Skip to main content
Top
Published in: European Radiology 6/2018

01-06-2018 | Breast

Preclinical ex vivo evaluation of the diagnostic performance of a new device for in situ label-free fluorescence spectral analysis of breast masses

Authors: Marie-Christine Mathieu, Alexis Toullec, Charlotte Benoit, Richard Berry, Pierre Validire, Pauline Beaumel, Yves Vincent, Pierre Maroun, Philippe Vielh, Lama Alchab, René Farcy, Hélène Moniz-Koum, Marie-Pierre Fontaine-Aupart, Suzette Delaloge, Corinne Balleyguier

Published in: European Radiology | Issue 6/2018

Login to get access

Abstract

Objectives

To assess the diagnostic performance of a new device for in situ label-free fluorescence spectral analysis of breast masses in freshly removed surgical specimens, in preparation for its clinical development.

Methods

Sixty-four breast masses from consenting patients who had undergone either a lumpectomy or a mastectomy were included. Label-free fluorescence spectral acquisitions were obtained with a 25G fibre-containing needle inserted into the mass. Data from benign and malignant masses were compared to establish the most discriminating thresholds and measurement algorithms. Accuracy was verified using the bootstrap method.

Results

The final histological examination revealed 44 invasive carcinomas and 20 benign lesions. The maximum intensity of fluorescence signal was discriminant between benign and malignant masses (p < .0001) whatever their sizes. Statistical analysis indicated that choosing five random measurements per mass was the best compromise to obtain high sensitivity and high negative predictive value with the fewest measurements. Thus, malignant tumours were identified with a mean sensitivity, specificity, negative and positive predictive value of 98.8%, 85.4%, 97.2% and 93.5%, respectively.

Conclusion

This new in situ tissue autofluorescence evaluation device allows accurate discrimination between benign and malignant breast masses and deserves clinical development.

