Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2008

Open Access 01-12-2008 | Research

Predicting muscle forces of individuals with hemiparesis following stroke

Authors: Trisha M Kesar, Jun Ding, Anthony S Wexler, Ramu Perumal, Ryan Maladen, Stuart A Binder-Macleod

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2008

Login to get access

Abstract

Background

Functional electrical stimulation (FES) has been used to improve function in individuals with hemiparesis following stroke. An ideal functional electrical stimulation (FES) system needs an accurate mathematical model capable of designing subject and task-specific stimulation patterns. Such a model was previously developed in our laboratory and shown to predict the isometric forces produced by the quadriceps femoris muscles of able-bodied individuals and individuals with spinal cord injury in response to a wide range of clinically relevant stimulation frequencies and patterns. The aim of this study was to test our isometric muscle force model on the quadriceps femoris, ankle dorsiflexor, and ankle plantar-flexor muscles of individuals with post-stroke hemiparesis.

Methods

Subjects were seated on a force dynamometer and isometric forces were measured in response to a range of stimulation frequencies (10 to 80-Hz) and 3 different patterns. Subject-specific model parameter values were obtained by fitting the measured force responses from 2 stimulation trains. The model parameters thus obtained were then used to obtain predicted forces for a range of frequencies and patterns. Predicted and measured forces were compared using intra-class correlation coefficients, r2 values, and model error relative to the physiological error (variability of measured forces).

Results

Results showed excellent agreement between measured and predicted force-time responses (r2 >0.80), peak forces (ICCs>0.84), and force-time integrals (ICCs>0.82) for the quadriceps, dorsiflexor, and plantar-fexor muscles. The model error was within or below the +95% confidence interval of the physiological error for >88% comparisons between measured and predicted forces.

