Skip to main content
Top
Published in: Immunologic Research 1/2015

01-05-2015

Predicting peptide vaccine candidates against H1N1 influenza virus through theoretical approaches

Authors: Martiniano Bello, Rafael Campos-Rodriguez, Saul Rojas-Hernandez, Arturo Contis-Montes de Oca, José Correa-Basurto

Published in: Immunologic Research | Issue 1/2015

Login to get access

Abstract

Identification of potential epitopes that might activate the immune system has been facilitated by the employment of algorithms that use experimental data as templates. However, in order to prove the affinity and the map of interactions between the receptor (major histocompatibility complex, MHC, or T-cell receptor) and the potential epitope, further computational studies are required. Docking and molecular dynamics (MDs) simulations have been an effective source of generating structural information at molecular level in immunology. Herein, in order to provide a detailed understanding of the origins of epitope recognition and to select the best peptide candidate to develop an epitope-based vaccine, docking and MDs simulations in combination with MMGBSA free energy calculations and per-residue free energy decomposition were performed, taking as starting complexes those formed between four designed epitopes (P1–P4) from hemagglutinin (HA) of the H1N1 influenza virus and MHC-II anchored in POPC membrane. Our results revealed that the energetic contributions of individual amino acids within the pMHC-II complexes are mainly dictated by van der Waals interactions and the nonpolar part of solvation energy, whereas the electrostatic interactions corresponding to hydrogen bonds and salt bridges determine the binding specificity, being the most favorable interactions formed between p4 and MHC-II. Then, P1–P4 epitopes were synthesized and tested experimentally to compare theoretical and experimental results. Experimental results show that P4 elicited the highest strong humoral immune response to HA of the H1N1 and may induce antibodies that are cross-reactive to other influenza subtypes, suggesting that it could be a good candidate for the development of a peptide-based vaccine.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hellstrom KE, Hellstrom I. Novel approaches to therapeutic cancer vaccines. Expert. Rev. Vaccines. 2003;2:517–32.CrossRefPubMed Hellstrom KE, Hellstrom I. Novel approaches to therapeutic cancer vaccines. Expert. Rev. Vaccines. 2003;2:517–32.CrossRefPubMed
2.
go back to reference Oomen CJ, Hoogerhout P, Bonvin AM, Kuipers B, Brugghe H, Timmermans H, Haseley SR, van Alphen L, Gros P. Immunogenicity of peptide-vaccine candidates predicted by molecular dynamics simulations. J Mol Biol. 2003;328:1083–9.CrossRefPubMed Oomen CJ, Hoogerhout P, Bonvin AM, Kuipers B, Brugghe H, Timmermans H, Haseley SR, van Alphen L, Gros P. Immunogenicity of peptide-vaccine candidates predicted by molecular dynamics simulations. J Mol Biol. 2003;328:1083–9.CrossRefPubMed
4.
go back to reference Langeveld JP, Casal M, Osterhaus JI, Cortes ADME, de Swart E, Vela RC, et al. First peptide vaccine providing protection against viral infection in the target animal: studies of canine parvovirus in dogs. J Virol. 1994;68:4506–13.PubMedCentralPubMed Langeveld JP, Casal M, Osterhaus JI, Cortes ADME, de Swart E, Vela RC, et al. First peptide vaccine providing protection against viral infection in the target animal: studies of canine parvovirus in dogs. J Virol. 1994;68:4506–13.PubMedCentralPubMed
5.
go back to reference Muller S, Plaue S, Samama JP, Valette M, Briand JP, Van Regenmortel MHV. Antigenic properties and protective capacity of a cyclic peptide corresponding to site A of influenza virus haemagglutinin. Vaccine. 1990;8:308–14.CrossRefPubMed Muller S, Plaue S, Samama JP, Valette M, Briand JP, Van Regenmortel MHV. Antigenic properties and protective capacity of a cyclic peptide corresponding to site A of influenza virus haemagglutinin. Vaccine. 1990;8:308–14.CrossRefPubMed
6.
