Skip to main content
Top
Published in: Journal of Translational Medicine 1/2021

Open Access 01-12-2021 | Research

Predicting phosphorylation sites using machine learning by integrating the sequence, structure, and functional information of proteins

Authors: Salma Jamal, Waseem Ali, Priya Nagpal, Abhinav Grover, Sonam Grover

Published in: Journal of Translational Medicine | Issue 1/2021

Login to get access

Abstract

Background

Post-translational modification (PTM) is a biological process that alters proteins and is therefore involved in the regulation of various cellular activities and pathogenesis. Protein phosphorylation is an essential process and one of the most-studied PTMs: it occurs when a phosphate group is added to serine (Ser, S), threonine (Thr, T), or tyrosine (Tyr, Y) residue. Dysregulation of protein phosphorylation can lead to various diseases—most commonly neurological disorders, Alzheimer’s disease, and Parkinson’s disease—thus necessitating the prediction of S/T/Y residues that can be phosphorylated in an uncharacterized amino acid sequence. Despite a surplus of sequencing data, current experimental methods of PTM prediction are time-consuming, costly, and error-prone, so a number of computational methods have been proposed to replace them. However, phosphorylation prediction remains limited, owing to substrate specificity, performance, and the diversity of its features.

Methods

In the present study we propose machine-learning-based predictors that use the physicochemical, sequence, structural, and functional information of proteins to classify S/T/Y phosphorylation sites. Rigorous feature selection, the minimum redundancy/maximum relevance approach, and the symmetrical uncertainty method were employed to extract the most informative features to train the models.

Results

The RF and SVM models generated using diverse feature types in the present study were highly accurate as is evident from good values for different statistical measures. Moreover, independent test sets and benchmark validations indicated that the proposed method clearly outperformed the existing methods, demonstrating its ability to accurately predict protein phosphorylation.