Conclusion

Our results show that the model has potential to be incorporated as a feed-forward controller for predicting subject-specific stimulation patterns during FES.
Appendix
Available only for authorised users
Literature
1.
go back to reference Heart Disease and Stroke Statistics – 2006 Update. 2006, Dallas, Texas: American Heart Association Heart Disease and Stroke Statistics – 2006 Update. 2006, Dallas, Texas: American Heart Association
2.
go back to reference Olney SJ, Richards C: Hemiparetic gait following stroke. Part I: Characteristics. Gait Posture. 1996, 4: 136-148. 10.1016/0966-6362(96)01063-6.CrossRef Olney SJ, Richards C: Hemiparetic gait following stroke. Part I: Characteristics. Gait Posture. 1996, 4: 136-148. 10.1016/0966-6362(96)01063-6.CrossRef
3.
go back to reference Liberson WT, Holmquest HJ, Scot D, Dow M: Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch Phys Med Rehabil. 1961, 42: 101-105.PubMed Liberson WT, Holmquest HJ, Scot D, Dow M: Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch Phys Med Rehabil. 1961, 42: 101-105.PubMed
4.
go back to reference Lyons GM, Sinkjaer T, Burridge JH, Wilcox DJ: A review of portable FES-based neural orthoses for the correction of drop foot. IEEE Trans Neural Syst Rehabil Eng. 2002, 10 (4): 260-279. 10.1109/TNSRE.2002.806832.CrossRefPubMed Lyons GM, Sinkjaer T, Burridge JH, Wilcox DJ: A review of portable FES-based neural orthoses for the correction of drop foot. IEEE Trans Neural Syst Rehabil Eng. 2002, 10 (4): 260-279. 10.1109/TNSRE.2002.806832.CrossRefPubMed
5.
go back to reference Yan T, Hui-Chan CW, Li LS: Functional electrical stimulation improves motor recovery of the lower extremity and walking ability of subjects with first acute stroke: a randomized placebo-controlled trial. Stroke. 2005, 36 (1): 80-85. 10.1161/01.STR.0000149623.24906.63.CrossRefPubMed Yan T, Hui-Chan CW, Li LS: Functional electrical stimulation improves motor recovery of the lower extremity and walking ability of subjects with first acute stroke: a randomized placebo-controlled trial. Stroke. 2005, 36 (1): 80-85. 10.1161/01.STR.0000149623.24906.63.CrossRefPubMed
6.
go back to reference Stanic U, Acimovic-Janezic R, Gros N, Trnkoczy A, Bajd T, Kljajic M: Multichannel electrical stimulation for correction of hemiplegic gait. Methodology and preliminary results. Scand J Rehabil Med. 1978, 10 (2): 75-92.PubMed Stanic U, Acimovic-Janezic R, Gros N, Trnkoczy A, Bajd T, Kljajic M: Multichannel electrical stimulation for correction of hemiplegic gait. Methodology and preliminary results. Scand J Rehabil Med. 1978, 10 (2): 75-92.PubMed
7.
go back to reference Bogataj U, Gros N, Malezic M, Kelih B, Kljajic M, Acimovic R: Restoration of gait during two to three weeks of therapy with multichannel electrical stimulation. Phys Ther. 1989, 69 (5): 319-327.PubMed Bogataj U, Gros N, Malezic M, Kelih B, Kljajic M, Acimovic R: Restoration of gait during two to three weeks of therapy with multichannel electrical stimulation. Phys Ther. 1989, 69 (5): 319-327.PubMed
8.
go back to reference Hesse S, Malezic M, Schaffrin A, Mauritz KH: Restoration of gait by combined treadmill training and multichannel electrical stimulation in non-ambulatory hemiparetic patients. Scand J Rehabil Med. 1995, 27 (4): 199-204.PubMed Hesse S, Malezic M, Schaffrin A, Mauritz KH: Restoration of gait by combined treadmill training and multichannel electrical stimulation in non-ambulatory hemiparetic patients. Scand J Rehabil Med. 1995, 27 (4): 199-204.PubMed
9.
go back to reference Burridge JH, Taylor PN, Hagan SA, Wood DE, Swain ID: The effects of common peroneal stimulation on the effort and speed of walking: a randomized controlled trial with chronic hemiplegic patients. Clin Rehabil. 1997, 11 (3): 201-210.CrossRefPubMed Burridge JH, Taylor PN, Hagan SA, Wood DE, Swain ID: The effects of common peroneal stimulation on the effort and speed of walking: a randomized controlled trial with chronic hemiplegic patients. Clin Rehabil. 1997, 11 (3): 201-210.CrossRefPubMed