go back to reference Luo Y, Zeng Q, Glisson JR, Jackwood MW, Cheng IH, Wang C. Sequence analysis of Pasteurella multocida major outer membrane protein (OmpH) and application of synthetic peptides in vaccination of chickens against homologous strain challenge. Vaccine. 1999;17:821–31.CrossRefPubMed Luo Y, Zeng Q, Glisson JR, Jackwood MW, Cheng IH, Wang C. Sequence analysis of Pasteurella multocida major outer membrane protein (OmpH) and application of synthetic peptides in vaccination of chickens against homologous strain challenge. Vaccine. 1999;17:821–31.CrossRefPubMed
7.
go back to reference Christodoulides M, McGuinness BT, Heckels JE. Immunization with synthetic peptides containing epitopes of the class 1 outer-membrane protein of Neisseria meningitidis: production of bactericidal antibodies on immunization with a cyclic peptide. J Gen Microbiol. 1993;139:1729–38.CrossRefPubMed Christodoulides M, McGuinness BT, Heckels JE. Immunization with synthetic peptides containing epitopes of the class 1 outer-membrane protein of Neisseria meningitidis: production of bactericidal antibodies on immunization with a cyclic peptide. J Gen Microbiol. 1993;139:1729–38.CrossRefPubMed
8.
go back to reference Hoogerhout P, Donders EM, van Gaans-van den Brink JA, Kuipers B, Brugghe HF, van Unen LM, et al. Conjugates of synthetic cyclic peptides elicit bactericidal antibodies against a conformational epitope on a class 1 outer membrane protein of Neisseria meningitidis. Infect Immun. 1995;63:3473–8.PubMedCentralPubMed Hoogerhout P, Donders EM, van Gaans-van den Brink JA, Kuipers B, Brugghe HF, van Unen LM, et al. Conjugates of synthetic cyclic peptides elicit bactericidal antibodies against a conformational epitope on a class 1 outer membrane protein of Neisseria meningitidis. Infect Immun. 1995;63:3473–8.PubMedCentralPubMed
9.
go back to reference Sundaram R, Dakappagari NK, Kaumaya PT. Synthetic peptides as cancer vaccines. Biopolymers. 2002;66:200–16.CrossRefPubMed Sundaram R, Dakappagari NK, Kaumaya PT. Synthetic peptides as cancer vaccines. Biopolymers. 2002;66:200–16.CrossRefPubMed
10.
go back to reference Meloen RH, Puijk WC, Slootstra JW. Mimotopes: realization of an unlikely concept. J. Mol. Recognit. 2000;13:352–9.CrossRefPubMed Meloen RH, Puijk WC, Slootstra JW. Mimotopes: realization of an unlikely concept. J. Mol. Recognit. 2000;13:352–9.CrossRefPubMed
11.
go back to reference Craig L, Sanschagrin PC, Rozek A, Lackie S, Kuhn LA, Scott JK. The role of structure in antibody cross-reactivity between peptides and folded proteins. J Mol Biol. 1998;281:183–201.CrossRefPubMed Craig L, Sanschagrin PC, Rozek A, Lackie S, Kuhn LA, Scott JK. The role of structure in antibody cross-reactivity between peptides and folded proteins. J Mol Biol. 1998;281:183–201.CrossRefPubMed
12.
go back to reference Ghiara JB, Ferguson DC, Satterthwait AC, Dyson HJ, Wilson IA. Structure-based design of a constrained peptide mimic of the HIV-1 V3 loop neutralization site. J Mol Biol. 1997;266:31–9.CrossRefPubMed Ghiara JB, Ferguson DC, Satterthwait AC, Dyson HJ, Wilson IA. Structure-based design of a constrained peptide mimic of the HIV-1 V3 loop neutralization site. J Mol Biol. 1997;266:31–9.CrossRefPubMed
13.
go back to reference Cuniasse P, Thomas A, Smith JC, Thanh HL, Leonetti M, Menez A. Structural basis of antibody cross-reactivity: solution conformation of an immunogenic peptide fragment containing both T and B epitopes. Biochemistry. 1995;34:12782–9.CrossRefPubMed Cuniasse P, Thomas A, Smith JC, Thanh HL, Leonetti M, Menez A. Structural basis of antibody cross-reactivity: solution conformation of an immunogenic peptide fragment containing both T and B epitopes. Biochemistry. 1995;34:12782–9.CrossRefPubMed
14.
go back to reference Valero ML, Camarero JA, Haack T, Mateu MG, Domingo E, Giralt E, Andreu D. Native-like cyclic peptide models of a viral antigenic site: finding a balance between rigidity and flexibility. J. Mol. Recognit. 2000;13:5–13.CrossRefPubMed Valero ML, Camarero JA, Haack T, Mateu MG, Domingo E, Giralt E, Andreu D. Native-like cyclic peptide models of a viral antigenic site: finding a balance between rigidity and flexibility. J. Mol. Recognit. 2000;13:5–13.CrossRefPubMed
