S, Cordova A, Pignatti M, et al. Freestyle pedicled perforator flaps: safety, prevention of complications, and management based on 85 consecutive cases. Plast Reconstr Surg. 2011;128(4):892–906.PubMedCrossRef
6.
go back to reference Ioannidis S, Spyropoulou GA, Sadigh P, et al. Pedicledfree-style perforator flaps for trunk reconstruction: a reliable method. Plast Reconstr Surg. 2015;135(2):602–9.PubMedCrossRef Ioannidis S, Spyropoulou GA, Sadigh P, et al. Pedicledfree-style perforator flaps for trunk reconstruction: a reliable method. Plast Reconstr Surg. 2015;135(2):602–9.PubMedCrossRef
7.
go back to reference Innocenti M, Menichini G, Baldrighi C, et al. Are there risk factors for complications of perforator-based propeller flaps for lower-extremity reconstruction? Clin Orthop Relat Res. 2014;472(7):2276–86.PubMedPubMedCentralCrossRef Innocenti M, Menichini G, Baldrighi C, et al. Are there risk factors for complications of perforator-based propeller flaps for lower-extremity reconstruction? Clin Orthop Relat Res. 2014;472(7):2276–86.PubMedPubMedCentralCrossRef
8.
go back to reference Gir P, Cheng A, Oni G, et al. Pedicled-perforator (propeller) flaps in lower extremity defects: a systematic review. J Reconstr Microsurg. 2012;28(9):595–601.PubMedCrossRef Gir P, Cheng A, Oni G, et al. Pedicled-perforator (propeller) flaps in lower extremity defects: a systematic review. J Reconstr Microsurg. 2012;28(9):595–601.PubMedCrossRef
9.
go back to reference Nelson JA, Fischer JP, Brazio PS, et al. A review of propeller flaps for distal lower extremity soft tissue reconstruction: Is flap loss too high? Microsurgery. 2013;33(7):578–86.PubMedCrossRef Nelson JA, Fischer JP, Brazio PS, et al. A review of propeller flaps for distal lower extremity soft tissue reconstruction: Is flap loss too high? Microsurgery. 2013;33(7):578–86.PubMedCrossRef
10.
go back to reference Oh TS, Hallock G, Hong JP. Freestyle propeller flaps to reconstruct defects of the posterior trunk: a simple approach to a difficult problem. Ann Plast Surg. 2012;68(1):79–82.PubMedCrossRef Oh TS, Hallock G, Hong JP. Freestyle propeller flaps to reconstruct defects of the posterior trunk: a simple approach to a difficult problem. Ann Plast Surg. 2012;68(1):79–82.PubMedCrossRef
11.
go back to reference Lazzeri D, Huemer GM, Nicoli F, et al. Indications, outcomes, and complications of pedicled propeller perforator flaps for upper body defects: a systematic review. Arch Plast Surg. 2013;40(1):44–50.PubMedPubMedCentralCrossRef Lazzeri D, Huemer GM, Nicoli F, et al. Indications, outcomes, and complications of pedicled propeller perforator flaps for upper body defects: a systematic review. Arch Plast Surg. 2013;40(1):44–50.PubMedPubMedCentralCrossRef
12.
go back to reference Parrett B, Pribaz JJ, Matres E, et al. Risk analysis for the reverse sural fasciocutaneous flap in distal leg reconstruction. Plast Reconstr Surg. 2009;123(5):1499–504.PubMedCrossRef Parrett B, Pribaz JJ, Matres E, et al. Risk analysis for the reverse sural fasciocutaneous flap in distal leg reconstruction. Plast Reconstr Surg. 2009;123(5):1499–504.PubMedCrossRef
13.
go back to reference Baumeister SP, Spierer R, Erdmann D, et al. A realistic complication analysis of 70 sural artery flaps in a multimorbid patient group. Plast Reconstr Surg. 2003;112(1):129–40.PubMedCrossRef Baumeister SP, Spierer R, Erdmann D, et al. A realistic complication analysis of 70 sural artery flaps in a multimorbid patient group. Plast Reconstr Surg. 2003;112(1):129–40.PubMedCrossRef
14.
go back to reference Kelahmetoglu O, Van Landuyt K, Yagmur C, Sommeling CE, Keles MK, Tayfur V, Simsek T, Demirtas Y, Guneren E. A simple concept for covering pressure sores: wound edge-based propeller perforator flap. Int Wound J. 2017;14(6):1183–8.PubMedPubMedCentralCrossRef Kelahmetoglu O, Van Landuyt K, Yagmur C, Sommeling CE, Keles MK, Tayfur V, Simsek T, Demirtas Y, Guneren E. A simple concept for covering pressure sores: wound edge-based propeller perforator flap. Int Wound J. 2017;14(6):1183–8.PubMedPubMedCentralCrossRef
15.