Key Points

A new device allows in situ label-free fluorescence analysis of ex vivo breast masses
Maximum fluorescence intensity discriminates benign from malignant masses (p < .0001)
Five random measurements allow a high negative predictive value (97.2%)
Appendix
Available only for authorised users
Literature
1.
go back to reference Raza S, Odulate A, EMW O et al (2010) Using real-time tissue elastography for breast lesion evaluation our initial experience. J Ultrasound Med 29:551–563CrossRefPubMed Raza S, Odulate A, EMW O et al (2010) Using real-time tissue elastography for breast lesion evaluation our initial experience. J Ultrasound Med 29:551–563CrossRefPubMed
2.
go back to reference Delaloge S, Bonastre J, Borget I et al (2016) The challenge of rapid diagnosis in oncology: diagnostic accuracy and cost analysis of a large-scale one-stop breast clinic. Eur J Cancer 66:131–137CrossRefPubMed Delaloge S, Bonastre J, Borget I et al (2016) The challenge of rapid diagnosis in oncology: diagnostic accuracy and cost analysis of a large-scale one-stop breast clinic. Eur J Cancer 66:131–137CrossRefPubMed
3.
go back to reference Wagnieres G, Star W (1998) In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem Photobiol 68:603–632CrossRefPubMed Wagnieres G, Star W (1998) In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem Photobiol 68:603–632CrossRefPubMed
4.
go back to reference Vo-Dinh T, Panjehpour M (1995) In vivo cancer diagnosis of the esophagus using differential normalized fluorescence (DNF) indices. Lasers Surg Med 16:41–47CrossRefPubMed Vo-Dinh T, Panjehpour M (1995) In vivo cancer diagnosis of the esophagus using differential normalized fluorescence (DNF) indices. Lasers Surg Med 16:41–47CrossRefPubMed
5.
go back to reference Lane P, Lam S, Follen M, MacAulay C (2012) Oral fluorescence imaging using 405-nm excitation, aiding the discrimination of cancers and precancers by identifying changes in collagen and elastic breakdown and neovascularization in the underlying stroma. Gend Med 9:S78–S82.e8CrossRefPubMed Lane P, Lam S, Follen M, MacAulay C (2012) Oral fluorescence imaging using 405-nm excitation, aiding the discrimination of cancers and precancers by identifying changes in collagen and elastic breakdown and neovascularization in the underlying stroma. Gend Med 9:S78–S82.e8CrossRefPubMed
6.
go back to reference McAlpine JN, El Hallani S, Lam SF et al (2011) Autofluorescence imaging can identify preinvasive or clinically occult lesions in fallopian tube epithelium: a promising step towards screening and early detection. Gynecol Oncol 120:385–392CrossRefPubMed McAlpine JN, El Hallani S, Lam SF et al (2011) Autofluorescence imaging can identify preinvasive or clinically occult lesions in fallopian tube epithelium: a promising step towards screening and early detection. Gynecol Oncol 120:385–392CrossRefPubMed
7.
go back to reference Chen W, Gao X, Tian Q, Chen L (2011) A comparison of autofluorescence bronchoscopy and white light bronchoscopy in detection of lung cancer and preneoplastic lesions: a meta-analysis. Lung Cancer 73:183–188CrossRefPubMed Chen W, Gao X, Tian Q, Chen L (2011) A comparison of autofluorescence bronchoscopy and white light bronchoscopy in detection of lung cancer and preneoplastic lesions: a meta-analysis. Lung Cancer 73:183–188CrossRefPubMed
8.
go back to reference Alfano R, Tata D, Cordero J et al (1984) Laser induced fluorescence spectroscopy from native cancerous and normal tissue. IEEE J Quantum Electron 20:1507–1511CrossRef Alfano R, Tata D, Cordero J et al (1984) Laser induced fluorescence spectroscopy from native cancerous and normal tissue. IEEE J Quantum Electron 20:1507–1511CrossRef
9.
go back to reference Tang GC, Pradhan A, Alfano RR (1989) Spectroscopic differences between human cancer and normal lung and breast tissues. Lasers Surg Med 9:290–295CrossRefPubMed Tang GC, Pradhan A, Alfano RR (1989) Spectroscopic differences between human cancer and normal lung and breast tissues. Lasers Surg Med 9:290–295CrossRefPubMed
10.
go back to reference Yang Y, Katz A, Celmer EJ et al (1997) Fundamental differences of excitation spectrum between malignant and benign breast tissues. Photochem Photobiol 66:518–522CrossRefPubMed Yang Y, Katz A, Celmer EJ et al (1997) Fundamental differences of excitation spectrum between malignant and benign breast tissues. Photochem Photobiol 66:518–522CrossRefPubMed
11.
go back to reference Gupta PK, Majumder SK, Uppal A (1997) Breast cancer diagnosis using N2 laser excited autofluorescence spectroscopy. Lasers Surg Med 21:417–422CrossRefPubMed Gupta PK, Majumder SK, Uppal A (1997) Breast cancer diagnosis using N2 laser excited autofluorescence spectroscopy. Lasers Surg Med 21:417–422CrossRefPubMed
12.
go back to reference Majumder SK, Gupta PK, Jain B, Uppal A (1999) UV excited autofluorescence spectroscopy of human breast tissue for discriminating cancerous tissue from benign tumor and normal tissue. Lasers Life Sci 8:249–264 Majumder SK, Gupta PK, Jain B, Uppal A (1999) UV excited autofluorescence spectroscopy of human breast tissue for discriminating cancerous tissue from benign tumor and normal tissue. Lasers Life Sci 8:249–264
13.
go back to reference Palmer GM, Zhu C, Breslin TM et al (2003) Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer (March 2003). IEEE Trans Biomed Eng 50:1233–1242CrossRefPubMed Palmer GM, Zhu C, Breslin TM et al (2003) Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer (March 2003). IEEE Trans Biomed Eng 50:1233–1242CrossRefPubMed
14.
