Skip to main content
Top
Published in: Translational Neurodegeneration 1/2015

Open Access 01-12-2015 | Research

Posttranslational modifications of α-tubulin in alzheimer disease

Authors: Fan Zhang, Bo Su, Chunyu Wang, Sandra L. Siedlak, Siddhartha Mondragon-Rodriguez, Hyoung-gon Lee, Xinglong Wang, George Perry, Xiongwei Zhu

Published in: Translational Neurodegeneration | Issue 1/2015

Login to get access

Abstract

Background

In Alzheimer disease (AD), hyperphosphorylation of tau proteins results in microtubule destabilization and cytoskeletal abnormalities. Our prior ultra-morphometric studies documented a clear reduction in microtubules in pyramidal neurons in AD compared to controls, however, this reduction did not coincide with the presence of paired helical filaments. The latter suggests the presence of compensatory mechanism(s) that stabilize microtubule dynamics despite the loss of tau binding and stabilization. Microtubules are composed of tubulin dimers which are subject to posttranslational modifications that affect the stability and function of microtubules.

Methods

In this study, we performed a detailed analysis on changes in the posttranslational modifications in tubulin in postmortem human brain tissues from AD patients and age-matched controls by immunoblot and immunocytochemistry.

Results

Consistent with our previous study, we found decreased levels of α-tubulin in AD brain. Levels of tubulin with various posttranslational modifications such as polyglutamylation, tyrosination, and detyrosination were also proportionally reduced in AD brain, but, interestingly, there was an increase in the proportion of the acetylated α-tubulin in the remaining α-tubulin. Tubulin distribution was changed from predominantly in the processes to be more accumulated in the cell body. The number of processes containing polyglutamylated tubulin was well preserved in AD neurons. While there was a cell autonomous detrimental effect of NFTs on tubulin, this is likely a gradual and slow process, and there was no selective loss of acetylated or polyglutamylated tubulin in NFT-bearing neurons.