Conclusions

The results obtained in the present work indicate that the proposed computational methodology can be effectively used for predicting putative phosphorylation sites further facilitating discovery of various biological processes mechanisms.
Appendix
Available only for authorised users
Literature
1.
go back to reference Walsh CT, Garneau-Tsodikova S, Gatto GJ Jr. Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed Engl. 2005;44(45):7342–72.PubMedCrossRef Walsh CT, Garneau-Tsodikova S, Gatto GJ Jr. Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed Engl. 2005;44(45):7342–72.PubMedCrossRef
2.
go back to reference Audagnotto M, Dal Peraro M. Protein post-translational modifications: in silico prediction tools and molecular modeling. Comput Struct Biotechnol J. 2017;15:307–19.PubMedPubMedCentralCrossRef Audagnotto M, Dal Peraro M. Protein post-translational modifications: in silico prediction tools and molecular modeling. Comput Struct Biotechnol J. 2017;15:307–19.PubMedPubMedCentralCrossRef
3.
go back to reference Deribe YL, Pawson T, Dikic I. Post-translational modifications in signal integration. Nat Struct Mol Biol. 2010;17(6):666–72.PubMedCrossRef Deribe YL, Pawson T, Dikic I. Post-translational modifications in signal integration. Nat Struct Mol Biol. 2010;17(6):666–72.PubMedCrossRef
4.
go back to reference Cohen P. The role of protein phosphorylation in neural and hormonal control of cellular activity. Nature. 1982;296(5858):613–20.PubMedCrossRef Cohen P. The role of protein phosphorylation in neural and hormonal control of cellular activity. Nature. 1982;296(5858):613–20.PubMedCrossRef
5.
7.
go back to reference Kelley AR, Bach SBH, Perry G. Analysis of post-translational modifications in Alzheimer’s disease by mass spectrometry. Biochim Biophys Acta Mol Basis Dis. 2019;1865(8):2040–7.PubMedCrossRef Kelley AR, Bach SBH, Perry G. Analysis of post-translational modifications in Alzheimer’s disease by mass spectrometry. Biochim Biophys Acta Mol Basis Dis. 2019;1865(8):2040–7.PubMedCrossRef
8.
go back to reference Martin L, Latypova X, Terro F. Post-translational modifications of tau protein: implications for Alzheimer’s disease. Neurochem Int. 2011;58(4):458–71.PubMedCrossRef Martin L, Latypova X, Terro F. Post-translational modifications of tau protein: implications for Alzheimer’s disease. Neurochem Int. 2011;58(4):458–71.PubMedCrossRef
9.
go back to reference Pearson RB, Kemp BE. Protein kinase phosphorylation site sequences and consensus specificity motifs: tabulations. Methods Enzymol. 1991;200:62–81.PubMedCrossRef Pearson RB, Kemp BE. Protein kinase phosphorylation site sequences and consensus specificity motifs: tabulations. Methods Enzymol. 1991;200:62–81.PubMedCrossRef
10.
go back to reference Song J, Wang H, Wang J, Leier A, Marquez-Lago T, Yang B, et al. PhosphoPredict: a bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection. Sci Rep. 2017;7(1):6862.PubMedPubMedCentralCrossRef Song J, Wang H, Wang J, Leier A, Marquez-Lago T, Yang B, et al. PhosphoPredict: a bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection. Sci Rep. 2017;7(1):6862.PubMedPubMedCentralCrossRef
11.
go back to reference Wei L, Xing P, Tang J, Zou Q. PhosPred-RF: a novel sequence-based predictor for phosphorylation sites using sequential information only. IEEE Trans Nanobiosci. 2017;16(4):240–7.CrossRef Wei L, Xing P, Tang J, Zou Q. PhosPred-RF: a novel sequence-based predictor for phosphorylation sites using sequential information only. IEEE Trans Nanobiosci. 2017;16(4):240–7.CrossRef
12.
go back to reference Diella F, Cameron S, Gemund C, Linding R, Via A, Kuster B, et al. Phospho.ELM: a database of experimentally verified phosphorylation sites in eukaryotic proteins. BMC Bioinform. 2004;5:79.CrossRef Diella F, Cameron S, Gemund C, Linding R, Via A, Kuster B, et al. Phospho.ELM: a database of experimentally verified phosphorylation sites in eukaryotic proteins. BMC Bioinform. 2004;5:79.CrossRef
13.
go back to reference Maiti S, Hassan A, Mitra P. Boosting phosphorylation site prediction with sequence feature-based machine learning. Proteins. 2020;88(2):284–91.PubMedCrossRef Maiti S, Hassan A, Mitra P. Boosting phosphorylation site prediction with sequence feature-based machine learning. Proteins. 2020;88(2):284–91.PubMedCrossRef
14.
go back to reference Trost B, Kusalik A. Computational prediction of eukaryotic phosphorylation sites. Bioinformatics. 2011;27(21):2927–35.PubMedCrossRef Trost B, Kusalik A. Computational prediction of eukaryotic phosphorylation sites. Bioinformatics. 2011;27(21):2927–35.PubMedCrossRef
15.