go back to reference Chowdary MVP, Mahato KK, Kumar KK et al (2009) Autofluorescence of breast tissues: evaluation of discriminating algorithms for diagnosis of normal, benign, and malignant conditions. Photomed Laser Surg 27:241–252CrossRefPubMed Chowdary MVP, Mahato KK, Kumar KK et al (2009) Autofluorescence of breast tissues: evaluation of discriminating algorithms for diagnosis of normal, benign, and malignant conditions. Photomed Laser Surg 27:241–252CrossRefPubMed
15.
go back to reference Volynskaya Z, Haka AS, Bechtel KL et al (2008) Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy. J Biomed Opt 13:024012CrossRefPubMed Volynskaya Z, Haka AS, Bechtel KL et al (2008) Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy. J Biomed Opt 13:024012CrossRefPubMed
16.
go back to reference Alchab L, Dupuis G, Balleyguier C et al (2010) Towards an optical biopsy for the diagnosis of breast cancer in vivo by endogenous fluorescence spectroscopy. J Biophotonics 3:373–384CrossRefPubMed Alchab L, Dupuis G, Balleyguier C et al (2010) Towards an optical biopsy for the diagnosis of breast cancer in vivo by endogenous fluorescence spectroscopy. J Biophotonics 3:373–384CrossRefPubMed
17.
go back to reference Gust L, Toullec A, Benoit C et al (2015) Pulmonary endogenous fluorescence allows the distinction of primary lung cancer from the perilesional lung parenchyma. PLoS One 10:e0134559CrossRefPubMedPubMedCentral Gust L, Toullec A, Benoit C et al (2015) Pulmonary endogenous fluorescence allows the distinction of primary lung cancer from the perilesional lung parenchyma. PLoS One 10:e0134559CrossRefPubMedPubMedCentral
18.
go back to reference Sinn H-P, Kreipe H (2013) A brief overview of the WHO classification of breast tumors, 4th edition, focusing on issues and updates from the 3rd edition. Breast Care 8:149–154CrossRefPubMedPubMedCentral Sinn H-P, Kreipe H (2013) A brief overview of the WHO classification of breast tumors, 4th edition, focusing on issues and updates from the 3rd edition. Breast Care 8:149–154CrossRefPubMedPubMedCentral
19.
go back to reference International Electrotechnical Commission (2014) IEC 60825-1 / Safety of laser products – Part 1: Equipment classification and requirements. Int Stand International Electrotechnical Commission (2014) IEC 60825-1 / Safety of laser products – Part 1: Equipment classification and requirements. Int Stand
20.
go back to reference Thomsen S, Tatman D (1998) Physiological and pathological factors of human breast disease that can influence optical diagnosisa. Ann N Y Acad Sci 838:171–193CrossRefPubMed Thomsen S, Tatman D (1998) Physiological and pathological factors of human breast disease that can influence optical diagnosisa. Ann N Y Acad Sci 838:171–193CrossRefPubMed
21.
go back to reference Peyrol S, Raccurt M, Gerard F et al (1997) Lysyl oxidase gene expression in the stromal reaction to in situ and invasive ductal breast carcinoma. Am J Pathol 150:497–507PubMedPubMedCentral Peyrol S, Raccurt M, Gerard F et al (1997) Lysyl oxidase gene expression in the stromal reaction to in situ and invasive ductal breast carcinoma. Am J Pathol 150:497–507PubMedPubMedCentral
22.
go back to reference Zhu C, Palmer GM, Breslin TM et al (2008) Diagnosis of breast cancer using fluorescence and diffuse reflectance spectroscopy: a Monte-Carlo-model-based approach. J Biomed Opt 13:034015CrossRefPubMedPubMedCentral Zhu C, Palmer GM, Breslin TM et al (2008) Diagnosis of breast cancer using fluorescence and diffuse reflectance spectroscopy: a Monte-Carlo-model-based approach. J Biomed Opt 13:034015CrossRefPubMedPubMedCentral
23.
go back to reference Alfano RR, Pradhan A, Tang GC, Wahl SJ (1989) Optical spectroscopic diagnosis of cancer and normal breast tissues. J Opt Soc Am B 6:1015–1023CrossRef Alfano RR, Pradhan A, Tang GC, Wahl SJ (1989) Optical spectroscopic diagnosis of cancer and normal breast tissues. J Opt Soc Am B 6:1015–1023CrossRef
24.
go back to reference Sordillo LA, Sordillo PP, Budansky Y et al (2014) Differences in fluorescence profiles from breast cancer tissues due to changes in relative tryptophan content via energy transfer: tryptophan content correlates with histologic grade and tumor size but not with lymph node metastases. J Biomed Opt 19:125002CrossRefPubMed Sordillo LA, Sordillo PP, Budansky Y et al (2014) Differences in fluorescence profiles from breast cancer tissues due to changes in relative tryptophan content via energy transfer: tryptophan content correlates with histologic grade and tumor size but not with lymph node metastases. J Biomed Opt 19:125002CrossRefPubMed
25.
go back to reference Pu Y, Wang W, Yang Y, Alfano RR (2013) Native fluorescence spectra of human cancerous and normal breast tissues analyzed with non-negative constraint methods. Appl Opt 52:1293–1301CrossRefPubMed Pu Y, Wang W, Yang Y, Alfano RR (2013) Native fluorescence spectra of human cancerous and normal breast tissues analyzed with non-negative constraint methods. Appl Opt 52:1293–1301CrossRefPubMed
26.
go back to reference Onstad M, Stuckey A (2013) Benign breast disorders. Obstet Gynecol Clin N Am 40:459–473CrossRef Onstad M, Stuckey A (2013) Benign breast disorders. Obstet Gynecol Clin N Am 40:459–473CrossRef
Metadata
Title
Preclinical ex vivo evaluation of the diagnostic performance of a new device for in situ label-free fluorescence spectral analysis of breast masses
Authors
Marie-Christine Mathieu
Alexis Toullec
Charlotte Benoit
Richard Berry
Pierre Validire
Pauline Beaumel
Yves Vincent
Pierre Maroun
Philippe Vielh
Lama Alchab
René Farcy
Hélène Moniz-Koum
Marie-Pierre Fontaine-Aupart
Suzette Delaloge
Corinne Balleyguier
Publication date
01-06-2018
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 6/2018
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-017-5228-7

Other articles of this Issue 6/2018

European Radiology 6/2018 Go to the issue