10.
go back to reference Daly JJ, Roenigk K, Holcomb J, Rogers JM, Butler K, Gansen J, McCabe J, Fredrickson E, Marsolais EB, Ruff RL: A randomized controlled trial of functional neuromuscular stimulation in chronic stroke subjects. Stroke. 2006, 37 (1): 172-178. 10.1161/01.STR.0000195129.95220.77.CrossRefPubMed Daly JJ, Roenigk K, Holcomb J, Rogers JM, Butler K, Gansen J, McCabe J, Fredrickson E, Marsolais EB, Ruff RL: A randomized controlled trial of functional neuromuscular stimulation in chronic stroke subjects. Stroke. 2006, 37 (1): 172-178. 10.1161/01.STR.0000195129.95220.77.CrossRefPubMed
11.
go back to reference Belanger M, Stein RB, Wheeler GD, Gordon T, Leduc B: Electrical stimulation: can it increase muscle strength and reverse osteopenia in spinal cord injured individuals?. Arch Phys Med Rehabil. 2000, 81 (8): 1090-1098. 10.1053/apmr.2000.7170.CrossRefPubMed Belanger M, Stein RB, Wheeler GD, Gordon T, Leduc B: Electrical stimulation: can it increase muscle strength and reverse osteopenia in spinal cord injured individuals?. Arch Phys Med Rehabil. 2000, 81 (8): 1090-1098. 10.1053/apmr.2000.7170.CrossRefPubMed
12.
go back to reference Thompson AK, Doran B, Stein RB: Short-term effects of functional electrical stimulation on spinal excitatory and inhibitory reflexes in ankle extensor and flexor muscles. Exp Brain Res. 2006, 170 (2): 216-226. 10.1007/s00221-005-0203-y.CrossRefPubMed Thompson AK, Doran B, Stein RB: Short-term effects of functional electrical stimulation on spinal excitatory and inhibitory reflexes in ankle extensor and flexor muscles. Exp Brain Res. 2006, 170 (2): 216-226. 10.1007/s00221-005-0203-y.CrossRefPubMed
13.
go back to reference Peckham PH, Knutson JS: Functional electrical stimulation for neuromuscular applications. Annu Rev Biomed Eng. 2005, 7: 327-360. 10.1146/annurev.bioeng.6.040803.140103.CrossRefPubMed Peckham PH, Knutson JS: Functional electrical stimulation for neuromuscular applications. Annu Rev Biomed Eng. 2005, 7: 327-360. 10.1146/annurev.bioeng.6.040803.140103.CrossRefPubMed
14.
go back to reference Riener R: Model-based development of neuroprosthesis for paraplegic patients. Philos Trans R Soc Lond B Biol Sci. 1999, 354 (1385): 877-894. 10.1098/rstb.1999.0440.PubMedCentralCrossRefPubMed Riener R: Model-based development of neuroprosthesis for paraplegic patients. Philos Trans R Soc Lond B Biol Sci. 1999, 354 (1385): 877-894. 10.1098/rstb.1999.0440.PubMedCentralCrossRefPubMed
15.
go back to reference Popovic MR, Curt A, Keller T, Dietz V: Functional electrical stimulation for grasping and walking: indications and limitations. Spinal Cord. 2001, 39 (8): 403-412. 10.1038/sj.sc.3101191.CrossRefPubMed Popovic MR, Curt A, Keller T, Dietz V: Functional electrical stimulation for grasping and walking: indications and limitations. Spinal Cord. 2001, 39 (8): 403-412. 10.1038/sj.sc.3101191.CrossRefPubMed
16.
go back to reference Binder-Macleod S, Kesar T: Catchlike property of skeletal muscle: recent findings and clinical implications. Muscle Nerve. 2005, 31 (6): 681-693. 10.1002/mus.20290.CrossRefPubMed Binder-Macleod S, Kesar T: Catchlike property of skeletal muscle: recent findings and clinical implications. Muscle Nerve. 2005, 31 (6): 681-693. 10.1002/mus.20290.CrossRefPubMed
17.
go back to reference Burke RE, Rudomin P, Zajac FE: Catch property in single mammalian motor units. Science. 1970, 168 (927): 122-124. 10.1126/science.168.3927.122.CrossRefPubMed Burke RE, Rudomin P, Zajac FE: Catch property in single mammalian motor units. Science. 1970, 168 (927): 122-124. 10.1126/science.168.3927.122.CrossRefPubMed
18.
go back to reference Karu ZZ, Durfee WK, Barzilai AM: Reducing muscle fatigue in FES applications by stimulating with N-let pulse trains. IEEE Trans Biomed Eng. 1995, 42 (8): 809-817. 10.1109/10.398642.CrossRefPubMed Karu ZZ, Durfee WK, Barzilai AM: Reducing muscle fatigue in FES applications by stimulating with N-let pulse trains. IEEE Trans Biomed Eng. 1995, 42 (8): 809-817. 10.1109/10.398642.CrossRefPubMed
19.
go back to reference Scott WB, Lee SC, Johnston TE, Binder-Macleod SA: Switching stimulation patterns improves performance of paralyzed human quadriceps muscle. Muscle Nerve. 2005, 31 (5): 581-588. 10.1002/mus.20300.CrossRefPubMed Scott WB, Lee SC, Johnston TE, Binder-Macleod SA: Switching stimulation patterns improves performance of paralyzed human quadriceps muscle. Muscle Nerve. 2005, 31 (5): 581-588. 10.1002/mus.20300.CrossRefPubMed
20.
go back to reference Binder-Macleod SA, Lee SC: Catchlike property of human muscle during isovelocity movements. J Appl Physiol. 1996, 80 (6): 2051-2059.PubMed Binder-Macleod SA, Lee SC: Catchlike property of human muscle during isovelocity movements. J Appl Physiol. 1996, 80 (6): 2051-2059.PubMed
21.
go back to reference Lee SC, Becker CN, Binder-Macleod SA: Catchlike-inducing train activation of human muscle during isotonic contractions: burst modulation. J Appl Physiol. 1999, 87 (5): 1758-1767.PubMed Lee SC, Becker CN, Binder-Macleod SA: Catchlike-inducing train activation of human muscle during isotonic contractions: burst modulation. J Appl Physiol. 1999, 87 (5): 1758-1767.PubMed
22.
go back to reference Abbas JJ, Riener R: Using Mathematical Models and Advanced Control Systems Techniques to Enhance Neuroprosthesis Function. Neuromodulation. 2001, 4 (4): 187-195. 10.1046/j.1525-1403.2001.00187.x.CrossRefPubMed Abbas JJ, Riener R: Using Mathematical Models and Advanced Control Systems Techniques to Enhance Neuroprosthesis Function. Neuromodulation. 2001, 4 (4): 187-195. 10.1046/j.1525-1403.2001.00187.x.CrossRefPubMed
23.
go back to reference Hill AV: Heat and shortening and the dynamic constants of muscle. Proceedings of the Royal Society of London [Biol]. 1938, 125: 136-195.CrossRef Hill AV: Heat and shortening and the dynamic constants of muscle. Proceedings of the Royal Society of London [Biol]. 1938, 125: 136-195.CrossRef
24.
go back to reference Wexler AS, Ding J, Binder-Macleod SA: A mathematical model that predicts skeletal muscle force. IEEE Trans Biomed Eng. 1997, 44 (5): 337-348. 10.1109/10.568909.CrossRefPubMed Wexler AS, Ding J, Binder-Macleod SA: A mathematical model that predicts skeletal muscle force. IEEE Trans Biomed Eng. 1997, 44 (5): 337-348. 10.1109/10.568909.CrossRefPubMed
25.
go back to reference Ding J, Wexler AS, Binder-Macleod SA: Development of a mathematical model that predicts optimal muscle activation patterns by using brief trains. J Appl Physiol. 2000, 88 (3): 917-925.PubMed Ding J, Wexler AS, Binder-Macleod SA: Development of a mathematical model that predicts optimal muscle activation patterns by using brief trains. J Appl Physiol. 2000, 88 (3): 917-925.PubMed
26.
go back to reference Ding J, Lee SC, Johnston TE, Wexler AS, Scott WB, Binder-Macleod SA: Mathematical model that predicts isometric muscle forces for individuals with spinal cord injuries. Muscle Nerve. 2005, 31 (6): 702-712. 10.1002/mus.20303.CrossRefPubMed Ding J, Lee SC, Johnston TE, Wexler AS, Scott WB, Binder-Macleod SA: Mathematical model that predicts isometric muscle forces for individuals with spinal cord injuries. Muscle Nerve. 2005, 31 (6): 702-712. 10.1002/mus.20303.CrossRefPubMed
27.
go back to reference Frey Law LA, Shields RK: Predicting Human Chronically Paralyzed Muscle Force: A Comparison of Three Mathematical Models. J Appl Physiol. 2006, 100 (3): 1027-1036. 10.1152/japplphysiol.00935.2005.PubMedCentralCrossRefPubMed Frey Law LA, Shields RK: Predicting Human Chronically Paralyzed Muscle Force: A Comparison of Three Mathematical Models. J Appl Physiol. 2006, 100 (3): 1027-1036. 10.1152/japplphysiol.00935.2005.PubMedCentralCrossRefPubMed
28.
go back to reference Ding J, Wexler AS, Binder-Macleod SA: A mathematical model that predicts the force-frequency relationship of human skeletal muscle. Muscle Nerve. 2002, 26 (4): 477-485. 10.1002/mus.10198.CrossRefPubMed Ding J, Wexler AS, Binder-Macleod SA: A mathematical model that predicts the force-frequency relationship of human skeletal muscle. Muscle Nerve. 2002, 26 (4): 477-485. 10.1002/mus.10198.CrossRefPubMed
29.
go back to reference Bobet J, Stein RB: A simple model of force generation by skeletal muscle during dynamic isometric contractions. IEEE Trans Biomed Eng. 1998, 45 (8): 1010-1016. 10.1109/10.704869.CrossRefPubMed Bobet J, Stein RB: A simple model of force generation by skeletal muscle during dynamic isometric contractions. IEEE Trans Biomed Eng. 1998, 45 (8): 1010-1016. 10.1109/10.704869.CrossRefPubMed
30.
go back to reference Bobet J, Gossen ER, Stein RB: A comparison of models of force production during stimulated isometric ankle dorsiflexion in humans. IEEE Trans Neural Syst Rehabil Eng. 2005, 13 (4): 444-451. 10.1109/TNSRE.2005.858461.CrossRefPubMed Bobet J, Gossen ER, Stein RB: A comparison of models of force production during stimulated isometric ankle dorsiflexion in humans. IEEE Trans Neural Syst Rehabil Eng. 2005, 13 (4): 444-451. 10.1109/TNSRE.2005.858461.CrossRefPubMed
31.
go back to reference Neptune RR, Kautz SA, Zajac FE: Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. J Biomech. 2001, 34 (11): 1387-1398. 10.1016/S0021-9290(01)00105-1.CrossRefPubMed Neptune RR, Kautz SA, Zajac FE: Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. J Biomech. 2001, 34 (11): 1387-1398. 10.1016/S0021-9290(01)00105-1.CrossRefPubMed
32.
go back to reference Higginson JS, Zajac FE, Neptune RR, Kautz SA, Delp SL: Muscle contributions to support during gait in an individual with post-stroke hemiparesis. J Biomech. 2006, 39 (10): 1769-1777. 10.1016/j.jbiomech.2005.05.032.CrossRefPubMed Higginson JS, Zajac FE, Neptune RR, Kautz SA, Delp SL: Muscle contributions to support during gait in an individual with post-stroke hemiparesis. J Biomech. 2006, 39 (10): 1769-1777. 10.1016/j.jbiomech.2005.05.032.CrossRefPubMed
33.
go back to reference Harris ML, Polkey MI, Bath PM, Moxham J: Quadriceps muscle weakness following acute hemiplegic stroke. Clin Rehabil. 2001, 15 (3): 274-281. 10.1191/026921501669958740.CrossRefPubMed Harris ML, Polkey MI, Bath PM, Moxham J: Quadriceps muscle weakness following acute hemiplegic stroke. Clin Rehabil. 2001, 15 (3): 274-281. 10.1191/026921501669958740.CrossRefPubMed
34.
go back to reference Hsu AL, Tang PF, Jan MH: Analysis of impairments influencing gait velocity and asymmetry of hemiplegic patients after mild to moderate stroke. Arch Phys Med Rehabil. 2003, 84 (8): 1185-1193. 10.1016/S0003-9993(03)00030-3.CrossRefPubMed Hsu AL, Tang PF, Jan MH: Analysis of impairments influencing gait velocity and asymmetry of hemiplegic patients after mild to moderate stroke. Arch Phys Med Rehabil. 2003, 84 (8): 1185-1193. 10.1016/S0003-9993(03)00030-3.CrossRefPubMed
35.
go back to reference Nadeau S, Arsenault AB, Gravel D, Bourbonnais D: Analysis of the clinical factors determining natural and maximal gait speeds in adults with a stroke. Am J Phys Med Rehabil. 1999, 78 (2): 123-130. 10.1097/00002060-199903000-00007.CrossRefPubMed Nadeau S, Arsenault AB, Gravel D, Bourbonnais D: Analysis of the clinical factors determining natural and maximal gait speeds in adults with a stroke. Am J Phys Med Rehabil. 1999, 78 (2): 123-130. 10.1097/00002060-199903000-00007.CrossRefPubMed
36.
go back to reference Olney SJ, Griffin MP, Monga TN, McBride ID: Work and power in gait of stroke patients. Arch Phys Med Rehabil. 1991, 72 (5): 309-314.PubMed Olney SJ, Griffin MP, Monga TN, McBride ID: Work and power in gait of stroke patients. Arch Phys Med Rehabil. 1991, 72 (5): 309-314.PubMed
37.
go back to reference Nadeau S, Gravel D, Arsenault AB, Bourbonnais D: Plantarflexor weakness as a limiting factor of gait speed in stroke subjects and the compensating role of hip flexors. Clin Biomech (Bristol, Avon). 1999, 14 (2): 125-135. 10.1016/S0268-0033(98)00062-X.CrossRef Nadeau S, Gravel D, Arsenault AB, Bourbonnais D: Plantarflexor weakness as a limiting factor of gait speed in stroke subjects and the compensating role of hip flexors. Clin Biomech (Bristol, Avon). 1999, 14 (2): 125-135. 10.1016/S0268-0033(98)00062-X.CrossRef
38.
go back to reference Ding J, Binder-Macleod SA, Wexler AS: Two-step, predictive, isometric force model tested on data from human and rat muscles. J Appl Physiol. 1998, 85 (6): 2176-2189.PubMed Ding J, Binder-Macleod SA, Wexler AS: Two-step, predictive, isometric force model tested on data from human and rat muscles. J Appl Physiol. 1998, 85 (6): 2176-2189.PubMed
39.
go back to reference Ding J, Wexler AS, Binder-Macleod SA: Mathematical models for fatigue minimization during functional electrical stimulation. J Electromyogr Kinesiol. 2003, 13 (6): 575-588. 10.1016/S1050-6411(03)00102-0.CrossRefPubMed Ding J, Wexler AS, Binder-Macleod SA: Mathematical models for fatigue minimization during functional electrical stimulation. J Electromyogr Kinesiol. 2003, 13 (6): 575-588. 10.1016/S1050-6411(03)00102-0.CrossRefPubMed
40.
go back to reference Warfel JH: The Extremities: Muscles and Motor Points. 1993, Lippincott Williams & Wilkins Warfel JH: The Extremities: Muscles and Motor Points. 1993, Lippincott Williams & Wilkins
41.
go back to reference Binder-Macleod SA, Dean JC, Ding J: Electrical stimulation factors in potentiation of human quadriceps femoris. Muscle Nerve. 2002, 25 (2): 271-279. 10.1002/mus.10027.CrossRefPubMed Binder-Macleod SA, Dean JC, Ding J: Electrical stimulation factors in potentiation of human quadriceps femoris. Muscle Nerve. 2002, 25 (2): 271-279. 10.1002/mus.10027.CrossRefPubMed
42.
go back to reference Lawrence G, Zhou JL, Tits AL: "CFSQP". College Park, MD: University of Maryland. 1997 Lawrence G, Zhou JL, Tits AL: "CFSQP". College Park, MD: University of Maryland. 1997
43.
go back to reference Portney LG, Watkins MP: Foundations of clinical research: applications to practice. 1993, Norwalk, CT: Appleton & Lange Portney LG, Watkins MP: Foundations of clinical research: applications to practice. 1993, Norwalk, CT: Appleton & Lange
44.
go back to reference Perumal R, Wexler AS, Ding J, Binder-Macleod SA: Modeling the length dependence of isometric force in human quadriceps muscles. J Biomech. 2002, 35 (7): 919-930. 10.1016/S0021-9290(02)00049-0.CrossRefPubMed Perumal R, Wexler AS, Ding J, Binder-Macleod SA: Modeling the length dependence of isometric force in human quadriceps muscles. J Biomech. 2002, 35 (7): 919-930. 10.1016/S0021-9290(02)00049-0.CrossRefPubMed
45.
go back to reference Perumal R, Wexler AS, Binder-Macleod SA: Mathematical model that predicts lower leg motion in response to electrical stimulation. J Biomech. 2006, 39 (15): 2826-2836. 10.1016/j.jbiomech.2005.09.021.CrossRefPubMed Perumal R, Wexler AS, Binder-Macleod SA: Mathematical model that predicts lower leg motion in response to electrical stimulation. J Biomech. 2006, 39 (15): 2826-2836. 10.1016/j.jbiomech.2005.09.021.CrossRefPubMed
46.
go back to reference Toffola ED, Sparpaglione D, Pistorio A, Buonocore M: Myoelectric manifestations of muscle changes in stroke patients. Arch Phys Med Rehabil. 2001, 82 (5): 661-665. 10.1053/apmr.2001.22338.CrossRefPubMed Toffola ED, Sparpaglione D, Pistorio A, Buonocore M: Myoelectric manifestations of muscle changes in stroke patients. Arch Phys Med Rehabil. 2001, 82 (5): 661-665. 10.1053/apmr.2001.22338.CrossRefPubMed
47.
go back to reference Dattola R, Girlanda P, Vita G, Santoro M, Roberto ML, Toscano A, Venuto C, Baradello A, Messina C: Muscle rearrangement in patients with hemiparesis after stroke: an electrophysiological and morphological study. Eur Neurol. 1993, 33 (2): 109-114. 10.1159/000116915.CrossRefPubMed Dattola R, Girlanda P, Vita G, Santoro M, Roberto ML, Toscano A, Venuto C, Baradello A, Messina C: Muscle rearrangement in patients with hemiparesis after stroke: an electrophysiological and morphological study. Eur Neurol. 1993, 33 (2): 109-114. 10.1159/000116915.CrossRefPubMed
48.
go back to reference Dietz V, Ketelsen UP, Berger W, Quintern J: Motor unit involvement in spastic paresis. Relationship between leg muscle activation and histochemistry. J Neurol Sci. 1986, 75 (1): 89-103. 10.1016/0022-510X(86)90052-3.CrossRefPubMed Dietz V, Ketelsen UP, Berger W, Quintern J: Motor unit involvement in spastic paresis. Relationship between leg muscle activation and histochemistry. J Neurol Sci. 1986, 75 (1): 89-103. 10.1016/0022-510X(86)90052-3.CrossRefPubMed
49.
go back to reference Frey Law LA, Shields RK: Mathematical models use varying parameter strategies to represent paralyzed muscle force properties: a sensitivity analysis. J Neuroengineering Rehabil. 2005, 2: 12-10.1186/1743-0003-2-12.PubMedCentralCrossRef Frey Law LA, Shields RK: Mathematical models use varying parameter strategies to represent paralyzed muscle force properties: a sensitivity analysis. J Neuroengineering Rehabil. 2005, 2: 12-10.1186/1743-0003-2-12.PubMedCentralCrossRef
50.
go back to reference Bobet J: Can muscle models improve FES-assisted walking after spinal cord injury?. J Electromyogr Kinesiol. 1998, 8 (2): 125-132. 10.1016/S1050-6411(97)00029-1.CrossRefPubMed Bobet J: Can muscle models improve FES-assisted walking after spinal cord injury?. J Electromyogr Kinesiol. 1998, 8 (2): 125-132. 10.1016/S1050-6411(97)00029-1.CrossRefPubMed
51.
go back to reference Ding J, Kesar T, Wexler AS, Binder-Macleod SA: A Mathematical Model that Predicts the Force-Intensity Relationship of Human Skeletal Muscle. 10th International Conference of the International FES Society, Montreal, Canada, July. 2005, 367-369. Ding J, Kesar T, Wexler AS, Binder-Macleod SA: A Mathematical Model that Predicts the Force-Intensity Relationship of Human Skeletal Muscle. 10th International Conference of the International FES Society, Montreal, Canada, July. 2005, 367-369.
52.
go back to reference Ding J, Chou LW, Kesar TM, Lee SC, Johnston TE, Wexler AS, Binder-Macleod SA: Mathematical model that predicts the force-intensity and force-frequency relationships after spinal cord injuries. Muscle Nerve. 2007, 36 (2): 214-222. 10.1002/mus.20806.PubMedCentralCrossRefPubMed Ding J, Chou LW, Kesar TM, Lee SC, Johnston TE, Wexler AS, Binder-Macleod SA: Mathematical model that predicts the force-intensity and force-frequency relationships after spinal cord injuries. Muscle Nerve. 2007, 36 (2): 214-222. 10.1002/mus.20806.PubMedCentralCrossRefPubMed
Metadata
Title
Predicting muscle forces of individuals with hemiparesis following stroke
Authors
Trisha M Kesar
Jun Ding
Anthony S Wexler
Ramu Perumal
Ryan Maladen
Stuart A Binder-Macleod
Publication date
01-12-2008
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2008
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-5-7

Other articles of this Issue 1/2008

Journal of NeuroEngineering and Rehabilitation 1/2008 Go to the issue