go back to reference Dou Y, Yao B, Zhang C. PhosphoSVM: prediction of phosphorylation sites by integrating various protein sequence attributes with a support vector machine. Amino Acids. 2014;46(6):1459–69.PubMedCrossRef Dou Y, Yao B, Zhang C. PhosphoSVM: prediction of phosphorylation sites by integrating various protein sequence attributes with a support vector machine. Amino Acids. 2014;46(6):1459–69.PubMedCrossRef
16.
go back to reference Blom N, Gammeltoft S, Brunak S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol. 1999;294(5):1351–62.PubMedCrossRef Blom N, Gammeltoft S, Brunak S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol. 1999;294(5):1351–62.PubMedCrossRef
17.
go back to reference Biswas AK, Noman N, Sikder AR. Machine learning approach to predict protein phosphorylation sites by incorporating evolutionary information. BMC Bioinformat. 2010;11:273.CrossRef Biswas AK, Noman N, Sikder AR. Machine learning approach to predict protein phosphorylation sites by incorporating evolutionary information. BMC Bioinformat. 2010;11:273.CrossRef
18.
go back to reference Wang D, Zeng S, Xu C, Qiu W, Liang Y, Joshi T, et al. MusiteDeep: a deep-learning framework for general and kinase-specific phosphorylation site prediction. Bioinformatics. 2017;33(24):3909–16.PubMedPubMedCentralCrossRef Wang D, Zeng S, Xu C, Qiu W, Liang Y, Joshi T, et al. MusiteDeep: a deep-learning framework for general and kinase-specific phosphorylation site prediction. Bioinformatics. 2017;33(24):3909–16.PubMedPubMedCentralCrossRef
19.
20.
go back to reference Obenauer JC, Cantley LC, Yaffe MB. Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res. 2003;31(13):3635–41.PubMedPubMedCentralCrossRef Obenauer JC, Cantley LC, Yaffe MB. Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res. 2003;31(13):3635–41.PubMedPubMedCentralCrossRef
21.
go back to reference Wong YH, Lee TY, Liang HK, Huang CM, Wang TY, Yang YH, et al. KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns. Nucleic Acids Res. 2007;35(Web Server issue):W588-594.PubMedPubMedCentralCrossRef Wong YH, Lee TY, Liang HK, Huang CM, Wang TY, Yang YH, et al. KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns. Nucleic Acids Res. 2007;35(Web Server issue):W588-594.PubMedPubMedCentralCrossRef
22.
go back to reference Xue Y, Ren J, Gao X, Jin C, Wen L, Yao X. GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Mol Cell Proteomics. 2008;7(9):1598–608.PubMedPubMedCentralCrossRef Xue Y, Ren J, Gao X, Jin C, Wen L, Yao X. GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Mol Cell Proteomics. 2008;7(9):1598–608.PubMedPubMedCentralCrossRef
23.
go back to reference Lee TY, Huang HD, Hung JH, Huang HY, Yang YS, Wang TH. dbPTM: an information repository of protein post-translational modification. Nucleic Acids Res. 2006;34(Database issue):622–7.CrossRef Lee TY, Huang HD, Hung JH, Huang HY, Yang YS, Wang TH. dbPTM: an information repository of protein post-translational modification. Nucleic Acids Res. 2006;34(Database issue):622–7.CrossRef
24.
go back to reference Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, et al. Human protein reference database—2009 update. Nucleic Acids Res. 2009;37(Database issue):D767–72.PubMedCrossRef Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, et al. Human protein reference database—2009 update. Nucleic Acids Res. 2009;37(Database issue):D767–72.PubMedCrossRef
25.
27.
go back to reference Li T, Du P, Xu N. Identifying human kinase-specific protein phosphorylation sites by integrating heterogeneous information from various sources. PLoS ONE. 2010;5(11):e15411.PubMedPubMedCentralCrossRef Li T, Du P, Xu N. Identifying human kinase-specific protein phosphorylation sites by integrating heterogeneous information from various sources. PLoS ONE. 2010;5(11):e15411.PubMedPubMedCentralCrossRef
29.
go back to reference Yan R, Xu D, Yang J, Walker S, Zhang Y. A comparative assessment and analysis of 20 representative sequence alignment methods for protein structure prediction. Sci Rep. 2013;3:2619.PubMedPubMedCentralCrossRef Yan R, Xu D, Yang J, Walker S, Zhang Y. A comparative assessment and analysis of 20 representative sequence alignment methods for protein structure prediction. Sci Rep. 2013;3:2619.PubMedPubMedCentralCrossRef
30.
go back to reference Erdos G, Dosztanyi Z. Analyzing protein disorder with IUPred2A. Curr Protoc Bioinformat. 2020;70(1):e99.CrossRef Erdos G, Dosztanyi Z. Analyzing protein disorder with IUPred2A. Curr Protoc Bioinformat. 2020;70(1):e99.CrossRef
31.
go back to reference Mitchell A, Chang HY, Daugherty L, Fraser M, Hunter S, Lopez R, et al. The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res. 2015;43(Database issue):D213–21.PubMedCrossRef Mitchell A, Chang HY, Daugherty L, Fraser M, Hunter S, Lopez R, et al. The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res. 2015;43(Database issue):D213–21.PubMedCrossRef
32.
go back to reference Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012;40(Database issue):D109–14.PubMedCrossRef Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012;40(Database issue):D109–14.PubMedCrossRef
33.
go back to reference Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, et al. The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 2007;8(9):R183.PubMedPubMedCentralCrossRef Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, et al. The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 2007;8(9):R183.PubMedPubMedCentralCrossRef
34.
go back to reference Saeys Y, Inza I, Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics. 2007;23(19):2507–17.PubMedCrossRef Saeys Y, Inza I, Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics. 2007;23(19):2507–17.PubMedCrossRef
35.
go back to reference Peng H, Long F, Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell. 2005;27(8):1226–38.PubMedCrossRef Peng H, Long F, Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell. 2005;27(8):1226–38.PubMedCrossRef
36.
go back to reference Hall MA. Correlation based feature selection for machine learning: University of Waikato; 1999. Hall MA. Correlation based feature selection for machine learning: University of Waikato; 1999.
37.
go back to reference Senthamarai Kannan S, Ramaraj N. A novel hybrid feature selection via symmetrical uncertainty ranking based local memetic search algorithm. Knowl-Based Syst. 2010;23(6):580–5.CrossRef Senthamarai Kannan S, Ramaraj N. A novel hybrid feature selection via symmetrical uncertainty ranking based local memetic search algorithm. Knowl-Based Syst. 2010;23(6):580–5.CrossRef
38.
go back to reference Sree CSKRJR. Application of ranking based attribute selection filters to perform automated evaluation of descriptive answers through sequential minimal optimization models. ICTACT J Soft Comput. 2014;5(1):860–8.CrossRef Sree CSKRJR. Application of ranking based attribute selection filters to perform automated evaluation of descriptive answers through sequential minimal optimization models. ICTACT J Soft Comput. 2014;5(1):860–8.CrossRef
39.
go back to reference Bakhshandeh S, Azmi R, Teshnehlab M. Symmetric uncertainty class-feature association map for feature selection in microarray dataset. Int J Mach Learn Cybern. 2019;11(1):15–32.CrossRef Bakhshandeh S, Azmi R, Teshnehlab M. Symmetric uncertainty class-feature association map for feature selection in microarray dataset. Int J Mach Learn Cybern. 2019;11(1):15–32.CrossRef
40.
go back to reference Ali SI, Shahzad W, editors. A feature subset selection method based on symmetric uncertainty and Ant Colony Optimization. 2012 International Conference on Emerging Technologies. 2012;8–9. Ali SI, Shahzad W, editors. A feature subset selection method based on symmetric uncertainty and Ant Colony Optimization. 2012 International Conference on Emerging Technologies. 2012;8–9.
41.
go back to reference Frank E, Hall M, Trigg L, Holmes G, Witten IH. Data mining in bioinformatics using Weka. Bioinformatics. 2004;20(15):2479–81.PubMedCrossRef Frank E, Hall M, Trigg L, Holmes G, Witten IH. Data mining in bioinformatics using Weka. Bioinformatics. 2004;20(15):2479–81.PubMedCrossRef
42.
go back to reference Li F, Li C, Wang M, Webb GI, Zhang Y, Whisstock JC, et al. GlycoMine: a machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome. Bioinformatics. 2015;31(9):1411–9.PubMedCrossRef Li F, Li C, Wang M, Webb GI, Zhang Y, Whisstock JC, et al. GlycoMine: a machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome. Bioinformatics. 2015;31(9):1411–9.PubMedCrossRef
43.
go back to reference Hasan MM, Khatun MS, Kurata H. Computational modeling of lysine post-translational modification: an overview. Curr Syn Syst Biol. 2018;06(01):137. Hasan MM, Khatun MS, Kurata H. Computational modeling of lysine post-translational modification: an overview. Curr Syn Syst Biol. 2018;06(01):137.
44.
go back to reference Wang J, Yang B, An Y, Marquez-Lago T, Leier A, Wilksch J, et al. Systematic analysis and prediction of type IV secreted effector proteins by machine learning approaches. Brief Bioinform. 2019;20(3):931–51.PubMedCrossRef Wang J, Yang B, An Y, Marquez-Lago T, Leier A, Wilksch J, et al. Systematic analysis and prediction of type IV secreted effector proteins by machine learning approaches. Brief Bioinform. 2019;20(3):931–51.PubMedCrossRef
46.
go back to reference Adetiloye T, Awasthi A. Predicting short-term congested traffic flow on urban motorway networks. In: Sekhar S, Balas VE, editors. Samui P. Handbook of neural computation: Academic Press, USA; 2017. p. 145–65. Adetiloye T, Awasthi A. Predicting short-term congested traffic flow on urban motorway networks. In: Sekhar S, Balas VE, editors. Samui P. Handbook of neural computation: Academic Press, USA; 2017. p. 145–65.
47.