15.
go back to reference Loyola PK, Campos-Rodríguez R, Bello M, Rojas-Hernández S, Zimic M, et al. Theoretical analysis of the neuraminidase epitope of the Mexican A H1N1 influenza strain, and experimental studies on its interaction with rabbit and human hosts. Immunol Res. 2013;56:44–60.CrossRefPubMed Loyola PK, Campos-Rodríguez R, Bello M, Rojas-Hernández S, Zimic M, et al. Theoretical analysis of the neuraminidase epitope of the Mexican A H1N1 influenza strain, and experimental studies on its interaction with rabbit and human hosts. Immunol Res. 2013;56:44–60.CrossRefPubMed
16.
go back to reference Smith GJD, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, Pybus OG, Ma SK, Cheung CL, Raghwani J, Bhatt S, et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature. 2009;459:1122–5.CrossRefPubMed Smith GJD, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, Pybus OG, Ma SK, Cheung CL, Raghwani J, Bhatt S, et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature. 2009;459:1122–5.CrossRefPubMed
17.
go back to reference Stern LJ, Brown JH, Jardetzky TS, Gorga JC, Urban RG, et al. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature. 1994;368:215–21.CrossRefPubMed Stern LJ, Brown JH, Jardetzky TS, Gorga JC, Urban RG, et al. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature. 1994;368:215–21.CrossRefPubMed
18.
go back to reference Wang S, Coveney P, Flower DR. Large-scale molecular dynamics simulations of HLA-A*0201 complexed with a tumor-specific antigenic peptide: can the alpha3 and beta2m domains be neglected? J Comput Chem. 2004;25:1803–13.CrossRef Wang S, Coveney P, Flower DR. Large-scale molecular dynamics simulations of HLA-A*0201 complexed with a tumor-specific antigenic peptide: can the alpha3 and beta2m domains be neglected? J Comput Chem. 2004;25:1803–13.CrossRef
19.
go back to reference Bello M, Correa-Basurto J. Molecular dynamics simulations to provide insights into epitopes coupled to the soluble and membrane-bound MHC-II complexes. PLoS ONE. 2013;8:e72575.CrossRefPubMedCentralPubMed Bello M, Correa-Basurto J. Molecular dynamics simulations to provide insights into epitopes coupled to the soluble and membrane-bound MHC-II complexes. PLoS ONE. 2013;8:e72575.CrossRefPubMedCentralPubMed
20.
go back to reference Sato AK, Zarutskie JA, Rushe MM, Lomakin A, Natarajan SK, et al. Determinants of the peptide-induced conformational change in the human class II major histocompatibility complex protein HLA-DR1. J Biol Chem. 2000;275:2165–73.CrossRefPubMed Sato AK, Zarutskie JA, Rushe MM, Lomakin A, Natarajan SK, et al. Determinants of the peptide-induced conformational change in the human class II major histocompatibility complex protein HLA-DR1. J Biol Chem. 2000;275:2165–73.CrossRefPubMed
22.
go back to reference Wolf MG, Hoefling M, Aponte-Santamaría C, Grubmuller H, Groenhof G, g_membed. Efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation. J Comput Chem. 2010;31:2169–74.CrossRefPubMed Wolf MG, Hoefling M, Aponte-Santamaría C, Grubmuller H, Groenhof G, g_membed. Efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation. J Comput Chem. 2010;31:2169–74.CrossRefPubMed
23.
go back to reference Wang J, Hou T, Xu X. Recent advances in free energy calculations with a combination of molecular mechanics and continuum models. Curr Comput Aided Drug Des. 2006;2:287–306.CrossRef Wang J, Hou T, Xu X. Recent advances in free energy calculations with a combination of molecular mechanics and continuum models. Curr Comput Aided Drug Des. 2006;2:287–306.CrossRef
24.
go back to reference Hou T, Wang J, Li Y, Wang W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model. 2011;51:69.CrossRefPubMedCentralPubMed Hou T, Wang J, Li Y, Wang W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model. 2011;51:69.CrossRefPubMedCentralPubMed
25.
go back to reference Stumptner-Cuvelette P, Benaroch P. Multiple roles of the invariant chain in MHC class II function. Biochim Biophys Acta. 2002;1542:1–13.CrossRefPubMed Stumptner-Cuvelette P, Benaroch P. Multiple roles of the invariant chain in MHC class II function. Biochim Biophys Acta. 2002;1542:1–13.CrossRefPubMed
26.
go back to reference Lamb CA, Cresswell P. Assembly and transport properties of invariant chain trimers and HLA-DR-invariant chain complexes. J Immunol. 1992;148:3478–82.PubMed Lamb CA, Cresswell P. Assembly and transport properties of invariant chain trimers and HLA-DR-invariant chain complexes. J Immunol. 1992;148:3478–82.PubMed
27.
go back to reference Villadangos JA. Presentation of antigens by MHC class II molecules: getting the most out of them. Mol Immunol. 2001;38:329–46.CrossRefPubMed Villadangos JA. Presentation of antigens by MHC class II molecules: getting the most out of them. Mol Immunol. 2001;38:329–46.CrossRefPubMed
28.
go back to reference Call MJ. Small molecule modulators of MHC class II antigen presentation: mechanistic insights and implications for therapeutic application. Mol Immunol. 2011;48:1735–43.CrossRefPubMed Call MJ. Small molecule modulators of MHC class II antigen presentation: mechanistic insights and implications for therapeutic application. Mol Immunol. 2011;48:1735–43.CrossRefPubMed
30.
go back to reference Pan-Hammarstrom Q, Zhao Y, et al. Class switch recombination: a comparison between mouse and human. Adv Immunol. 2007;93:1–61.CrossRefPubMed Pan-Hammarstrom Q, Zhao Y, et al. Class switch recombination: a comparison between mouse and human. Adv Immunol. 2007;93:1–61.CrossRefPubMed
31.
go back to reference King C, Tangye SG, et al. T follicular helper (TFH) cells in normal and dysregulated immune responses. Annu Rev Immunol. 2008;26:741–66.CrossRefPubMed King C, Tangye SG, et al. T follicular helper (TFH) cells in normal and dysregulated immune responses. Annu Rev Immunol. 2008;26:741–66.CrossRefPubMed
34.
go back to reference Yang Z. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 2008;9:40.CrossRef Yang Z. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 2008;9:40.CrossRef
35.
go back to reference Kozakov D, Hall DR, Beglov D, Brenke R, Comeau SR, et al. Achieving reliability and high accuracy in automated protein docking: Cluspro, PIPER, SDU, and stability analysis in CAPRI rounds 13–19. Proteins. 2010;78:3124–30.CrossRefPubMedCentralPubMed Kozakov D, Hall DR, Beglov D, Brenke R, Comeau SR, et al. Achieving reliability and high accuracy in automated protein docking: Cluspro, PIPER, SDU, and stability analysis in CAPRI rounds 13–19. Proteins. 2010;78:3124–30.CrossRefPubMedCentralPubMed
36.
go back to reference Comeau SR, Gatchell DW, Vajda S, Camacho CJ. ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics. 2004;20:45–50.CrossRefPubMed Comeau SR, Gatchell DW, Vajda S, Camacho CJ. ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics. 2004;20:45–50.CrossRefPubMed
37.
go back to reference Lomize MA, Lomize AL, Pogozheva ID, Mosberg HI. OPM: orientations of proteins in membranes database. Bioinformatics. 2006;22:623–5.CrossRefPubMed Lomize MA, Lomize AL, Pogozheva ID, Mosberg HI. OPM: orientations of proteins in membranes database. Bioinformatics. 2006;22:623–5.CrossRefPubMed
39.
40.
go back to reference Woolf TB, Roux B. Structure, energetics, and dynamics of lipid-protein interactions: a molecular dynamics study of the gramicidin A channel in a DMPC bilayer. Proteins. 1996;24:92–114.CrossRefPubMed Woolf TB, Roux B. Structure, energetics, and dynamics of lipid-protein interactions: a molecular dynamics study of the gramicidin A channel in a DMPC bilayer. Proteins. 1996;24:92–114.CrossRefPubMed
41.
42.
go back to reference Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ. The Amber biomolecular simulation programs. J Comput Chem. 2005;26:1668–88.CrossRefPubMedCentralPubMed Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ. The Amber biomolecular simulation programs. J Comput Chem. 2005;26:1668–88.CrossRefPubMedCentralPubMed
43.
44.
go back to reference Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. J Comput Chem. 2004;2004(25):1157–74.CrossRef Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. J Comput Chem. 2004;2004(25):1157–74.CrossRef
45.
go back to reference Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. J Chem Phys. 1984;81:3684–90.CrossRef Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. J Chem Phys. 1984;81:3684–90.CrossRef
46.
go back to reference Darden T, York D, Pedersen L. Particle Mesh Ewald-an N∙Log(N) method for Ewald sums in large systems. J Chem Phys. 1993;98:10089–92.CrossRef Darden T, York D, Pedersen L. Particle Mesh Ewald-an N∙Log(N) method for Ewald sums in large systems. J Chem Phys. 1993;98:10089–92.CrossRef
47.
go back to reference Goetz AW, Williamson MJ, Xu D, Poole D, Le Grand S, Walker RC. Routine microsecond molecular dynamics simulations with AMBER-Part I: generalized Born. J Chem Theory Comput. 2012;8:1542–55.CrossRef Goetz AW, Williamson MJ, Xu D, Poole D, Le Grand S, Walker RC. Routine microsecond molecular dynamics simulations with AMBER-Part I: generalized Born. J Chem Theory Comput. 2012;8:1542–55.CrossRef
48.
go back to reference Salomon-Ferrer R, Goetz AW, Poole D Le, Grand S, Walker RC. Routine microsecond molecular dynamics simulations with AMBER-Part II: particle Mesh Ewald. J Chem Theory Comput. 2013;9:3878–88.CrossRef Salomon-Ferrer R, Goetz AW, Poole D Le, Grand S, Walker RC. Routine microsecond molecular dynamics simulations with AMBER-Part II: particle Mesh Ewald. J Chem Theory Comput. 2013;9:3878–88.CrossRef
49.
go back to reference Van Gunsteren WF, Berendsen HJC. Algorithms for macromolecular dynamics and constraint dynamics. Mol Phys. 1977;1977(34):1311–27.CrossRef Van Gunsteren WF, Berendsen HJC. Algorithms for macromolecular dynamics and constraint dynamics. Mol Phys. 1977;1977(34):1311–27.CrossRef
50.
go back to reference Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1995;8:127–34.CrossRefPubMed Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1995;8:127–34.CrossRefPubMed
52.
go back to reference Gohlke H, Case DA. Converging free energy estimates: MMPB(GB)SA studies on the protein-protein complex Ras-Raf. J Comput Chem. 2004;25:238–50.CrossRefPubMed Gohlke H, Case DA. Converging free energy estimates: MMPB(GB)SA studies on the protein-protein complex Ras-Raf. J Comput Chem. 2004;25:238–50.CrossRefPubMed
53.
go back to reference Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE III. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res. 2000;33:889–97.CrossRefPubMed Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE III. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res. 2000;33:889–97.CrossRefPubMed
54.
go back to reference Miller BR, McGee TD, Swails JM, Homeyer N, Gohlke H, Roitberg AE. MMPBSA.py: an efficient program for end-state free energy calculations. J Chem Theory Comput. 2012;8:3314–21.CrossRef Miller BR, McGee TD, Swails JM, Homeyer N, Gohlke H, Roitberg AE. MMPBSA.py: an efficient program for end-state free energy calculations. J Chem Theory Comput. 2012;8:3314–21.CrossRef
55.
go back to reference Hawkins GD, Cramer CJ, Truhlar DG. Parametrized models of aqueous free energies of solvation based on pairwise descreening of solute atomic charges from a dielectric medium. J Phys Chem. 1996;100:19824–39.CrossRef Hawkins GD, Cramer CJ, Truhlar DG. Parametrized models of aqueous free energies of solvation based on pairwise descreening of solute atomic charges from a dielectric medium. J Phys Chem. 1996;100:19824–39.CrossRef
56.
go back to reference Frey A, Di Canzio J, et al. A statistically defined endpoint titer determination method for immunoassays. J Immunol Methods. 1998;221:35–41.CrossRefPubMed Frey A, Di Canzio J, et al. A statistically defined endpoint titer determination method for immunoassays. J Immunol Methods. 1998;221:35–41.CrossRefPubMed
Metadata
Title
Predicting peptide vaccine candidates against H1N1 influenza virus through theoretical approaches
Authors
Martiniano Bello
Rafael Campos-Rodriguez
Saul Rojas-Hernandez
Arturo Contis-Montes de Oca
José Correa-Basurto
Publication date
01-05-2015
Publisher
Springer US
Published in
Immunologic Research / Issue 1/2015
Print ISSN: 0257-277X
Electronic ISSN: 1559-0755
DOI
https://doi.org/10.1007/s12026-015-8629-1

Other articles of this Issue 1/2015

Immunologic Research 1/2015 Go to the issue