go back to reference Paik JM, Pyon JK. Risk Factor Analysis of Freestyle Propeller Flaps. J Reconstr Microsurg. 2017;33:26–31.PubMedCrossRef Paik JM, Pyon JK. Risk Factor Analysis of Freestyle Propeller Flaps. J Reconstr Microsurg. 2017;33:26–31.PubMedCrossRef
16.
go back to reference Pignatti M, Ogawa R, Hallock GG, et al. The “Tokyo” consensus on propeller flaps. Plast Reconstr Surg. 2011;127(2):716–22.PubMedCrossRef Pignatti M, Ogawa R, Hallock GG, et al. The “Tokyo” consensus on propeller flaps. Plast Reconstr Surg. 2011;127(2):716–22.PubMedCrossRef
17.
go back to reference Koshima I, Moriguchi T, Ohta S, et al. The vasculature and clinical application of the posterior tibial perforator-based flap. Plast Reconstr Surg. 1992;90:643–9.PubMedCrossRef Koshima I, Moriguchi T, Ohta S, et al. The vasculature and clinical application of the posterior tibial perforator-based flap. Plast Reconstr Surg. 1992;90:643–9.PubMedCrossRef
18.
go back to reference Jakubietz RG, Jakubietz MG, Gruenert JG, et al. The 180-degree perforatorbased propeller flap for soft tissue coverage of the distal, lower extremity: a new method to achieve reliable coverage of the distal lower extremity with a local, fasciocutaneous perforator flap. Ann Plast Surg. 2007;2007(59):667–71.CrossRef Jakubietz RG, Jakubietz MG, Gruenert JG, et al. The 180-degree perforatorbased propeller flap for soft tissue coverage of the distal, lower extremity: a new method to achieve reliable coverage of the distal lower extremity with a local, fasciocutaneous perforator flap. Ann Plast Surg. 2007;2007(59):667–71.CrossRef
19.
go back to reference Jakubietz RG, Jakubietz DF, Gruenert JG, et al. Reconstruction of soft tissue defects of the Achilles tendon with rotation flaps, pedicled propeller flaps and free perforator flaps. Microsurgery. 2010;30:608–13.PubMedCrossRef Jakubietz RG, Jakubietz DF, Gruenert JG, et al. Reconstruction of soft tissue defects of the Achilles tendon with rotation flaps, pedicled propeller flaps and free perforator flaps. Microsurgery. 2010;30:608–13.PubMedCrossRef
20.
go back to reference Pignatti M, Pasqualini M, Governa M, et al. Propeller flaps for leg reconstruction. J Plast Reconstr Aesthet Surg. 2008;61:777–83.PubMedCrossRef Pignatti M, Pasqualini M, Governa M, et al. Propeller flaps for leg reconstruction. J Plast Reconstr Aesthet Surg. 2008;61:777–83.PubMedCrossRef
21.
go back to reference Hallock GG. A paradigm shift in flap selection protocols for zones of the lower extremity using perforator flaps. J Reconstr Microsurg. 2013;29:233–40.PubMedCrossRef Hallock GG. A paradigm shift in flap selection protocols for zones of the lower extremity using perforator flaps. J Reconstr Microsurg. 2013;29:233–40.PubMedCrossRef
23.
go back to reference Nenad T, Reiner W, Michael S, et al. Saphenous perforator flap for reconstructive surgery in the lower leg and the foot: a clinical study of 50 patients with posttraumatic osteomyelitis. J Trauma. 2010;68(5):1200–7.PubMed Nenad T, Reiner W, Michael S, et al. Saphenous perforator flap for reconstructive surgery in the lower leg and the foot: a clinical study of 50 patients with posttraumatic osteomyelitis. J Trauma. 2010;68(5):1200–7.PubMed
24.
go back to reference Dai JZ, Chai YM, Wang CY, et al. Distally based saphenous neurocutaneous perforator flap for reconstructive surgery in the lower leg and the foot: a long-term follow-up study of 70 patients. J Reconstr Microsurg. 2013;29(7):481–6.PubMedCrossRef Dai JZ, Chai YM, Wang CY, et al. Distally based saphenous neurocutaneous perforator flap for reconstructive surgery in the lower leg and the foot: a long-term follow-up study of 70 patients. J Reconstr Microsurg. 2013;29(7):481–6.PubMedCrossRef
25.
go back to reference Hifny MA, Tohamy AMA, Rabie O, et al. Propeller perforator flaps for coverage of soft tissue defects in the middle and distal lower extremities. Ann Chir Plast Esthet. 2020;65(1):54–60.PubMedCrossRef Hifny MA, Tohamy AMA, Rabie O, et al. Propeller perforator flaps for coverage of soft tissue defects in the middle and distal lower extremities. Ann Chir Plast Esthet. 2020;65(1):54–60.PubMedCrossRef
26.
go back to reference Gunnarsson GL, Jackson IT, Westvik TS, et al. The freestyle pedicle perforator flap: a new favorite for the reconstruction of moderate-sized defects of the torso and extremities. Eur J Plast Surg. 2015;38:31–6.PubMedCrossRef Gunnarsson GL, Jackson IT, Westvik TS, et al. The freestyle pedicle perforator flap: a new favorite for the reconstruction of moderate-sized defects of the torso and extremities. Eur J Plast Surg. 2015;38:31–6.PubMedCrossRef
27.
go back to reference Bekara F, Herlin C, Mojallal A, et al. A Systematic Review and Meta-Analysis of Perforator-Pedicled Propeller Flaps in Lower Extremity Defects: Identification of Risk Factors for Complications. Plast Reconstr Surg. 2016;137(1):314–31.PubMedCrossRef Bekara F, Herlin C, Mojallal A, et al. A Systematic Review and Meta-Analysis of Perforator-Pedicled Propeller Flaps in Lower Extremity Defects: Identification of Risk Factors for Complications. Plast Reconstr Surg. 2016;137(1):314–31.PubMedCrossRef
28.
go back to reference Demirtas Y, Cifci M, Kelahmetoglu O, et al. Three-dimensional multislice spiral computed tomographic angiography: A potentially useful tool for safer free tissue transfer to complicatedregions. Microsurgery. 2019;29(7):536–40.CrossRef Demirtas Y, Cifci M, Kelahmetoglu O, et al. Three-dimensional multislice spiral computed tomographic angiography: A potentially useful tool for safer free tissue transfer to complicatedregions. Microsurgery. 2019;29(7):536–40.CrossRef
29.
go back to reference Hamdi M, Van Landuyt K, Van Hedent E, et al. Advancesin autogenous breast reconstruction: The role of preoperative perforatormapping. Ann Plast Surg. 2007;58(1):18–26.PubMedCrossRef Hamdi M, Van Landuyt K, Van Hedent E, et al. Advancesin autogenous breast reconstruction: The role of preoperative perforatormapping. Ann Plast Surg. 2007;58(1):18–26.PubMedCrossRef
30.
go back to reference Kelahmetoglu O, Aksoy DO, Sonmez Ergun S, et al. The planning of propeller perforator flap on previously transferred musculocutaneous flap via multidetector computed tomography for the reconstruction of tissue defect overlying Achilles tendon. Microsurgery. 2018;38(7):819–20.PubMedCrossRef Kelahmetoglu O, Aksoy DO, Sonmez Ergun S, et al. The planning of propeller perforator flap on previously transferred musculocutaneous flap via multidetector computed tomography for the reconstruction of tissue defect overlying Achilles tendon. Microsurgery. 2018;38(7):819–20.PubMedCrossRef
31.
go back to reference Panse N, Sahasrabudhe P. Free style perforator based propeller flaps: Simple solutions for upper extremity reconstruction! Indian J Plast Surg. 2014;47(1):77–84.PubMedPubMedCentralCrossRef Panse N, Sahasrabudhe P. Free style perforator based propeller flaps: Simple solutions for upper extremity reconstruction! Indian J Plast Surg. 2014;47(1):77–84.PubMedPubMedCentralCrossRef
32.
go back to reference Gascoigne AC, Taylor GI, Corlett RJ, et al. The relationship of superficial cutaneous nerves and interperforator connections in the leg: a cadaveric anatomical study. Plast Reconstr Surg. 2017;139(4):994e–1002e.PubMedCrossRef Gascoigne AC, Taylor GI, Corlett RJ, et al. The relationship of superficial cutaneous nerves and interperforator connections in the leg: a cadaveric anatomical study. Plast Reconstr Surg. 2017;139(4):994e–1002e.PubMedCrossRef
33.
