Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2008

Open Access 01-12-2008 | Research article

Pre-surgical radiologic identification of peri-prosthetic osteolytic lesions around TKRs: a pre-clinical investigation of diagnostic accuracy

Authors: Timothy P Kurmis, Andrew P Kurmis, David G Campbell, John P Slavotinek

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2008

Login to get access

Abstract

Background

Emerging longitudinal data appear to demonstrate an alarming trend towards an increasing prevalence of osteolysis-induced mechanical failure, following total knee replacement (TKR). Even with high-quality multi-plane X-rays, accurate pre-surgical evaluation of osteolytic lesions is often difficult. This is likely to have an impact on surgical management and provides reasonable indication for the development of a model allowing more reliable lesion assessment. The aim of this study, using a simulated cadaver model, was to explore the accuracy of rapid spiral computed tomography (CT) examination in the non-invasive evaluation of peri-prosthetic osteolytic lesions, secondary to TKR, and to compare this to conventional X-ray standards.

Methods

A series of nine volume-occupying defects, simulating osteolytic lesions, were introduced into three human cadaveric knees, adjacent to the TKR implant components. With implants in situ, each knee was imaged using a two-stage conventional plain X-ray series and rapid-acquisition spiral CT. A beam-hardening artefact removal algorithm was employed to improve CT image quality.
After random image sorting, 12 radiologists were independently shown the series of plain X-ray images and asked to note the presence, anatomic location and 'size' of osteolytic lesions observed. The same process was repeated separately for review of the CT images. The corresponding X-ray and CT responses were directly compared to elicit any difference in the ability to demonstrate the presence and size of osteolytic lesions.

Results

Access to CT images significantly improved the accuracy of recognition of peri-prosthetic osteolytic lesions when compared to AP and lateral projections alone (P = 0.008) and with the addition of bi-planar oblique X-rays (P = 0.03). No advantage was obtained in accuracy of identification of such lesions through the introduction of the oblique images when compared with the AP and lateral projections alone (P = 0.13)

Conclusion

The findings of this study suggest that peri-prosthetic osteolytic lesions can be reliably described non-invasively using a simple, rapid-acquisition CT-based imaging approach. The low sensitivity of conventional X-ray, even with provision of supplementary bi-planar 45° oblique views, suggests a limited role for use in situ for TKR implant screening where peri-prosthetic osteolytic lesions are clinically suspected. In contrast, the accuracy of CT evaluation, linked to its procedural ease and widespread availability, may provide a more accurate way of evaluating osteolysis around TKRs, at routine orthopaedic follow up. These findings have direct clinical relevance, as accurate early recognition and classification of such lesions influences the timing and aggressiveness of surgical and non-operative management strategies, and also the nature and appropriateness of planned implant revision or joint-salvaging osteotomy procedures.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wilkinson JM, Wilson AG, Stockley I, Scott IR, Macdonald DA, Hamer AJ, Duff GW, Eastell R: Variation in the TNF gene promoter and risk of osteolysis after total hip arthroplasty. J Bone Miner Res. 2003, 18 (11): 1995-2001. 10.1359/jbmr.2003.18.11.1995.CrossRefPubMed Wilkinson JM, Wilson AG, Stockley I, Scott IR, Macdonald DA, Hamer AJ, Duff GW, Eastell R: Variation in the TNF gene promoter and risk of osteolysis after total hip arthroplasty. J Bone Miner Res. 2003, 18 (11): 1995-2001. 10.1359/jbmr.2003.18.11.1995.CrossRefPubMed
2.
go back to reference Mak KH, Wong TK, Poddar NC: Wear debris from total hip arthroplasty presenting as an intrapelvic mass. J Arthroplasty. 2001, 16 (5): 674-6. 10.1054/arth.2001.23726.CrossRefPubMed Mak KH, Wong TK, Poddar NC: Wear debris from total hip arthroplasty presenting as an intrapelvic mass. J Arthroplasty. 2001, 16 (5): 674-6. 10.1054/arth.2001.23726.CrossRefPubMed
3.
go back to reference Kadoya Y, Kobayashi A, Ohashi H: Wear and osteolysis in total joint replacements. Acta Orthop Scand Suppl. 1998, 278: 1-16.PubMed Kadoya Y, Kobayashi A, Ohashi H: Wear and osteolysis in total joint replacements. Acta Orthop Scand Suppl. 1998, 278: 1-16.PubMed
4.
go back to reference Watanabe T, Tomita T, Fujii M, Kaneko M, Sakaura H, Takeuchi E, Sugamoto K, Yoshikawa H: Periprosthetic fracture of the tibia associated with osteolysis caused by failure of rotating patella in low-contact-stress total knee arthroplasty. J Arthroplasty. 2002, 17 (8): 1058-62. 10.1054/arth.2002.35792.CrossRefPubMed Watanabe T, Tomita T, Fujii M, Kaneko M, Sakaura H, Takeuchi E, Sugamoto K, Yoshikawa H: Periprosthetic fracture of the tibia associated with osteolysis caused by failure of rotating patella in low-contact-stress total knee arthroplasty. J Arthroplasty. 2002, 17 (8): 1058-62. 10.1054/arth.2002.35792.CrossRefPubMed
5.
go back to reference Looney RJ, Boyd A, Totterman S, Seo G-S, Tamez-Pena J, Campbell D, Novotny L, Olcott C, Martell J, Hayes FA, O'Keefe RJ, Schwarz EM: Volumetric computerized tomography as a measurement of periprosthetic acetabular osteolysis and its correlation with wear. Arthritis Res. 2002, 4: 59-63. 10.1186/ar384.PubMedCentralCrossRefPubMed Looney RJ, Boyd A, Totterman S, Seo G-S, Tamez-Pena J, Campbell D, Novotny L, Olcott C, Martell J, Hayes FA, O'Keefe RJ, Schwarz EM: Volumetric computerized tomography as a measurement of periprosthetic acetabular osteolysis and its correlation with wear. Arthritis Res. 2002, 4: 59-63. 10.1186/ar384.PubMedCentralCrossRefPubMed
6.
go back to reference Hallab NJ, Cunningham BW, Jacobs JJ: Spinal implant debris-induced osteolysis. Spine. 2003, 28 (20): S125-38. 10.1097/00007632-200310151-00006.CrossRefPubMed Hallab NJ, Cunningham BW, Jacobs JJ: Spinal implant debris-induced osteolysis. Spine. 2003, 28 (20): S125-38. 10.1097/00007632-200310151-00006.CrossRefPubMed
7.
go back to reference Goodman SB: Does the immune system play a role in loosening and osteolysis of total joint replacements?. J Long Term Eff Med Implants. 1996, 6 (2): 91-101.PubMed Goodman SB: Does the immune system play a role in loosening and osteolysis of total joint replacements?. J Long Term Eff Med Implants. 1996, 6 (2): 91-101.PubMed
8.
go back to reference Nadaud MC, Fehring TK, Fehring K: Underestimation of osteolysis in posterior stabilized total knee arthroplasty. J Arthroplasty. 2004, 19 (1): 110-5. 10.1016/j.arth.2003.08.005.CrossRefPubMed Nadaud MC, Fehring TK, Fehring K: Underestimation of osteolysis in posterior stabilized total knee arthroplasty. J Arthroplasty. 2004, 19 (1): 110-5. 10.1016/j.arth.2003.08.005.CrossRefPubMed
9.
go back to reference Schwarz EM, Looney RJ, O'Keefe RJ: Anti-TNF-α therapy as a clinical intervention for periprosthetic osteolysis. Arthritis Res. 2000, 2: 165-8. 10.1186/ar81.PubMedCentralCrossRefPubMed Schwarz EM, Looney RJ, O'Keefe RJ: Anti-TNF-α therapy as a clinical intervention for periprosthetic osteolysis. Arthritis Res. 2000, 2: 165-8. 10.1186/ar81.PubMedCentralCrossRefPubMed
10.
go back to reference Chiang PP, Burke DW, Freiberg AA, Rubash HE: Osteolysis of the pelvis: evaluation and treatment. Clin Orthop. 2003, 417: 164-74.PubMed Chiang PP, Burke DW, Freiberg AA, Rubash HE: Osteolysis of the pelvis: evaluation and treatment. Clin Orthop. 2003, 417: 164-74.PubMed
11.
go back to reference Australian Orthopaedic Association National Joint Replacement Registry. Annual Report. 2003, Adelaide: AOA Australian Orthopaedic Association National Joint Replacement Registry. Annual Report. 2003, Adelaide: AOA
12.
go back to reference Akisue T, Yamaguchi M, Bauer TW, Takikawa S, Schils JP, Yoshiya S, Kurosaka M: "Backside" polyethylene deformation in total knee arthroplasty. J Arthroplasty. 2003, 18 (6): 784-91. 10.1016/S0883-5403(03)00255-9.CrossRefPubMed Akisue T, Yamaguchi M, Bauer TW, Takikawa S, Schils JP, Yoshiya S, Kurosaka M: "Backside" polyethylene deformation in total knee arthroplasty. J Arthroplasty. 2003, 18 (6): 784-91. 10.1016/S0883-5403(03)00255-9.CrossRefPubMed
13.
go back to reference Dunbar MJ, Blackley HR, Bourne RB: Osteolysis of the femur: principles of management. Instr Course Lect. 2001, 50: 197-209.PubMed Dunbar MJ, Blackley HR, Bourne RB: Osteolysis of the femur: principles of management. Instr Course Lect. 2001, 50: 197-209.PubMed
14.
go back to reference Puri L, Wixson RL, Stern SH, Kohli J, Hendrix RW, Stullberg SD: Use of helical computed tomography for the assessment of acetabular osteolysis after total hip arthroplasty. J Bone Joint Surg [Am]. 2002, 84-A (4): 609-14. Puri L, Wixson RL, Stern SH, Kohli J, Hendrix RW, Stullberg SD: Use of helical computed tomography for the assessment of acetabular osteolysis after total hip arthroplasty. J Bone Joint Surg [Am]. 2002, 84-A (4): 609-14.
15.
go back to reference Naudie DD, Rorabeck CH: Sources of osteolysis around total knee arthroplasty: wear of the bearing surface. Instr Course Lect. 2004, 53: 251-9.PubMed Naudie DD, Rorabeck CH: Sources of osteolysis around total knee arthroplasty: wear of the bearing surface. Instr Course Lect. 2004, 53: 251-9.PubMed
16.
go back to reference Orishimo KF, Claus AM, Sychterz CJ, Engh CA: Relationship between polyethylene wear and osteolysis in hips with a second-generation porous-coated cementless cup after seven years of follow-up. J Bone Joint Surg [Am]. 2003, 85-A (6): 1095-9. Orishimo KF, Claus AM, Sychterz CJ, Engh CA: Relationship between polyethylene wear and osteolysis in hips with a second-generation porous-coated cementless cup after seven years of follow-up. J Bone Joint Surg [Am]. 2003, 85-A (6): 1095-9.
17.
go back to reference Schmalzried TP, Fowble VA, Amstutz HC: The fate of pelvic osteolysis after reoperation: No recurrence with lesional treatment. Clin Orthop. 1998, 350: 128-37.CrossRefPubMed Schmalzried TP, Fowble VA, Amstutz HC: The fate of pelvic osteolysis after reoperation: No recurrence with lesional treatment. Clin Orthop. 1998, 350: 128-37.CrossRefPubMed
18.
go back to reference Berry DJ: Management of osteolysis around total hip arthroplasty. Orthopedics. 1999, 22 (9): 805-8.PubMed Berry DJ: Management of osteolysis around total hip arthroplasty. Orthopedics. 1999, 22 (9): 805-8.PubMed
19.
go back to reference van Haaren EH, Heyligers IC: Implant wear and osteolysis with a hydroxylapatite-coated screw cup. Int Orthop. 2003, 27 (5): 282-5. 10.1007/s00264-003-0479-0.PubMedCentralCrossRefPubMed van Haaren EH, Heyligers IC: Implant wear and osteolysis with a hydroxylapatite-coated screw cup. Int Orthop. 2003, 27 (5): 282-5. 10.1007/s00264-003-0479-0.PubMedCentralCrossRefPubMed
20.
go back to reference Maloney WJ, Peters P, Engh CA, Chandler H: Severe osteolysis of the pelvis in association with acetabular replacement without cement. J Bone Joint Surg [Am]. 1993, 75 (11): 1627-35. Maloney WJ, Peters P, Engh CA, Chandler H: Severe osteolysis of the pelvis in association with acetabular replacement without cement. J Bone Joint Surg [Am]. 1993, 75 (11): 1627-35.
21.
go back to reference Claus AM, Engh CA, Sychterz CJ, Xenos JS, Orishimo KF, Engh CA: Radiographic definition of pelvic osteolysis following total hip arthroplasty. J Bone Joint Surg [Am]. 2003, 85-A (8): 1519-26. Claus AM, Engh CA, Sychterz CJ, Xenos JS, Orishimo KF, Engh CA: Radiographic definition of pelvic osteolysis following total hip arthroplasty. J Bone Joint Surg [Am]. 2003, 85-A (8): 1519-26.
22.
go back to reference Zimlich RH, Fehring TK: Underestimation of pelvic osteolysis: the value of the iliac oblique radiograph. J Arthroplasty. 2000, 15 (6): 796-801. 10.1054/arth.2000.4330.CrossRefPubMed Zimlich RH, Fehring TK: Underestimation of pelvic osteolysis: the value of the iliac oblique radiograph. J Arthroplasty. 2000, 15 (6): 796-801. 10.1054/arth.2000.4330.CrossRefPubMed
23.
go back to reference Huang CH, MA HM, Liau JJ, Ho FY, Cheng CK: Osteolysis in failed total knee arthroplasty: a comparison of mobile-bearing and fixed-bearing knees. J Bone Joint Surg [Am]. 2002, 84-A (12): 2224-9. Huang CH, MA HM, Liau JJ, Ho FY, Cheng CK: Osteolysis in failed total knee arthroplasty: a comparison of mobile-bearing and fixed-bearing knees. J Bone Joint Surg [Am]. 2002, 84-A (12): 2224-9.
24.
go back to reference van Loon CJ, de Waal Malefijit MC, Buma P, Verdonschot N, Veth RP: Femoral bone loss in total knee arthroplasty: A review. Acta Orthop Belg. 1999, 65 (2): 154-63.PubMed van Loon CJ, de Waal Malefijit MC, Buma P, Verdonschot N, Veth RP: Femoral bone loss in total knee arthroplasty: A review. Acta Orthop Belg. 1999, 65 (2): 154-63.PubMed
25.
go back to reference Robinson EJ, Mulliken BD, Bourne RB, Rorabeck CH, Alvarez C: Catastrophic osteolysis in total knee replacement. A report of 17 cases. Clin Orthop Relat Res. 1995, 98-105. 321 Robinson EJ, Mulliken BD, Bourne RB, Rorabeck CH, Alvarez C: Catastrophic osteolysis in total knee replacement. A report of 17 cases. Clin Orthop Relat Res. 1995, 98-105. 321
26.
go back to reference Berry DJ: Recognizing and identifying osteolysis around total knee arthroplasty. Instr Course Lect. 2004, 53: 261-4.PubMed Berry DJ: Recognizing and identifying osteolysis around total knee arthroplasty. Instr Course Lect. 2004, 53: 261-4.PubMed
27.
go back to reference Southwell DG, Bechtold JE, Lew WD, Schmidt AH: Improving the detection of acetabular osteolysis using oblique radiographs. J Bone Joint Surg [Br]. 1999, 81 (2): 289-95. 10.1302/0301-620X.81B2.9334.CrossRef Southwell DG, Bechtold JE, Lew WD, Schmidt AH: Improving the detection of acetabular osteolysis using oblique radiographs. J Bone Joint Surg [Br]. 1999, 81 (2): 289-95. 10.1302/0301-620X.81B2.9334.CrossRef
28.
go back to reference Miura H, Matsuda S, Mawatari T, Kawano T, Nabeyama R, Iwamoto Y: The oblique posterior femoral condylar radiographic view following total knee arthroplasty. J Bone Joint Surg [Am]. 2004, 86-A (1): 47-50. Miura H, Matsuda S, Mawatari T, Kawano T, Nabeyama R, Iwamoto Y: The oblique posterior femoral condylar radiographic view following total knee arthroplasty. J Bone Joint Surg [Am]. 2004, 86-A (1): 47-50.
29.
go back to reference Taylor RH, Joskowicz L, Williamson B, Gueziec A, Kalvin A, Kazanzides P, Van Vorhis R, Yao J, Kumar R, Bzostek A, Sahay A, Borner M, Lahmer A: Computer-integrated revision total hip replacement surgery: concept and preliminary results. Med Image Anal. 1999, 3 (3): 301-19. 10.1016/S1361-8415(99)80026-7.CrossRefPubMed Taylor RH, Joskowicz L, Williamson B, Gueziec A, Kalvin A, Kazanzides P, Van Vorhis R, Yao J, Kumar R, Bzostek A, Sahay A, Borner M, Lahmer A: Computer-integrated revision total hip replacement surgery: concept and preliminary results. Med Image Anal. 1999, 3 (3): 301-19. 10.1016/S1361-8415(99)80026-7.CrossRefPubMed
30.
go back to reference Stamenkov R, Howie D, Taylor J, Findlay D, McGee M, Kourlis G, Carbone A, Burwell M: Measurement of bone defects adjacent to acetabular components of hip replacement. Clin Orthop. 2003, 412: 117-24. 10.1097/01.blo.0000069001.16315.f4.CrossRefPubMed Stamenkov R, Howie D, Taylor J, Findlay D, McGee M, Kourlis G, Carbone A, Burwell M: Measurement of bone defects adjacent to acetabular components of hip replacement. Clin Orthop. 2003, 412: 117-24. 10.1097/01.blo.0000069001.16315.f4.CrossRefPubMed
31.
go back to reference Mahnken AH, Raupach R, Wildberger JE, Jung B, Heussen N, Flohr TG, Gunther RW, Schaller S: A new algorithm for metal artefact reduction in computed tomography: in vitro and in vivo evaluation after total hip replacement. Invest Radiol. 2003, 38 (12): 769-75. 10.1097/01.rli.0000086495.96457.54.CrossRefPubMed Mahnken AH, Raupach R, Wildberger JE, Jung B, Heussen N, Flohr TG, Gunther RW, Schaller S: A new algorithm for metal artefact reduction in computed tomography: in vitro and in vivo evaluation after total hip replacement. Invest Radiol. 2003, 38 (12): 769-75. 10.1097/01.rli.0000086495.96457.54.CrossRefPubMed
32.
go back to reference Engh GA, Ammeen DJ: Epidemiology of osteolysis: backside implant wear. Instr Course Lect. 2004, 53: 243-9.PubMed Engh GA, Ammeen DJ: Epidemiology of osteolysis: backside implant wear. Instr Course Lect. 2004, 53: 243-9.PubMed
33.
go back to reference Massin P, Chappard D, Flautre B, Hardouin P: Migration of polyethylene particles around nonloosened cemented femoral components from a total hip arthroplasty – an autopsy study. J Biomed Mater Res. 2004, 69B (2): 205-15. 10.1002/jbm.b.30001.CrossRef Massin P, Chappard D, Flautre B, Hardouin P: Migration of polyethylene particles around nonloosened cemented femoral components from a total hip arthroplasty – an autopsy study. J Biomed Mater Res. 2004, 69B (2): 205-15. 10.1002/jbm.b.30001.CrossRef
34.
go back to reference Claus AM, Totterman SM, Sychterz CJ, Tamez-Pena JG, Looney RJ, Engh CA: Computed tomography to assess pelvic lysis after total hip replacement. Clin Orthop. 2004, 422: 167-74. 10.1097/01.blo.0000129345.22322.8a.CrossRefPubMed Claus AM, Totterman SM, Sychterz CJ, Tamez-Pena JG, Looney RJ, Engh CA: Computed tomography to assess pelvic lysis after total hip replacement. Clin Orthop. 2004, 422: 167-74. 10.1097/01.blo.0000129345.22322.8a.CrossRefPubMed
Metadata
Title
Pre-surgical radiologic identification of peri-prosthetic osteolytic lesions around TKRs: a pre-clinical investigation of diagnostic accuracy
Authors
Timothy P Kurmis
Andrew P Kurmis
David G Campbell
John P Slavotinek
Publication date
01-12-2008
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2008
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/1749-799X-3-47

Other articles of this Issue 1/2008

Journal of Orthopaedic Surgery and Research 1/2008 Go to the issue