Skip to main content
Top
Published in: Journal of the International Society of Sports Nutrition 1/2012

Open Access 01-12-2012 | Research article

Postprandial leucine and insulin responses and toxicological effects of a novel whey protein hydrolysate-based supplement in rats

Authors: Ryan G Toedebusch, Thomas E Childs, Shari R Hamilton, Jan R Crowley, Frank W Booth, Michael D Roberts

Published in: Journal of the International Society of Sports Nutrition | Issue 1/2012

Login to get access

Abstract

The purpose of this study was: aim 1) compare insulin and leucine serum responses after feeding a novel hydrolyzed whey protein (WPH)-based supplement versus a whey protein isolate (WPI) in rats during the post-absorptive state, and aim 2) to perform a thorough toxicological analysis on rats that consume different doses of the novel WPH-based supplement over a 30-day period. In male Wistar rats (~250 g, n = 40), serum insulin and leucine concentrations were quantified up to 120 min after one human equivalent dose of a WPI or the WPH-based supplement. In a second cohort of rats (~250 g, n = 20), we examined serum/blood and liver/kidney histopathological markers after 30 days of feeding low (1human equivalent dose), medium (3 doses) and high (6 doses) amounts of the WPH-based supplement. In aim 1, higher leucine levels existed at 15 min after WPH vs. WPI ingestion (p = 0.04) followed by higher insulin concentrations at 60 min (p = 0.002). In aim 2, liver and kidney histopathology/toxicology markers were not different 30 days after feeding with low, medium, high dose WPH-based supplementation or water only. There were no between-condition differences in body fat or lean mass or circulating clinical chemistry markers following the 30-day feeding intervention in aim 2. In comparison to WPI, acute ingestion of a novel WPH-based supplement resulted in a higher transient leucine response with a sequential increase in insulin. Furthermore, chronic ingestion of the tested whey protein hydrolysate supplement appears safe.
Appendix
Available only for authorised users
Literature
1.
go back to reference Denham BE: Dietary supplements–regulatory issues and implications for public health. JAMA. 2011, 306: 428-9. 10.1001/jama.2011.982.CrossRefPubMed Denham BE: Dietary supplements–regulatory issues and implications for public health. JAMA. 2011, 306: 428-9. 10.1001/jama.2011.982.CrossRefPubMed
2.
go back to reference Phillips SM, Tang JE, Moore DR: The role of milk- and soy-based protein in support of muscle protein synthesis and muscle protein accretion in young and elderly persons. J Am Coll Nutr. 2009, 28: 343-54.CrossRefPubMed Phillips SM, Tang JE, Moore DR: The role of milk- and soy-based protein in support of muscle protein synthesis and muscle protein accretion in young and elderly persons. J Am Coll Nutr. 2009, 28: 343-54.CrossRefPubMed
3.
go back to reference Tang JE, Moore DR, Kujbida GW, et al: Ingestion of whey hydrolysate, casein, or soy protein isolate: Effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol. 2009, 107: 987-92. 10.1152/japplphysiol.00076.2009.CrossRefPubMed Tang JE, Moore DR, Kujbida GW, et al: Ingestion of whey hydrolysate, casein, or soy protein isolate: Effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol. 2009, 107: 987-92. 10.1152/japplphysiol.00076.2009.CrossRefPubMed
4.
go back to reference Tipton KD, Elliott TA, Cree MG, et al: Ingestion of casein and whey proteins result in muscle anabolism after resistance exercise. Med Sci Sports Exerc. 2004, 36: 2073-81.CrossRefPubMed Tipton KD, Elliott TA, Cree MG, et al: Ingestion of casein and whey proteins result in muscle anabolism after resistance exercise. Med Sci Sports Exerc. 2004, 36: 2073-81.CrossRefPubMed
5.
go back to reference Hulmi JJ, Lockwood CM, Stout JR: Effect of protein/essential amino acids and resistance training on skeletal muscle hypertrophy: A case for whey protein. Nutr Metab (Lond). 2010, 7: 51-10.1186/1743-7075-7-51.CrossRef Hulmi JJ, Lockwood CM, Stout JR: Effect of protein/essential amino acids and resistance training on skeletal muscle hypertrophy: A case for whey protein. Nutr Metab (Lond). 2010, 7: 51-10.1186/1743-7075-7-51.CrossRef
6.
go back to reference Power O, Hallihan A, Jakeman P: Human insulinotropic response to oral ingestion of native and hydrolysed whey protein. Amino Acids. 2009, 37: 333-9. 10.1007/s00726-008-0156-0.CrossRefPubMed Power O, Hallihan A, Jakeman P: Human insulinotropic response to oral ingestion of native and hydrolysed whey protein. Amino Acids. 2009, 37: 333-9. 10.1007/s00726-008-0156-0.CrossRefPubMed
7.
go back to reference Calbet JA, Holst JJ: Gastric emptying, gastric secretion and enterogastrone response after administration of milk proteins or their peptide hydrolysates in humans. Eur J Nutr. 2004, 43: 127-39. 10.1007/s00394-004-0448-4.CrossRefPubMed Calbet JA, Holst JJ: Gastric emptying, gastric secretion and enterogastrone response after administration of milk proteins or their peptide hydrolysates in humans. Eur J Nutr. 2004, 43: 127-39. 10.1007/s00394-004-0448-4.CrossRefPubMed
9.
go back to reference Knight EL, Stampfer MJ, Hankinson SE, et al: The impact of protein intake on renal function decline in women with normal renal function or mild renal insufficiency. Ann Intern Med. 2003, 138: 460-7.CrossRefPubMed Knight EL, Stampfer MJ, Hankinson SE, et al: The impact of protein intake on renal function decline in women with normal renal function or mild renal insufficiency. Ann Intern Med. 2003, 138: 460-7.CrossRefPubMed
10.
go back to reference Li Z, Treyzon L, Chen S, et al: Protein-enriched meal replacements do not adversely affect liver, kidney or bone density: An outpatient randomized controlled trial. Nutr J. 2010, 9: 72-10.1186/1475-2891-9-72.PubMedCentralCrossRefPubMed Li Z, Treyzon L, Chen S, et al: Protein-enriched meal replacements do not adversely affect liver, kidney or bone density: An outpatient randomized controlled trial. Nutr J. 2010, 9: 72-10.1186/1475-2891-9-72.PubMedCentralCrossRefPubMed
11.
12.
go back to reference Reagan-Shaw S, Nihal M, Ahmad N: Dose translation from animal to human studies revisited. FASEB J. 2008, 22: 659-61.CrossRefPubMed Reagan-Shaw S, Nihal M, Ahmad N: Dose translation from animal to human studies revisited. FASEB J. 2008, 22: 659-61.CrossRefPubMed
13.
go back to reference Guyton AC, Hall JE: Textbook of medical physiology. 2000, W.B. Saunders Company, Philadelphia Guyton AC, Hall JE: Textbook of medical physiology. 2000, W.B. Saunders Company, Philadelphia
14.
go back to reference Phillips SM: The science of muscle hypertrophy: Making dietary protein count. Proc Nutr Soc. 2011, 70: 100-3. 10.1017/S002966511000399X.CrossRefPubMed Phillips SM: The science of muscle hypertrophy: Making dietary protein count. Proc Nutr Soc. 2011, 70: 100-3. 10.1017/S002966511000399X.CrossRefPubMed
15.
go back to reference Kimball SR, Jefferson LS: Regulation of global and specific mrna translation by oral administration of branched-chain amino acids. Biochem Biophys Res Commun. 2004, 313: 423-7. 10.1016/j.bbrc.2003.07.014.CrossRefPubMed Kimball SR, Jefferson LS: Regulation of global and specific mrna translation by oral administration of branched-chain amino acids. Biochem Biophys Res Commun. 2004, 313: 423-7. 10.1016/j.bbrc.2003.07.014.CrossRefPubMed
16.
go back to reference Kimball SR, Jefferson LS: Control of translation initiation through integration of signals generated by hormones, nutrients, and exercise. J Biol Chem. 2010, 285: 29027-32. 10.1074/jbc.R110.137208.PubMedCentralCrossRefPubMed Kimball SR, Jefferson LS: Control of translation initiation through integration of signals generated by hormones, nutrients, and exercise. J Biol Chem. 2010, 285: 29027-32. 10.1074/jbc.R110.137208.PubMedCentralCrossRefPubMed
17.
go back to reference Jefferson LS, Kimball SR: Translational control of protein synthesis: Implications for understanding changes in skeletal muscle mass. Int J Sport Nutr Exerc Metab. 2001, 11 (Suppl): S143-9.PubMed Jefferson LS, Kimball SR: Translational control of protein synthesis: Implications for understanding changes in skeletal muscle mass. Int J Sport Nutr Exerc Metab. 2001, 11 (Suppl): S143-9.PubMed
18.
go back to reference Roberts MD, Dalbo VJ, Hassell SE, et al: Effects of preexercise feeding on markers of satellite cell activation. Med Sci Sports Exerc. 2010, 42: 1861-9. 10.1249/MSS.0b013e3181da8a29.CrossRefPubMed Roberts MD, Dalbo VJ, Hassell SE, et al: Effects of preexercise feeding on markers of satellite cell activation. Med Sci Sports Exerc. 2010, 42: 1861-9. 10.1249/MSS.0b013e3181da8a29.CrossRefPubMed
19.
go back to reference Nilsson M, Stenberg M, Frid AH, et al: Glycemia and insulinemia in healthy subjects after lactose-equivalent meals of milk and other food proteins: The role of plasma amino acids and incretins. Am J Clin Nutr. 2004, 80: 1246-53.PubMed Nilsson M, Stenberg M, Frid AH, et al: Glycemia and insulinemia in healthy subjects after lactose-equivalent meals of milk and other food proteins: The role of plasma amino acids and incretins. Am J Clin Nutr. 2004, 80: 1246-53.PubMed
20.
go back to reference Leenders M, van Loon LJ: Leucine as a pharmaconutrient to prevent and treat sarcopenia and type 2 diabetes. Nutr Rev. 2011, 69: 675-89. 10.1111/j.1753-4887.2011.00443.x.CrossRefPubMed Leenders M, van Loon LJ: Leucine as a pharmaconutrient to prevent and treat sarcopenia and type 2 diabetes. Nutr Rev. 2011, 69: 675-89. 10.1111/j.1753-4887.2011.00443.x.CrossRefPubMed
21.
go back to reference Morifuji M, Koga J, Kawanaka K, et al: Branched-chain amino acid-containing dipeptides, identified from whey protein hydrolysates, stimulate glucose uptake rate in l6 myotubes and isolated skeletal muscles. J Nutr Sci Vitaminol (Tokyo). 2009, 55: 81-6. 10.3177/jnsv.55.81.CrossRef Morifuji M, Koga J, Kawanaka K, et al: Branched-chain amino acid-containing dipeptides, identified from whey protein hydrolysates, stimulate glucose uptake rate in l6 myotubes and isolated skeletal muscles. J Nutr Sci Vitaminol (Tokyo). 2009, 55: 81-6. 10.3177/jnsv.55.81.CrossRef
22.
go back to reference Norton LE, Layman DK, Bunpo P, et al: The leucine content of a complete meal directs peak activation but not duration of skeletal muscle protein synthesis and mammalian target of rapamycin signaling in rats. J Nutr. 2009, 139: 1103-9. 10.3945/jn.108.103853.CrossRefPubMed Norton LE, Layman DK, Bunpo P, et al: The leucine content of a complete meal directs peak activation but not duration of skeletal muscle protein synthesis and mammalian target of rapamycin signaling in rats. J Nutr. 2009, 139: 1103-9. 10.3945/jn.108.103853.CrossRefPubMed
23.
go back to reference Poole CN, Roberts MD, Dalbo VJ, et al: The combined effects of exercise and ingestion of a meal replacement in conjunction with a weight loss supplement on body composition and fitness parameters in college-aged men and women. J Strength Cond Res. 2011, 25: 51-60. 10.1519/JSC.0b013e3181fee4aa.CrossRefPubMed Poole CN, Roberts MD, Dalbo VJ, et al: The combined effects of exercise and ingestion of a meal replacement in conjunction with a weight loss supplement on body composition and fitness parameters in college-aged men and women. J Strength Cond Res. 2011, 25: 51-60. 10.1519/JSC.0b013e3181fee4aa.CrossRefPubMed
24.
go back to reference Roberts MD, Iosia M, Kerksick CM, et al: Effects of arachidonic acid supplementation on training adaptations in resistance-trained males. J Int Soc Sports Nutr. 2007, 4: 21-10.1186/1550-2783-4-21.PubMedCentralCrossRefPubMed Roberts MD, Iosia M, Kerksick CM, et al: Effects of arachidonic acid supplementation on training adaptations in resistance-trained males. J Int Soc Sports Nutr. 2007, 4: 21-10.1186/1550-2783-4-21.PubMedCentralCrossRefPubMed
25.
go back to reference Whitt KN, Ward SC, Deniz K, et al: Cholestatic liver injury associated with whey protein and creatine supplements. Semin Liver Dis. 2008, 28: 226-31. 10.1055/s-2008-1073122.CrossRefPubMed Whitt KN, Ward SC, Deniz K, et al: Cholestatic liver injury associated with whey protein and creatine supplements. Semin Liver Dis. 2008, 28: 226-31. 10.1055/s-2008-1073122.CrossRefPubMed
26.
go back to reference Paddon-Jones D, Short KR, Campbell WW, et al: Role of dietary protein in the sarcopenia of aging. Am J Clin Nutr. 2008, 87: 1562S-1566S.PubMed Paddon-Jones D, Short KR, Campbell WW, et al: Role of dietary protein in the sarcopenia of aging. Am J Clin Nutr. 2008, 87: 1562S-1566S.PubMed
27.
go back to reference Oryan A, Eftekhari MH, Ershad M, et al: Hepatoprotective effects of whey protein isolate against acute liver toxicity induced by dimethylnitrosamine in rat. Comparative Clinical Pathology. 2011, 20: 251-257. 10.1007/s00580-010-0986-5.CrossRef Oryan A, Eftekhari MH, Ershad M, et al: Hepatoprotective effects of whey protein isolate against acute liver toxicity induced by dimethylnitrosamine in rat. Comparative Clinical Pathology. 2011, 20: 251-257. 10.1007/s00580-010-0986-5.CrossRef
28.
go back to reference Kim SH, Hyun SH, Choung SY: Antioxidative effects of cinnamomi cassiae and rhodiola rosea extracts in liver of diabetic mice. Biofactors. 2006, 26: 209-19. 10.1002/biof.5520260306.CrossRefPubMed Kim SH, Hyun SH, Choung SY: Antioxidative effects of cinnamomi cassiae and rhodiola rosea extracts in liver of diabetic mice. Biofactors. 2006, 26: 209-19. 10.1002/biof.5520260306.CrossRefPubMed
29.
go back to reference Dalbo VJ, Roberts MD, Stout JR, et al: Putting to rest the myth of creatine supplementation leading to muscle cramps and dehydration. Br J Sports Med. 2008, 42: 567-73. 10.1136/bjsm.2007.042473.CrossRefPubMed Dalbo VJ, Roberts MD, Stout JR, et al: Putting to rest the myth of creatine supplementation leading to muscle cramps and dehydration. Br J Sports Med. 2008, 42: 567-73. 10.1136/bjsm.2007.042473.CrossRefPubMed
30.
go back to reference Belobrajdic DP, McIntosh GH, Owens JA: A high-whey-protein diet reduces body weight gain and alters insulin sensitivity relative to red meat in wistar rats. J Nutr. 2004, 134: 1454-8.PubMed Belobrajdic DP, McIntosh GH, Owens JA: A high-whey-protein diet reduces body weight gain and alters insulin sensitivity relative to red meat in wistar rats. J Nutr. 2004, 134: 1454-8.PubMed
31.
go back to reference Pichon L, Potier M, Tome D, et al: High-protein diets containing different milk protein fractions differently influence energy intake and adiposity in the rat. Br J Nutr. 2008, 99: 739-48.CrossRefPubMed Pichon L, Potier M, Tome D, et al: High-protein diets containing different milk protein fractions differently influence energy intake and adiposity in the rat. Br J Nutr. 2008, 99: 739-48.CrossRefPubMed
32.
go back to reference Anthony TG, McDaniel BJ, Knoll P, et al: Feeding meals containing soy or whey protein after exercise stimulates protein synthesis and translation initiation in the skeletal muscle of male rats. J Nutr. 2007, 137: 357-62.PubMed Anthony TG, McDaniel BJ, Knoll P, et al: Feeding meals containing soy or whey protein after exercise stimulates protein synthesis and translation initiation in the skeletal muscle of male rats. J Nutr. 2007, 137: 357-62.PubMed
33.
go back to reference Inkielewicz-Stepniak I, Czarnowski W: Oxidative stress parameters in rats exposed to fluoride and caffeine. Food Chem Toxicol. 2010, 48: 1607-11. 10.1016/j.fct.2010.03.033.CrossRefPubMed Inkielewicz-Stepniak I, Czarnowski W: Oxidative stress parameters in rats exposed to fluoride and caffeine. Food Chem Toxicol. 2010, 48: 1607-11. 10.1016/j.fct.2010.03.033.CrossRefPubMed
34.
go back to reference Inkielewicz-Stepniak I: Impact of fluoxetine on liver damage in rats. Pharmacol Rep. 2011, 63: 441-7.CrossRefPubMed Inkielewicz-Stepniak I: Impact of fluoxetine on liver damage in rats. Pharmacol Rep. 2011, 63: 441-7.CrossRefPubMed
35.
go back to reference Newman JE, Hargreaves M, Garnham A, et al: Effect of creatine ingestion on glucose tolerance and insulin sensitivity in men. Med Sci Sports Exerc. 2003, 35: 69-74. 10.1097/00005768-200301000-00012.CrossRefPubMed Newman JE, Hargreaves M, Garnham A, et al: Effect of creatine ingestion on glucose tolerance and insulin sensitivity in men. Med Sci Sports Exerc. 2003, 35: 69-74. 10.1097/00005768-200301000-00012.CrossRefPubMed
36.
go back to reference Hickner RC, Tanner CJ, Evans CA, et al: L-citrulline reduces time to exhaustion and insulin response to a graded exercise test. Med Sci Sports Exerc. 2006, 38: 660-6. 10.1249/01.mss.0000210197.02576.da.CrossRefPubMed Hickner RC, Tanner CJ, Evans CA, et al: L-citrulline reduces time to exhaustion and insulin response to a graded exercise test. Med Sci Sports Exerc. 2006, 38: 660-6. 10.1249/01.mss.0000210197.02576.da.CrossRefPubMed
37.
go back to reference Afkhami-Ardekani M, Shojaoddiny-Ardekani A: Effect of vitamin c on blood glucose, serum lipids & serum insulin in type 2 diabetes patients. Indian J Med Res. 2007, 126: 471-4.PubMed Afkhami-Ardekani M, Shojaoddiny-Ardekani A: Effect of vitamin c on blood glucose, serum lipids & serum insulin in type 2 diabetes patients. Indian J Med Res. 2007, 126: 471-4.PubMed
38.
go back to reference Liu Z, Jeppesen PB, Gregersen S, et al: Dose- and glucose-dependent effects of amino acids on insulin secretion from isolated mouse islets and clonal ins-1e beta-cells. Rev Diabet Stud. 2008, 5: 232-44. 10.1900/RDS.2008.5.232.PubMedCentralCrossRefPubMed Liu Z, Jeppesen PB, Gregersen S, et al: Dose- and glucose-dependent effects of amino acids on insulin secretion from isolated mouse islets and clonal ins-1e beta-cells. Rev Diabet Stud. 2008, 5: 232-44. 10.1900/RDS.2008.5.232.PubMedCentralCrossRefPubMed
39.
go back to reference Urista CM, Fernandez RA, Rodriguez FR, et al: Review: Production and functionality of active peptides from milk. Food Sci Technol Int. 2011, 17: 293-317. 10.1177/1082013211398801.CrossRef Urista CM, Fernandez RA, Rodriguez FR, et al: Review: Production and functionality of active peptides from milk. Food Sci Technol Int. 2011, 17: 293-317. 10.1177/1082013211398801.CrossRef
Metadata
Title
Postprandial leucine and insulin responses and toxicological effects of a novel whey protein hydrolysate-based supplement in rats
Authors
Ryan G Toedebusch
Thomas E Childs
Shari R Hamilton
Jan R Crowley
Frank W Booth
Michael D Roberts
Publication date
01-12-2012
Publisher
BioMed Central
DOI
https://doi.org/10.1186/1550-2783-9-24

Other articles of this Issue 1/2012

Journal of the International Society of Sports Nutrition 1/2012 Go to the issue