go back to reference Hasan MM, Zhou Y, Lu X, Li J, Song J, Zhang Z. Computational identification of protein pupylation sites by using profile-based composition of k-spaced amino acid pairs. PLoS ONE. 2015;10(6):e0129635.PubMedPubMedCentralCrossRef Hasan MM, Zhou Y, Lu X, Li J, Song J, Zhang Z. Computational identification of protein pupylation sites by using profile-based composition of k-spaced amino acid pairs. PLoS ONE. 2015;10(6):e0129635.PubMedPubMedCentralCrossRef
48.
go back to reference Wang LN, Shi SP, Xu HD, Wen PP, Qiu JD. Computational prediction of species-specific malonylation sites via enhanced characteristic strategy. Bioinformatics. 2017;33(10):1457–63.PubMedCrossRef Wang LN, Shi SP, Xu HD, Wen PP, Qiu JD. Computational prediction of species-specific malonylation sites via enhanced characteristic strategy. Bioinformatics. 2017;33(10):1457–63.PubMedCrossRef
49.
go back to reference Kumar M, Gromiha MM, Raghava GP. Prediction of RNA binding sites in a protein using SVM and PSSM profile. Proteins. 2008;71(1):189–94.PubMedCrossRef Kumar M, Gromiha MM, Raghava GP. Prediction of RNA binding sites in a protein using SVM and PSSM profile. Proteins. 2008;71(1):189–94.PubMedCrossRef
50.
go back to reference Kurniawan I, Haryanto T, Hasibuan LS, Agmalaro MA. Combining PSSM and physicochemical feature for protein structure prediction with support vector machine. J Phys Conf Ser. 2017;835:012006.CrossRef Kurniawan I, Haryanto T, Hasibuan LS, Agmalaro MA. Combining PSSM and physicochemical feature for protein structure prediction with support vector machine. J Phys Conf Ser. 2017;835:012006.CrossRef
51.
52.
go back to reference Espinosa-Parrilla Y, Gonzalez-Billault C, Fuentes E, Palomo I, Alarcon M. Decoding the role of platelets and related MicroRNAs in aging and neurodegenerative disorders. Front Aging Neurosci. 2019;11:151.PubMedPubMedCentralCrossRef Espinosa-Parrilla Y, Gonzalez-Billault C, Fuentes E, Palomo I, Alarcon M. Decoding the role of platelets and related MicroRNAs in aging and neurodegenerative disorders. Front Aging Neurosci. 2019;11:151.PubMedPubMedCentralCrossRef
53.
go back to reference Idriss HT. Three steps to cancer: how phosphorylation of tubulin, tubulin tyrosine ligase and P-glycoprotein may generate and sustain cancer. Cancer Chemother Pharmacol. 2004;54(2):101–4.PubMedCrossRef Idriss HT. Three steps to cancer: how phosphorylation of tubulin, tubulin tyrosine ligase and P-glycoprotein may generate and sustain cancer. Cancer Chemother Pharmacol. 2004;54(2):101–4.PubMedCrossRef
54.
go back to reference Singh V, Ram M, Kumar R, Prasad R, Roy BK, Singh KK. Phosphorylation: implications in cancer. Protein J. 2017;36(1):1–6.PubMedCrossRef Singh V, Ram M, Kumar R, Prasad R, Roy BK, Singh KK. Phosphorylation: implications in cancer. Protein J. 2017;36(1):1–6.PubMedCrossRef
55.
go back to reference Huin V, Buee L, Behal H, Labreuche J, Sablonniere B, Dhaenens CM. Alternative promoter usage generates novel shorter MAPT mRNA transcripts in Alzheimer’s disease and progressive supranuclear palsy brains. Sci Rep. 2017;7(1):12589.PubMedPubMedCentralCrossRef Huin V, Buee L, Behal H, Labreuche J, Sablonniere B, Dhaenens CM. Alternative promoter usage generates novel shorter MAPT mRNA transcripts in Alzheimer’s disease and progressive supranuclear palsy brains. Sci Rep. 2017;7(1):12589.PubMedPubMedCentralCrossRef
56.
go back to reference Restle A, Farber M, Baumann C, Bohringer M, Scheidtmann KH, Muller-Tidow C, et al. Dissecting the role of p53 phosphorylation in homologous recombination provides new clues for gain-of-function mutants. Nucleic Acids Res. 2008;36(16):5362–75.PubMedPubMedCentralCrossRef Restle A, Farber M, Baumann C, Bohringer M, Scheidtmann KH, Muller-Tidow C, et al. Dissecting the role of p53 phosphorylation in homologous recombination provides new clues for gain-of-function mutants. Nucleic Acids Res. 2008;36(16):5362–75.PubMedPubMedCentralCrossRef
57.
go back to reference Lim S, Smith KR, Lim ST, Tian R, Lu J, Tan M. Regulation of mitochondrial functions by protein phosphorylation and dephosphorylation. Cell Biosci. 2016;6:25.PubMedPubMedCentralCrossRef Lim S, Smith KR, Lim ST, Tian R, Lu J, Tan M. Regulation of mitochondrial functions by protein phosphorylation and dephosphorylation. Cell Biosci. 2016;6:25.PubMedPubMedCentralCrossRef
Metadata
Title
Predicting phosphorylation sites using machine learning by integrating the sequence, structure, and functional information of proteins
Authors
Salma Jamal
Waseem Ali
Priya Nagpal
Abhinav Grover
Sonam Grover
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2021
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-021-02851-0

Other articles of this Issue 1/2021

Journal of Translational Medicine 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine