Skip to main content
Top
Published in: Journal of Bone and Mineral Metabolism 2/2017

01-03-2017 | Original Article

Predicting bone mineral acquisition during puberty: data from a 3-year follow-up study in Hamamatsu, Japan

Authors: Katsuyasu Kouda, Kumiko Ohara, Harunobu Nakamura, Yuki Fujita, Masayuki Iki

Published in: Journal of Bone and Mineral Metabolism | Issue 2/2017

Login to get access

Abstract

Although most adult bone mass is acquired before adolescence, only a few studies have assessed bone turnover markers in children. Thus, the utility of bone markers to evaluate and predict bone mineral accrual in children is unclear. The present study assessed the association between serum bone markers at 11 years of age and subsequent changes in bone gain. Information on bone minerals and bone markers at baseline and at the 3-year follow-up were obtained from 121 children who registered as fifth-grade students in 2010, in Hamamatsu, Japan. Whole-body bone mineral content (WBBMC) and whole-body bone mineral density (WBBMD) were measured using dual-energy X-ray absorptiometry. Boys showed significant (P < 0.05) positive relationships between intact osteocalcin at baseline and WBBMC at follow-up (β = 0.24), between tartrate-resistant acid phosphatase isoenzyme 5b (TRAP5b) and WBBMC (β = 0.34), and between TRAP5b and WBBMD (β = 0.34), after adjusting for potential confounding factors. In girls, adjusted means of 3-year gain in both WBBMC and WBBMD significantly increased from the lowest to highest quartiles of type 1 collagen cross-linked C-terminal telopeptide. In boys, adjusted means of 3-year gain in both WBBMC and WBBMD significantly increased from the lowest to highest quartiles of TRAP5b. Children with a high concentration of bone turnover markers tended to exhibit substantial accrual of bone minerals. These results suggest that serum levels of circulating biomarkers at age 11 predict subsequent bone mineral accrual.
Literature
1.
go back to reference Sabatier JP, Guaydier-Souquieres G, Laroche D, Benmalek A, Fournier L, Guillon-Metz F, Delavenne J, Denis AY (1996) Bone mineral acquisition during adolescence and early adulthood: a study in 574 healthy females 10–24 years of age. Osteoporos Int 6:141–148CrossRefPubMed Sabatier JP, Guaydier-Souquieres G, Laroche D, Benmalek A, Fournier L, Guillon-Metz F, Delavenne J, Denis AY (1996) Bone mineral acquisition during adolescence and early adulthood: a study in 574 healthy females 10–24 years of age. Osteoporos Int 6:141–148CrossRefPubMed
2.
3.
go back to reference Szulc P, Seeman E, Delmas PD (2000) Biochemical measurements of bone turnover in children and adolescents. Osteoporos Int 11:281–294CrossRefPubMed Szulc P, Seeman E, Delmas PD (2000) Biochemical measurements of bone turnover in children and adolescents. Osteoporos Int 11:281–294CrossRefPubMed
4.
go back to reference Slemenda CW, Peacock M, Hui S, Zhou L, Johnston CC (1997) Reduced rates of skeletal remodeling are associated with increased bone mineral density during the development of peak skeletal mass. J Bone Miner Res 12:676–682CrossRefPubMed Slemenda CW, Peacock M, Hui S, Zhou L, Johnston CC (1997) Reduced rates of skeletal remodeling are associated with increased bone mineral density during the development of peak skeletal mass. J Bone Miner Res 12:676–682CrossRefPubMed
5.
go back to reference Mora S, Pitukcheewanont P, Kaufman FR, Nelson JC, Gilsanz V (1999) Biochemical markers of bone turnover and the volume and the density of bone in children at different stages of sexual development. J Bone Miner Res 14:1664–1671CrossRefPubMed Mora S, Pitukcheewanont P, Kaufman FR, Nelson JC, Gilsanz V (1999) Biochemical markers of bone turnover and the volume and the density of bone in children at different stages of sexual development. J Bone Miner Res 14:1664–1671CrossRefPubMed
6.
go back to reference Jurimae J, Pomerants T, Tillmann V, Jurimae T (2009) Bone metabolism markers and ghrelin in boys at different stages of sexual maturity. Acta Paediatr 98:892–896CrossRefPubMed Jurimae J, Pomerants T, Tillmann V, Jurimae T (2009) Bone metabolism markers and ghrelin in boys at different stages of sexual maturity. Acta Paediatr 98:892–896CrossRefPubMed
7.
go back to reference Gracia-Marco L, Ortega FB, Jimenez-Pavon D, Rodriguez G, Valtuena J, Diaz-Martinez AE, Gonzalez-Gross M, Castillo MJ, Vicente-Rodriguez G, Moreno LA (2011) Contribution of bone turnover markers to bone mass in pubertal boys and girls. J Pediatr Endocrinol Metab 24:971–974CrossRefPubMed Gracia-Marco L, Ortega FB, Jimenez-Pavon D, Rodriguez G, Valtuena J, Diaz-Martinez AE, Gonzalez-Gross M, Castillo MJ, Vicente-Rodriguez G, Moreno LA (2011) Contribution of bone turnover markers to bone mass in pubertal boys and girls. J Pediatr Endocrinol Metab 24:971–974CrossRefPubMed
8.
go back to reference Csakvary V, Puskas T, Oroszlan G, Lakatos P, Kalman B, Kovacs GL, Toldy E (2013) Hormonal and biochemical parameters correlated with bone densitometric markers in prepubertal Hungarian children. Bone (NY) 54:106–112CrossRef Csakvary V, Puskas T, Oroszlan G, Lakatos P, Kalman B, Kovacs GL, Toldy E (2013) Hormonal and biochemical parameters correlated with bone densitometric markers in prepubertal Hungarian children. Bone (NY) 54:106–112CrossRef
9.
go back to reference Csakvary V, Erhardt E, Vargha P, Oroszlan G, Bodecs T, Torok D, Toldy E, Kovacs GL (2012) Association of lean and fat body mass, bone biomarkers and gonadal steroids with bone mass during pre- and midpuberty. Horm Res Paediatr 78:203–211CrossRefPubMed Csakvary V, Erhardt E, Vargha P, Oroszlan G, Bodecs T, Torok D, Toldy E, Kovacs GL (2012) Association of lean and fat body mass, bone biomarkers and gonadal steroids with bone mass during pre- and midpuberty. Horm Res Paediatr 78:203–211CrossRefPubMed
10.
go back to reference Cadogan J, Blumsohn A, Barker ME, Eastell R (1998) A longitudinal study of bone gain in pubertal girls: anthropometric and biochemical correlates. J Bone Miner Res 13:1602–1612CrossRefPubMed Cadogan J, Blumsohn A, Barker ME, Eastell R (1998) A longitudinal study of bone gain in pubertal girls: anthropometric and biochemical correlates. J Bone Miner Res 13:1602–1612CrossRefPubMed
11.
go back to reference Tuchman S, Thayu M, Shults J, Zemel BS, Burnham JM, Leonard MB (2008) Interpretation of biomarkers of bone metabolism in children: impact of growth velocity and body size in healthy children and chronic disease. J Pediatr 153:484–490CrossRefPubMedPubMedCentral Tuchman S, Thayu M, Shults J, Zemel BS, Burnham JM, Leonard MB (2008) Interpretation of biomarkers of bone metabolism in children: impact of growth velocity and body size in healthy children and chronic disease. J Pediatr 153:484–490CrossRefPubMedPubMedCentral
12.
go back to reference Fujita Y, Iki M, Ikeda Y, Morita A, Matsukura T, Nishino H, Yamagami T, Kagamimori S, Kagawa Y, Yoneshima H (2011) Tracking of appendicular bone mineral density for 6 years including the pubertal growth spurt: Japanese Population-based Osteoporosis kids cohort study. J Bone Miner Metab 29:208–216CrossRefPubMed Fujita Y, Iki M, Ikeda Y, Morita A, Matsukura T, Nishino H, Yamagami T, Kagamimori S, Kagawa Y, Yoneshima H (2011) Tracking of appendicular bone mineral density for 6 years including the pubertal growth spurt: Japanese Population-based Osteoporosis kids cohort study. J Bone Miner Metab 29:208–216CrossRefPubMed
13.
go back to reference Kawaguchi H, Matsumoto T, Kurokawa T, Orimo H, Mizunashi K, Takuwa Y, Niimi H, Shiraki M, Ohara T, Shishiba Y, Tsuchiya Y, Takahshi H, Takatsuki K, Seino Y, Morii H, Fujita T, Okamoto S, Ogata E (1990) Serum levels of BGP determined by two-site immunoradiometric assay (IRMA) using monoclonal antibodies (in Japanese). Hormone to Rinsho (Clin Endocrinol) 38:1291–1296 Kawaguchi H, Matsumoto T, Kurokawa T, Orimo H, Mizunashi K, Takuwa Y, Niimi H, Shiraki M, Ohara T, Shishiba Y, Tsuchiya Y, Takahshi H, Takatsuki K, Seino Y, Morii H, Fujita T, Okamoto S, Ogata E (1990) Serum levels of BGP determined by two-site immunoradiometric assay (IRMA) using monoclonal antibodies (in Japanese). Hormone to Rinsho (Clin Endocrinol) 38:1291–1296
14.
go back to reference Eastell R, Garnero P, Audebert C, Cahall DL (2012) Reference intervals of bone turnover markers in healthy premenopausal women: results from a cross-sectional European study. Bone (NY) 50:1141–1147CrossRef Eastell R, Garnero P, Audebert C, Cahall DL (2012) Reference intervals of bone turnover markers in healthy premenopausal women: results from a cross-sectional European study. Bone (NY) 50:1141–1147CrossRef
15.
go back to reference Nishizawa Y, Inaba M, Ishii K, Yamashita H, Miki T, Goto H, Yamada S, Chaki O, Kurasawa K, Mochiduki Y (2005) Evaluation of newly developed kit for measurement of bone-specific tartrate-resistant acid phosphatase in blood (in Japanese). Igaku Yakugaku (Jpn J Med Pharm Sci) 54:709–717 Nishizawa Y, Inaba M, Ishii K, Yamashita H, Miki T, Goto H, Yamada S, Chaki O, Kurasawa K, Mochiduki Y (2005) Evaluation of newly developed kit for measurement of bone-specific tartrate-resistant acid phosphatase in blood (in Japanese). Igaku Yakugaku (Jpn J Med Pharm Sci) 54:709–717
16.
go back to reference Fujita Y, Iki M, Tamaki J, Kouda K, Yura A, Kadowaki E, Sato Y, Moon JS, Tomioka K, Okamoto N, Kurumatani N (2013) Renal function and bone mineral density in community-dwelling elderly Japanese men: the Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) Study. Bone (NY) 56:61–66CrossRef Fujita Y, Iki M, Tamaki J, Kouda K, Yura A, Kadowaki E, Sato Y, Moon JS, Tomioka K, Okamoto N, Kurumatani N (2013) Renal function and bone mineral density in community-dwelling elderly Japanese men: the Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) Study. Bone (NY) 56:61–66CrossRef
17.