go back to reference Wong CH, Cui F, Tan BK, et al. Nonlinear finite element simulations to elucidate the determinants of perforator patency in propeller flaps. Ann Plast Surg. 2007;59(6):672–8.PubMedCrossRef Wong CH, Cui F, Tan BK, et al. Nonlinear finite element simulations to elucidate the determinants of perforator patency in propeller flaps. Ann Plast Surg. 2007;59(6):672–8.PubMedCrossRef
34.
go back to reference Wong JKF, Deek N, Hsu C-C, et al. Versatility and “flap efficiency” of pedicled perforator flaps in lower extremity Reconstruction. J Plast Reconstr Aesthet Surg. 2017;70:67–77.PubMedCrossRef Wong JKF, Deek N, Hsu C-C, et al. Versatility and “flap efficiency” of pedicled perforator flaps in lower extremity Reconstruction. J Plast Reconstr Aesthet Surg. 2017;70:67–77.PubMedCrossRef
35.
go back to reference Demir A, Acar M, Yldz L, Karacalar A. The effect of twisting on perforator flap viability: an experimental study in rats. Ann Plast Surg. 2006;56(2):186–9.PubMedCrossRef Demir A, Acar M, Yldz L, Karacalar A. The effect of twisting on perforator flap viability: an experimental study in rats. Ann Plast Surg. 2006;56(2):186–9.PubMedCrossRef
36.
go back to reference Rout DK, Nayak BB, Choudhury AK, et al. Reconstruction of high voltage electricburn wound with exposed shoulder jioint by thoracoacromial artery perforator propeller flap. Indian J Plast Surg. 2014;47(2):256–8.PubMedPubMedCentralCrossRef Rout DK, Nayak BB, Choudhury AK, et al. Reconstruction of high voltage electricburn wound with exposed shoulder jioint by thoracoacromial artery perforator propeller flap. Indian J Plast Surg. 2014;47(2):256–8.PubMedPubMedCentralCrossRef
37.
go back to reference Saint-Cyr M, Wong C, Schaverien M, et al. The perforasome theory: vascular anatomy and clinical implications. Plast Reconstr Surg. 2009;124(5):1529–44.PubMedCrossRef Saint-Cyr M, Wong C, Schaverien M, et al. The perforasome theory: vascular anatomy and clinical implications. Plast Reconstr Surg. 2009;124(5):1529–44.PubMedCrossRef
38.
go back to reference Schmidt M, Tinhofer I, Duscher D, et al. Perforasomes of the upper abdomen: an anatomical study. J Plast Reconstr Aesthet Surg. 2014;67(1):42–7.PubMedCrossRef Schmidt M, Tinhofer I, Duscher D, et al. Perforasomes of the upper abdomen: an anatomical study. J Plast Reconstr Aesthet Surg. 2014;67(1):42–7.PubMedCrossRef
39.
go back to reference Ioannidis S, Spyropoulou GA, Sadigh P, et al. Pedicled free-style perforator flaps for trunk reconstruction: a reliable method. Plast Reconstr Surg. 2015;135(2):602–9.PubMedCrossRef Ioannidis S, Spyropoulou GA, Sadigh P, et al. Pedicled free-style perforator flaps for trunk reconstruction: a reliable method. Plast Reconstr Surg. 2015;135(2):602–9.PubMedCrossRef
40.
go back to reference Park SW, Oh TS, Eom JS, et al. Freestyle multiple propeller flap reconstruction (jigsaw puzzle approach) for complicated back defects. J Reconstr Microsurg. 2015;31(4):261–7.PubMedCrossRef Park SW, Oh TS, Eom JS, et al. Freestyle multiple propeller flap reconstruction (jigsaw puzzle approach) for complicated back defects. J Reconstr Microsurg. 2015;31(4):261–7.PubMedCrossRef
41.
go back to reference Bekara F, Herlin C, Somda S, et al. Free versus perforator-pedicled propeller flaps in lower ex-tremity reconstruction: what is the safest coverage? A meta-analysis. Microsurgery. 2018;38(1):109–19.PubMedCrossRef Bekara F, Herlin C, Somda S, et al. Free versus perforator-pedicled propeller flaps in lower ex-tremity reconstruction: what is the safest coverage? A meta-analysis. Microsurgery. 2018;38(1):109–19.PubMedCrossRef
Metadata
Title
Predictors of the surgical outcome of propeller perforator flap reconstruction, focusing on the effective safe distance between the perforator and the wound edge
Authors
Peng Wang
Fang Lin
Yunhong Ma
Jianbing Wang
Ming Zhou
Yongjun Rui
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2021
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-021-04522-z

Other articles of this Issue 1/2021

BMC Musculoskeletal Disorders 1/2021 Go to the issue