Conclusions

Overall, we suggest that the specific changes in tubulin modification in AD brain likely represent a compensatory response.
Literature
1.
go back to reference Wang JZ, Xia YY, Grundke-Iqbal I, Iqbal K. Abnormal hyperphosphorylation of tau: sites, regulation, and molecular mechanism of neurofibrillary degeneration. J Alzheimers Dis. 2013;33 Suppl 1:S123–39. doi:10.3233/JAD-2012-129031.PubMed Wang JZ, Xia YY, Grundke-Iqbal I, Iqbal K. Abnormal hyperphosphorylation of tau: sites, regulation, and molecular mechanism of neurofibrillary degeneration. J Alzheimers Dis. 2013;33 Suppl 1:S123–39. doi:10.3233/JAD-2012-129031.PubMed
2.
go back to reference Iqbal K, Gong CX, Liu F. Microtubule-associated protein tau as a therapeutic target in Alzheimer's disease. Expert Opin Ther Targets. 2014;18(3):307–18. doi:10.1517/14728222.2014.870156.CrossRefPubMed Iqbal K, Gong CX, Liu F. Microtubule-associated protein tau as a therapeutic target in Alzheimer's disease. Expert Opin Ther Targets. 2014;18(3):307–18. doi:10.1517/14728222.2014.870156.CrossRefPubMed
3.
go back to reference Iqbal K, Liu F, Gong CX, Alonso Adel C, Grundke-Iqbal I. Mechanisms of tau-induced neurodegeneration. Acta Neuropathol. 2009;118(1):53–69. doi:10.1007/s00401-009-0486-3.CrossRefPubMedCentralPubMed Iqbal K, Liu F, Gong CX, Alonso Adel C, Grundke-Iqbal I. Mechanisms of tau-induced neurodegeneration. Acta Neuropathol. 2009;118(1):53–69. doi:10.1007/s00401-009-0486-3.CrossRefPubMedCentralPubMed
4.
go back to reference Cash AD, Aliev G, Siedlak SL, Nunomura A, Fujioka H, Zhu X, et al. Microtubule reduction in Alzheimer's disease and aging is independent of tau filament formation. Am J Pathol. 2003;162(5):1623–7.CrossRefPubMedCentralPubMed Cash AD, Aliev G, Siedlak SL, Nunomura A, Fujioka H, Zhu X, et al. Microtubule reduction in Alzheimer's disease and aging is independent of tau filament formation. Am J Pathol. 2003;162(5):1623–7.CrossRefPubMedCentralPubMed
5.
go back to reference Scheff SW, DeKosky ST, Price DA. Quantitative assessment of cortical synaptic density in Alzheimer's disease. Neurobiol Aging. 1990;11(1):29–37.CrossRefPubMed Scheff SW, DeKosky ST, Price DA. Quantitative assessment of cortical synaptic density in Alzheimer's disease. Neurobiol Aging. 1990;11(1):29–37.CrossRefPubMed
6.
go back to reference Praprotnik D, Smith MA, Richey PL, Vinters HV, Perry G. Filament heterogeneity within the dystrophic neurites of senile plaques suggests blockage of fast axonal transport in Alzheimer's disease. Acta Neuropathol. 1996;91(3):226–35.CrossRefPubMed Praprotnik D, Smith MA, Richey PL, Vinters HV, Perry G. Filament heterogeneity within the dystrophic neurites of senile plaques suggests blockage of fast axonal transport in Alzheimer's disease. Acta Neuropathol. 1996;91(3):226–35.CrossRefPubMed
7.
go back to reference Terry RD. The pathogenesis of Alzheimer disease: an alternative to the amyloid hypothesis. J Neuropathol Exp Neurol. 1996;55(10):1023–5.CrossRefPubMed Terry RD. The pathogenesis of Alzheimer disease: an alternative to the amyloid hypothesis. J Neuropathol Exp Neurol. 1996;55(10):1023–5.CrossRefPubMed
8.
go back to reference Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS, et al. Mitochondrial abnormalities in Alzheimer's disease. J Neurosci. 2001;21(9):3017–23.PubMed Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS, et al. Mitochondrial abnormalities in Alzheimer's disease. J Neurosci. 2001;21(9):3017–23.PubMed
9.
go back to reference Morsch R, Simon W, Coleman PD. Neurons may live for decades with neurofibrillary tangles. J Neuropathol Exp Neurol. 1999;58(2):188–97.CrossRefPubMed Morsch R, Simon W, Coleman PD. Neurons may live for decades with neurofibrillary tangles. J Neuropathol Exp Neurol. 1999;58(2):188–97.CrossRefPubMed
10.
go back to reference Kuchibhotla KV, Wegmann S, Kopeikina KJ, Hawkes J, Rudinskiy N, Andermann ML, et al. Neurofibrillary tangle-bearing neurons are functionally integrated in cortical circuits in vivo. Proc Natl Acad Sci U S A. 2014;111(1):510–4. doi:10.1073/pnas.1318807111.CrossRefPubMedCentralPubMed Kuchibhotla KV, Wegmann S, Kopeikina KJ, Hawkes J, Rudinskiy N, Andermann ML, et al. Neurofibrillary tangle-bearing neurons are functionally integrated in cortical circuits in vivo. Proc Natl Acad Sci U S A. 2014;111(1):510–4. doi:10.1073/pnas.1318807111.CrossRefPubMedCentralPubMed
11.
go back to reference Fukushima N, Furuta D, Hidaka Y, Moriyama R, Tsujiuchi T. Post-translational modifications of tubulin in the nervous system. J Neurochem. 2009;109(3):683–93. doi:10.1111/j.1471-4159.2009.06013.x.CrossRefPubMed Fukushima N, Furuta D, Hidaka Y, Moriyama R, Tsujiuchi T. Post-translational modifications of tubulin in the nervous system. J Neurochem. 2009;109(3):683–93. doi:10.1111/j.1471-4159.2009.06013.x.CrossRefPubMed
12.
go back to reference Song Y, Brady ST. Post-translational modifications of tubulin: pathways to functional diversity of microtubules. Trends Cell Biol. 2014. doi:10.1016/j.tcb.2014.10.004. Song Y, Brady ST. Post-translational modifications of tubulin: pathways to functional diversity of microtubules. Trends Cell Biol. 2014. doi:10.1016/j.tcb.2014.10.004.
13.
go back to reference Zhu X, Rottkamp CA, Boux H, Takeda A, Perry G, Smith MA. Activation of p38 kinase links tau phosphorylation, oxidative stress, and cell cycle-related events in Alzheimer disease. J Neuropathol Exp Neurol. 2000;59(10):880–8.PubMed Zhu X, Rottkamp CA, Boux H, Takeda A, Perry G, Smith MA. Activation of p38 kinase links tau phosphorylation, oxidative stress, and cell cycle-related events in Alzheimer disease. J Neuropathol Exp Neurol. 2000;59(10):880–8.PubMed
14.
go back to reference Hempen B, Brion JP. Reduction of acetylated alpha-tubulin immunoreactivity in neurofibrillary tangle-bearing neurons in Alzheimer's disease. J Neuropathol Exp Neurol. 1996;55(9):964–72.CrossRefPubMed Hempen B, Brion JP. Reduction of acetylated alpha-tubulin immunoreactivity in neurofibrillary tangle-bearing neurons in Alzheimer's disease. J Neuropathol Exp Neurol. 1996;55(9):964–72.CrossRefPubMed
15.
go back to reference Gray EG, Paula-Barbosa M, Roher A. Alzheimer's disease: paired helical filaments and cytomembranes. Neuropathol Appl Neurobiol. 1987;13(2):91–110.CrossRefPubMed Gray EG, Paula-Barbosa M, Roher A. Alzheimer's disease: paired helical filaments and cytomembranes. Neuropathol Appl Neurobiol. 1987;13(2):91–110.CrossRefPubMed
16.
go back to reference Smith MA, Casadesus G, Joseph JA, Perry G. Amyloid-beta and tau serve antioxidant functions in the aging and Alzheimer brain. Free Radic Biol Med. 2002;33(9):1194–9.CrossRefPubMed Smith MA, Casadesus G, Joseph JA, Perry G. Amyloid-beta and tau serve antioxidant functions in the aging and Alzheimer brain. Free Radic Biol Med. 2002;33(9):1194–9.CrossRefPubMed
17.
go back to reference Wang X, Perry G, Smith MA, Zhu X. Amyloid-beta-derived diffusible ligands cause impaired axonal transport of mitochondria in neurons. Neuro-degenerative diseases. 2010;7(1–3):56–9. doi:10.1159/000283484.CrossRefPubMedCentralPubMed Wang X, Perry G, Smith MA, Zhu X. Amyloid-beta-derived diffusible ligands cause impaired axonal transport of mitochondria in neurons. Neuro-degenerative diseases. 2010;7(1–3):56–9. doi:10.1159/000283484.CrossRefPubMedCentralPubMed
18.
go back to reference Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, Mount SL, et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science. 2005;307(5713):1282–8.CrossRefPubMed Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, Mount SL, et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science. 2005;307(5713):1282–8.CrossRefPubMed
19.
go back to reference Zhu X, Moreira PI, Smith MA, Perry G. Alzheimer's disease: an intracellular movement disorder? Trends Mol Med. 2005;11(9):391–3. doi:10.1016/j.molmed.2005.07.002.CrossRefPubMed Zhu X, Moreira PI, Smith MA, Perry G. Alzheimer's disease: an intracellular movement disorder? Trends Mol Med. 2005;11(9):391–3. doi:10.1016/j.molmed.2005.07.002.CrossRefPubMed
20.
go back to reference Wang X, Su B, Lee HG, Li X, Perry G, Smith MA, et al. Impaired balance of mitochondrial fission and fusion in Alzheimer's disease. J Neurosci. 2009;29(28):9090–103. doi:10.1523/JNEUROSCI.1357-09.2009.CrossRefPubMedCentralPubMed Wang X, Su B, Lee HG, Li X, Perry G, Smith MA, et al. Impaired balance of mitochondrial fission and fusion in Alzheimer's disease. J Neurosci. 2009;29(28):9090–103. doi:10.1523/JNEUROSCI.1357-09.2009.CrossRefPubMedCentralPubMed
21.
go back to reference L'Hernault SW, Rosenbaum JL. Chlamydomonas alpha-tubulin is posttranslationally modified by acetylation on the epsilon-amino group of a lysine. Biochemistry. 1985;24(2):473–8.CrossRefPubMed L'Hernault SW, Rosenbaum JL. Chlamydomonas alpha-tubulin is posttranslationally modified by acetylation on the epsilon-amino group of a lysine. Biochemistry. 1985;24(2):473–8.CrossRefPubMed
22.
23.
go back to reference Kull FJ, Sloboda RD. A slow dance for microtubule acetylation. Cell. 2014;157(6):1255–6. doi:10.1016/j.cell.2014.05.021.CrossRefPubMed Kull FJ, Sloboda RD. A slow dance for microtubule acetylation. Cell. 2014;157(6):1255–6. doi:10.1016/j.cell.2014.05.021.CrossRefPubMed
24.
go back to reference Janke C, Kneussel M. Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton. Trends Neurosci. 2010;33(8):362–72. doi:10.1016/j.tins.2010.05.001.CrossRefPubMed Janke C, Kneussel M. Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton. Trends Neurosci. 2010;33(8):362–72. doi:10.1016/j.tins.2010.05.001.CrossRefPubMed
25.
go back to reference Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, et al. HDAC6 is a microtubule-associated deacetylase. Nature. 2002;417(6887):455–8. doi:10.1038/417455a 417455a.CrossRefPubMed Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, et al. HDAC6 is a microtubule-associated deacetylase. Nature. 2002;417(6887):455–8. doi:10.1038/417455a 417455a.CrossRefPubMed
26.
go back to reference Cueva JG, Hsin J, Huang KC, Goodman MB. Posttranslational acetylation of alpha-tubulin constrains protofilament number in native microtubules. Curr Biol. 2012;22(12):1066–74. doi:10.1016/j.cub.2012.05.012.CrossRefPubMedCentralPubMed Cueva JG, Hsin J, Huang KC, Goodman MB. Posttranslational acetylation of alpha-tubulin constrains protofilament number in native microtubules. Curr Biol. 2012;22(12):1066–74. doi:10.1016/j.cub.2012.05.012.CrossRefPubMedCentralPubMed
28.
go back to reference Bhuwania R, Castro-Castro A, Linder S. Microtubule acetylation regulates dynamics of KIF1C-powered vesicles and contact of microtubule plus ends with podosomes. Eur J Cell Biol. 2014;93(10–12):424–37. doi:10.1016/j.ejcb.2014.07.006.CrossRefPubMed Bhuwania R, Castro-Castro A, Linder S. Microtubule acetylation regulates dynamics of KIF1C-powered vesicles and contact of microtubule plus ends with podosomes. Eur J Cell Biol. 2014;93(10–12):424–37. doi:10.1016/j.ejcb.2014.07.006.CrossRefPubMed
29.
go back to reference Reed NA, Cai D, Blasius TL, Jih GT, Meyhofer E, Gaertig J, et al. Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol. 2006;16(21):2166–72. doi:10.1016/j.cub.2006.09.014.CrossRefPubMed Reed NA, Cai D, Blasius TL, Jih GT, Meyhofer E, Gaertig J, et al. Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol. 2006;16(21):2166–72. doi:10.1016/j.cub.2006.09.014.CrossRefPubMed
30.
go back to reference Bulinski JC. Microtubule modification: acetylation speeds anterograde traffic flow. Curr Biol. 2007;17(1):R18–20. doi:10.1016/j.cub.2006.11.036.CrossRefPubMed Bulinski JC. Microtubule modification: acetylation speeds anterograde traffic flow. Curr Biol. 2007;17(1):R18–20. doi:10.1016/j.cub.2006.11.036.CrossRefPubMed
31.
go back to reference Kaul N, Soppina V, Verhey KJ. Effects of alpha-tubulin K40 acetylation and detyrosination on kinesin-1 motility in a purified system. Biophys J. 2014;106(12):2636–43. doi:10.1016/j.bpj.2014.05.008.CrossRefPubMed Kaul N, Soppina V, Verhey KJ. Effects of alpha-tubulin K40 acetylation and detyrosination on kinesin-1 motility in a purified system. Biophys J. 2014;106(12):2636–43. doi:10.1016/j.bpj.2014.05.008.CrossRefPubMed
32.
go back to reference Walter WJ, Beranek V, Fischermeier E, Diez S. Tubulin acetylation alone does not affect kinesin-1 velocity and run length in vitro. PLoS ONE. 2012;7(8):e42218. doi:10.1371/journal.pone.0042218.CrossRefPubMedCentralPubMed Walter WJ, Beranek V, Fischermeier E, Diez S. Tubulin acetylation alone does not affect kinesin-1 velocity and run length in vitro. PLoS ONE. 2012;7(8):e42218. doi:10.1371/journal.pone.0042218.CrossRefPubMedCentralPubMed
33.
go back to reference Bianchi M, Heidbreder C, Crespi F. Cytoskeletal changes in the hippocampus following restraint stress: role of serotonin and microtubules. Synapse. 2003;49(3):188–94. doi:10.1002/syn.10230.CrossRefPubMed Bianchi M, Heidbreder C, Crespi F. Cytoskeletal changes in the hippocampus following restraint stress: role of serotonin and microtubules. Synapse. 2003;49(3):188–94. doi:10.1002/syn.10230.CrossRefPubMed
34.
go back to reference Mackeh R, Lorin S, Ratier A, Mejdoubi-Charef N, Baillet A, Bruneel A, et al. Reactive oxygen species, AMP-activated protein kinase, and the transcription cofactor p300 regulate alpha-tubulin acetyltransferase-1 (alphaTAT-1/MEC-17)-dependent microtubule hyperacetylation during cell stress. J Biol Chem. 2014;289(17):11816–28. doi:10.1074/jbc.M113.507400.CrossRefPubMedCentralPubMed Mackeh R, Lorin S, Ratier A, Mejdoubi-Charef N, Baillet A, Bruneel A, et al. Reactive oxygen species, AMP-activated protein kinase, and the transcription cofactor p300 regulate alpha-tubulin acetyltransferase-1 (alphaTAT-1/MEC-17)-dependent microtubule hyperacetylation during cell stress. J Biol Chem. 2014;289(17):11816–28. doi:10.1074/jbc.M113.507400.CrossRefPubMedCentralPubMed
35.
go back to reference McLendon PM, Ferguson BS, Osinska H, Bhuiyan MS, James J, McKinsey TA, et al. Tubulin hyperacetylation is adaptive in cardiac proteotoxicity by promoting autophagy. Proc Natl Acad Sci U S A. 2014;111(48):E5178–86. doi:10.1073/pnas.1415589111.CrossRefPubMed McLendon PM, Ferguson BS, Osinska H, Bhuiyan MS, James J, McKinsey TA, et al. Tubulin hyperacetylation is adaptive in cardiac proteotoxicity by promoting autophagy. Proc Natl Acad Sci U S A. 2014;111(48):E5178–86. doi:10.1073/pnas.1415589111.CrossRefPubMed
36.
go back to reference Giustiniani J, Daire V, Cantaloube I, Durand G, Pous C, Perdiz D, et al. Tubulin acetylation favors Hsp90 recruitment to microtubules and stimulates the signaling function of the Hsp90 clients Akt/PKB and p53. Cell Signal. 2009;21(4):529–39. doi:10.1016/j.cellsig.2008.12.004.CrossRefPubMed Giustiniani J, Daire V, Cantaloube I, Durand G, Pous C, Perdiz D, et al. Tubulin acetylation favors Hsp90 recruitment to microtubules and stimulates the signaling function of the Hsp90 clients Akt/PKB and p53. Cell Signal. 2009;21(4):529–39. doi:10.1016/j.cellsig.2008.12.004.CrossRefPubMed
37.
go back to reference Dompierre JP, Godin JD, Charrin BC, Cordelieres FP, King SJ, Humbert S, et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation. J Neurosci. 2007;27(13):3571–83. doi:10.1523/JNEUROSCI.0037-07.2007.CrossRefPubMed Dompierre JP, Godin JD, Charrin BC, Cordelieres FP, King SJ, Humbert S, et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation. J Neurosci. 2007;27(13):3571–83. doi:10.1523/JNEUROSCI.0037-07.2007.CrossRefPubMed
38.
go back to reference Xiong Y, Zhao K, Wu J, Xu Z, Jin S, Zhang YQ. HDAC6 mutations rescue human tau-induced microtubule defects in Drosophila. Proc Natl Acad Sci U S A. 2013;110(12):4604–9. doi:10.1073/pnas.1207586110.CrossRefPubMedCentralPubMed Xiong Y, Zhao K, Wu J, Xu Z, Jin S, Zhang YQ. HDAC6 mutations rescue human tau-induced microtubule defects in Drosophila. Proc Natl Acad Sci U S A. 2013;110(12):4604–9. doi:10.1073/pnas.1207586110.CrossRefPubMedCentralPubMed
39.
go back to reference Kilgore M, Miller CA, Fass DM, Hennig KM, Haggarty SJ, Sweatt JD, et al. Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer's disease. Neuropsychopharmacology. 2010;35(4):870–80. doi:10.1038/npp.2009.197.CrossRefPubMedCentralPubMed Kilgore M, Miller CA, Fass DM, Hennig KM, Haggarty SJ, Sweatt JD, et al. Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer's disease. Neuropsychopharmacology. 2010;35(4):870–80. doi:10.1038/npp.2009.197.CrossRefPubMedCentralPubMed
40.
go back to reference Govindarajan N, Rao P, Burkhardt S, Sananbenesi F, Schluter OM, Bradke F, et al. Reducing HDAC6 ameliorates cognitive deficits in a mouse model for Alzheimer's disease. EMBO Mol Med. 2013;5(1):52–63. doi:10.1002/emmm.201201923.CrossRefPubMedCentralPubMed Govindarajan N, Rao P, Burkhardt S, Sananbenesi F, Schluter OM, Bradke F, et al. Reducing HDAC6 ameliorates cognitive deficits in a mouse model for Alzheimer's disease. EMBO Mol Med. 2013;5(1):52–63. doi:10.1002/emmm.201201923.CrossRefPubMedCentralPubMed
41.
go back to reference Selenica ML, Benner L, Housley SB, Manchec B, Lee DC, Nash KR, et al. Histone deacetylase 6 inhibition improves memory and reduces total tau levels in a mouse model of tau deposition. Alzheimers Res Ther. 2014;6(1):12. doi:10.1186/alzrt241.CrossRefPubMedCentralPubMed Selenica ML, Benner L, Housley SB, Manchec B, Lee DC, Nash KR, et al. Histone deacetylase 6 inhibition improves memory and reduces total tau levels in a mouse model of tau deposition. Alzheimers Res Ther. 2014;6(1):12. doi:10.1186/alzrt241.CrossRefPubMedCentralPubMed
42.
go back to reference Edde B, Rossier J, Le Caer JP, Desbruyeres E, Gros F, Denoulet P. Posttranslational glutamylation of alpha-tubulin. Science. 1990;247(4938):83–5.CrossRefPubMed Edde B, Rossier J, Le Caer JP, Desbruyeres E, Gros F, Denoulet P. Posttranslational glutamylation of alpha-tubulin. Science. 1990;247(4938):83–5.CrossRefPubMed
43.
go back to reference Alexander JE, Hunt DF, Lee MK, Shabanowitz J, Michel H, Berlin SC, et al. Characterization of posttranslational modifications in neuron-specific class III beta-tubulin by mass spectrometry. Proc Natl Acad Sci U S A. 1991;88(11):4685–9.CrossRefPubMedCentralPubMed Alexander JE, Hunt DF, Lee MK, Shabanowitz J, Michel H, Berlin SC, et al. Characterization of posttranslational modifications in neuron-specific class III beta-tubulin by mass spectrometry. Proc Natl Acad Sci U S A. 1991;88(11):4685–9.CrossRefPubMedCentralPubMed
44.
go back to reference Redeker V, Melki R, Prome D, Le Caer JP, Rossier J. Structure of tubulin C-terminal domain obtained by subtilisin treatment. The major alpha and beta tubulin isotypes from pig brain are glutamylated. FEBS Lett. 1992;313(2):185–92. doi:0014-5793(92)81441-N.CrossRefPubMed Redeker V, Melki R, Prome D, Le Caer JP, Rossier J. Structure of tubulin C-terminal domain obtained by subtilisin treatment. The major alpha and beta tubulin isotypes from pig brain are glutamylated. FEBS Lett. 1992;313(2):185–92. doi:0014-5793(92)81441-N.CrossRefPubMed
45.
go back to reference Gagnon C, White D, Cosson J, Huitorel P, Edde B, Desbruyeres E, et al. The polyglutamylated lateral chain of alpha-tubulin plays a key role in flagellar motility. J Cell Sci. 1996;109(Pt 6):1545–53.PubMed Gagnon C, White D, Cosson J, Huitorel P, Edde B, Desbruyeres E, et al. The polyglutamylated lateral chain of alpha-tubulin plays a key role in flagellar motility. J Cell Sci. 1996;109(Pt 6):1545–53.PubMed
46.
go back to reference van Dijk J, Rogowski K, Miro J, Lacroix B, Edde B, Janke C. A targeted multienzyme mechanism for selective microtubule polyglutamylation. Mol Cell. 2007;26(3):437–48. doi:10.1016/j.molcel.2007.04.012.CrossRefPubMed van Dijk J, Rogowski K, Miro J, Lacroix B, Edde B, Janke C. A targeted multienzyme mechanism for selective microtubule polyglutamylation. Mol Cell. 2007;26(3):437–48. doi:10.1016/j.molcel.2007.04.012.CrossRefPubMed
47.
go back to reference Janke C, Rogowski K, van Dijk J. Polyglutamylation: a fine-regulator of protein function? 'Protein Modifications: beyond the usual suspects' review series. EMBO Rep. 2008;9(7):636–41. doi:10.1038/embor.2008.114.CrossRefPubMedCentralPubMed Janke C, Rogowski K, van Dijk J. Polyglutamylation: a fine-regulator of protein function? 'Protein Modifications: beyond the usual suspects' review series. EMBO Rep. 2008;9(7):636–41. doi:10.1038/embor.2008.114.CrossRefPubMedCentralPubMed
48.
go back to reference Boucher D, Larcher JC, Gros F, Denoulet P. Polyglutamylation of tubulin as a progressive regulator of in vitro interactions between the microtubule-associated protein Tau and tubulin. Biochemistry. 1994;33(41):12471–7.CrossRefPubMed Boucher D, Larcher JC, Gros F, Denoulet P. Polyglutamylation of tubulin as a progressive regulator of in vitro interactions between the microtubule-associated protein Tau and tubulin. Biochemistry. 1994;33(41):12471–7.CrossRefPubMed
49.
go back to reference Larcher JC, Boucher D, Lazereg S, Gros F, Denoulet P. Interaction of kinesin motor domains with alpha- and beta-tubulin subunits at a tau-independent binding site. Regulation by polyglutamylation. J Biol Chem. 1996;271(36):22117–24.CrossRefPubMed Larcher JC, Boucher D, Lazereg S, Gros F, Denoulet P. Interaction of kinesin motor domains with alpha- and beta-tubulin subunits at a tau-independent binding site. Regulation by polyglutamylation. J Biol Chem. 1996;271(36):22117–24.CrossRefPubMed
50.
go back to reference Bonnet C, Boucher D, Lazereg S, Pedrotti B, Islam K, Denoulet P, et al. Differential binding regulation of microtubule-associated proteins MAP1A, MAP1B, and MAP2 by tubulin polyglutamylation. J Biol Chem. 2001;276(16):12839–48. doi:10.1074/jbc.M011380200.CrossRefPubMed Bonnet C, Boucher D, Lazereg S, Pedrotti B, Islam K, Denoulet P, et al. Differential binding regulation of microtubule-associated proteins MAP1A, MAP1B, and MAP2 by tubulin polyglutamylation. J Biol Chem. 2001;276(16):12839–48. doi:10.1074/jbc.M011380200.CrossRefPubMed
51.
go back to reference Ikegami K, Heier RL, Taruishi M, Takagi H, Mukai M, Shimma S, et al. Loss of alpha-tubulin polyglutamylation in ROSA22 mice is associated with abnormal targeting of KIF1A and modulated synaptic function. Proc Natl Acad Sci U S A. 2007;104(9):3213–8. doi:0611547104 [pii] 10.1073/pnas.0611547104.CrossRefPubMedCentralPubMed Ikegami K, Heier RL, Taruishi M, Takagi H, Mukai M, Shimma S, et al. Loss of alpha-tubulin polyglutamylation in ROSA22 mice is associated with abnormal targeting of KIF1A and modulated synaptic function. Proc Natl Acad Sci U S A. 2007;104(9):3213–8. doi:0611547104 [pii] 10.1073/pnas.0611547104.CrossRefPubMedCentralPubMed
52.
go back to reference Sirajuddin M, Rice LM, Vale RD. Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nature cell biology. 2014;16(4):335–44. doi:10.1038/ncb2920.CrossRefPubMedCentralPubMed Sirajuddin M, Rice LM, Vale RD. Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nature cell biology. 2014;16(4):335–44. doi:10.1038/ncb2920.CrossRefPubMedCentralPubMed
53.
go back to reference Lacroix B, van Dijk J, Gold ND, Guizetti J, Aldrian-Herrada G, Rogowski K, et al. Tubulin polyglutamylation stimulates spastin-mediated microtubule severing. J Cell Biol. 2010;189(6):945–54. doi:10.1083/jcb.201001024.CrossRefPubMedCentralPubMed Lacroix B, van Dijk J, Gold ND, Guizetti J, Aldrian-Herrada G, Rogowski K, et al. Tubulin polyglutamylation stimulates spastin-mediated microtubule severing. J Cell Biol. 2010;189(6):945–54. doi:10.1083/jcb.201001024.CrossRefPubMedCentralPubMed
54.
go back to reference Wloga D, Dave D, Meagley J, Rogowski K, Jerka-Dziadosz M, Gaertig J. Hyperglutamylation of tubulin can either stabilize or destabilize microtubules in the same cell. Eukaryotic cell. 2010;9(1):184–93. doi:10.1128/EC.00176-09.CrossRefPubMedCentralPubMed Wloga D, Dave D, Meagley J, Rogowski K, Jerka-Dziadosz M, Gaertig J. Hyperglutamylation of tubulin can either stabilize or destabilize microtubules in the same cell. Eukaryotic cell. 2010;9(1):184–93. doi:10.1128/EC.00176-09.CrossRefPubMedCentralPubMed
Metadata
Title
Posttranslational modifications of α-tubulin in alzheimer disease
Authors
Fan Zhang
Bo Su
Chunyu Wang
Sandra L. Siedlak
Siddhartha Mondragon-Rodriguez
Hyoung-gon Lee
Xinglong Wang
George Perry
Xiongwei Zhu
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Translational Neurodegeneration / Issue 1/2015
Electronic ISSN: 2047-9158
DOI
https://doi.org/10.1186/s40035-015-0030-4

Other articles of this Issue 1/2015

Translational Neurodegeneration 1/2015 Go to the issue