go back to reference Johansen JS, Giwercman A, Hartwell D, Nielsen CT, Price PA, Christiansen C, Skakkebaek NE (1988) Serum bone Gla-protein as a marker of bone growth in children and adolescents: correlation with age, height, serum insulin-like growth factor I, and serum testosterone. J Clin Endocrinol Metab 67:273–278CrossRefPubMed Johansen JS, Giwercman A, Hartwell D, Nielsen CT, Price PA, Christiansen C, Skakkebaek NE (1988) Serum bone Gla-protein as a marker of bone growth in children and adolescents: correlation with age, height, serum insulin-like growth factor I, and serum testosterone. J Clin Endocrinol Metab 67:273–278CrossRefPubMed
18.
go back to reference Cioffi M, Molinari AM, Gazzerro P, Di Finizio B, Fratta M, Deufemia A, Puca GA (1997) Serum osteocalcin in 1634 healthy children. Clin Chem 43:543–545PubMed Cioffi M, Molinari AM, Gazzerro P, Di Finizio B, Fratta M, Deufemia A, Puca GA (1997) Serum osteocalcin in 1634 healthy children. Clin Chem 43:543–545PubMed
19.
go back to reference Crofton PM, Evans N, Taylor MR, Holland CV (2002) Serum CrossLaps: pediatric reference intervals from birth to 19 years of age. Clin Chem 48:671–673PubMed Crofton PM, Evans N, Taylor MR, Holland CV (2002) Serum CrossLaps: pediatric reference intervals from birth to 19 years of age. Clin Chem 48:671–673PubMed
20.
go back to reference Halleen JM (2003) Tartrate-resistant acid phosphatase 5B is a specific and sensitive marker of bone resorption. Anticancer Res 23:1027–1029PubMed Halleen JM (2003) Tartrate-resistant acid phosphatase 5B is a specific and sensitive marker of bone resorption. Anticancer Res 23:1027–1029PubMed
21.
go back to reference Rauchenzauner M, Schmid A, Heinz-Erian P, Kapelari K, Falkensammer G, Griesmacher A, Finkenstedt G, Hogler W (2007) Sex- and age-specific reference curves for serum markers of bone turnover in healthy children from 2 months to 18 years. J Clin Endocrinol Metab 92:443–449CrossRefPubMed Rauchenzauner M, Schmid A, Heinz-Erian P, Kapelari K, Falkensammer G, Griesmacher A, Finkenstedt G, Hogler W (2007) Sex- and age-specific reference curves for serum markers of bone turnover in healthy children from 2 months to 18 years. J Clin Endocrinol Metab 92:443–449CrossRefPubMed
22.
go back to reference Suwa S, Tachibana K (1993) Standard growth charts for height and weight of Japanese children from birth to 17 years based on cross-sectional survey of national data. Clin Pediatr Endocrinol 2:87–97CrossRef Suwa S, Tachibana K (1993) Standard growth charts for height and weight of Japanese children from birth to 17 years based on cross-sectional survey of national data. Clin Pediatr Endocrinol 2:87–97CrossRef
23.
go back to reference Clowes JA, Hannon RA, Yap TS, Hoyle NR, Blumsohn A, Eastell R (2002) Effect of feeding on bone turnover markers and its impact on biological variability of measurements. Bone (NY) 30:886–890CrossRef Clowes JA, Hannon RA, Yap TS, Hoyle NR, Blumsohn A, Eastell R (2002) Effect of feeding on bone turnover markers and its impact on biological variability of measurements. Bone (NY) 30:886–890CrossRef
Metadata
Title
Predicting bone mineral acquisition during puberty: data from a 3-year follow-up study in Hamamatsu, Japan
Authors
Katsuyasu Kouda
Kumiko Ohara
Harunobu Nakamura
Yuki Fujita
Masayuki Iki
Publication date
01-03-2017
Publisher
Springer Japan
Published in
Journal of Bone and Mineral Metabolism / Issue 2/2017
Print ISSN: 0914-8779
Electronic ISSN: 1435-5604
DOI
https://doi.org/10.1007/s00774-016-0740-4

Other articles of this Issue 2/2017

Journal of Bone and Mineral Metabolism 2/2017 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine