Skip to main content
Top
Published in: Pathology & Oncology Research 4/2009

01-12-2009

Post-Translational Regulation of Cathepsin B, but not of Other Cysteine Cathepsins, Contributes to Increased Glioblastoma Cell Invasiveness In Vitro

Authors: Boris Gole, María Beatriz Durán Alonso, Vincenc Dolenc, Tamara Lah

Published in: Pathology & Oncology Research | Issue 4/2009

Login to get access

Abstract

Cells that migrate away from a central tumour into brain tissue are responsible for inefficient glioblastoma treatment. This migratory behaviour depends partially on lysosomal cysteine cathepsins. Reportedly, the expression of cathepsins B, L and S gradually increases in the progression from benign astrocytoma to the malignant glioblastoma, although their specific roles in glioma progression have not been revealed. The aim of this study was to clarify their specific contribution to glioblastoma cell invasion. The differences between the matrix invading cells and non-invading core cells from spheroids derived from glioblastoma cell culture and from glioblastoma patients’ biopsies, and embedded in type I collagen, have been studied at the mRNA, protein and cathepsin activity levels. Analyses of the two types of cells showed that the three cathepsins were up-regulated post-translationally, their specific activities increasing in the invading cells. The cystatin levels were also differentially altered, resulting in higher ratio of cathepsins B and L to stefin B in the invading cells. However, using specific synthetic inhibitors and silencing strategies revealed that only cathepsin B activity was involved in the invasion of glioblastoma cells, confirming previous notion of cathepsin B as tumour invasiveness biomarker. Our data support the concept of specific roles of cysteine cathepsins in cancer progression. Finally the study points out on the complexity of protease regulation and the need to include functional proteomics in the systems biology approaches to understand the processes associated with glioma invasion and progression.
Literature
1.
2.
go back to reference Sathornsumetee S, Rich NJ (2006) New treatment strategies for malignant gliomas. Expert Rev Anticancer Ther 6(7):1087–1104CrossRefPubMed Sathornsumetee S, Rich NJ (2006) New treatment strategies for malignant gliomas. Expert Rev Anticancer Ther 6(7):1087–1104CrossRefPubMed
3.
go back to reference Rao JS (2003) Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 3(7):489–501CrossRefPubMed Rao JS (2003) Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 3(7):489–501CrossRefPubMed
4.
go back to reference Demuth T, Berens M (2004) Molecular mechanisms of glioma cell migration and invasion. J Neurooncol 70(2):217–228CrossRefPubMed Demuth T, Berens M (2004) Molecular mechanisms of glioma cell migration and invasion. J Neurooncol 70(2):217–228CrossRefPubMed
5.
go back to reference Wang W, Goswami S, Sahai E et al (2005) Tumour cells caught in the act of invading: their strategy for enhanced cell motility. Trends Cell Biology 15(3):138–145CrossRef Wang W, Goswami S, Sahai E et al (2005) Tumour cells caught in the act of invading: their strategy for enhanced cell motility. Trends Cell Biology 15(3):138–145CrossRef
7.
go back to reference Mariani L, Beaudry C, McDonough WS et al (2001) Glioma cell motility is associated with reduced transcription of proapoptotic and proliferation genes: a cDNA microarray analysis. J Neurooncol 53(2):161–176CrossRefPubMed Mariani L, Beaudry C, McDonough WS et al (2001) Glioma cell motility is associated with reduced transcription of proapoptotic and proliferation genes: a cDNA microarray analysis. J Neurooncol 53(2):161–176CrossRefPubMed
8.
go back to reference Demuth T, Rennert JL, Hoelzinger DB et al (2008) Glioma cells on the run- the migratory transcriptome of 10 human glioma cell lines. BMC Genomics 9:54CrossRefPubMed Demuth T, Rennert JL, Hoelzinger DB et al (2008) Glioma cells on the run- the migratory transcriptome of 10 human glioma cell lines. BMC Genomics 9:54CrossRefPubMed
9.
go back to reference Berens ME, Rief MD, Loo MA, Giese A (1994) The role of extracellular matrix in human astrocytoma migration and proliferation studied in a microliter scale assay. Clin Exp Metastasis 12(6):405–415CrossRefPubMed Berens ME, Rief MD, Loo MA, Giese A (1994) The role of extracellular matrix in human astrocytoma migration and proliferation studied in a microliter scale assay. Clin Exp Metastasis 12(6):405–415CrossRefPubMed
10.
go back to reference Hoelzinger DB, Nakada M, Demuth T et al (2008) Autotaxin: a secereted autocrine/paracrine factor that promotes glioma invasion. J Neurooncol 86(3):297–309CrossRefPubMed Hoelzinger DB, Nakada M, Demuth T et al (2008) Autotaxin: a secereted autocrine/paracrine factor that promotes glioma invasion. J Neurooncol 86(3):297–309CrossRefPubMed
11.
go back to reference Wolf K, Friedl P (2005) Functional imaging of pericellular proteolysis in cancer cell invasion. Biochemie 87(3–4):315–320CrossRef Wolf K, Friedl P (2005) Functional imaging of pericellular proteolysis in cancer cell invasion. Biochemie 87(3–4):315–320CrossRef
12.
go back to reference Tu C, Ortega–Cava CF, Chen G et al (2008) Lysosomal cathepsins B participates in the podosome-mediated extracellular matrix degradation and invasion via secreted lysosomes in the v-Src fibroblasts. Cancer Res 86(22):9147–9156CrossRef Tu C, Ortega–Cava CF, Chen G et al (2008) Lysosomal cathepsins B participates in the podosome-mediated extracellular matrix degradation and invasion via secreted lysosomes in the v-Src fibroblasts. Cancer Res 86(22):9147–9156CrossRef
13.
go back to reference Lopez–Otin C, Matrisian LM (2007) Emerging roles of proteases in tumour suppression. Nature Rev Cancer 7(10):800–808CrossRef Lopez–Otin C, Matrisian LM (2007) Emerging roles of proteases in tumour suppression. Nature Rev Cancer 7(10):800–808CrossRef
14.
go back to reference Levičar N, Nuttall RL, Lah TT (2003) Proteases in brain tumour progression. Acta Neurochir (Wien) 145(9):825–838CrossRef Levičar N, Nuttall RL, Lah TT (2003) Proteases in brain tumour progression. Acta Neurochir (Wien) 145(9):825–838CrossRef
15.
go back to reference Lah TT, Duran Alonso MB, Van Noorden CJ (2006) Antiprotease therapy in cancer: hot or not? Expert Opin Biol Ther 6(3):257–279CrossRefPubMed Lah TT, Duran Alonso MB, Van Noorden CJ (2006) Antiprotease therapy in cancer: hot or not? Expert Opin Biol Ther 6(3):257–279CrossRefPubMed
16.
go back to reference Rempel SA, Rosenblum ML, Mikkelsen T et al (1994) CathepsinB expression and localization in glioma progression and invasion. Cancer Res 54(23):6027–6031PubMed Rempel SA, Rosenblum ML, Mikkelsen T et al (1994) CathepsinB expression and localization in glioma progression and invasion. Cancer Res 54(23):6027–6031PubMed
17.
go back to reference Lah TT, Strojnik T, Levičar N et al (2000) Clinical and experimental studies of cysteine cathepsins and their inhibitors in human brain tumors. Int J Biol Markers 15(1):90–93PubMed Lah TT, Strojnik T, Levičar N et al (2000) Clinical and experimental studies of cysteine cathepsins and their inhibitors in human brain tumors. Int J Biol Markers 15(1):90–93PubMed
18.
go back to reference Strojnik T, Kos J, Židanik B, Lah TT (1999) Cathepsin B immunohistochemical staining in tumour and endothelial cells is a new prognostic factor for survival in patients with brain tumours. Clin Cancer Res 5(3):559–567PubMed Strojnik T, Kos J, Židanik B, Lah TT (1999) Cathepsin B immunohistochemical staining in tumour and endothelial cells is a new prognostic factor for survival in patients with brain tumours. Clin Cancer Res 5(3):559–567PubMed
19.
go back to reference Strojnik T, Kavalar R, Trinkaus M, Lah TT (2005) Cathepsin L in glioma progression: comparison with cathepsin B. Cancer Detect Prev 29(5):448–455CrossRefPubMed Strojnik T, Kavalar R, Trinkaus M, Lah TT (2005) Cathepsin L in glioma progression: comparison with cathepsin B. Cancer Detect Prev 29(5):448–455CrossRefPubMed
20.
go back to reference Sivarapathi M, Yamamoto M, Nicolson GL et al (1996) Expression and immunohistochemical localization of cathepsin L during progression of human gliomas. Clin Exp Metastasis 14(1):27–34CrossRef Sivarapathi M, Yamamoto M, Nicolson GL et al (1996) Expression and immunohistochemical localization of cathepsin L during progression of human gliomas. Clin Exp Metastasis 14(1):27–34CrossRef
21.
go back to reference Flannery T, Gibson D, Mirakhur M et al (2003) The clinical significance of cathepsin S expression in human astrocytomas. Am J Pathol 163(1):175–182PubMed Flannery T, Gibson D, Mirakhur M et al (2003) The clinical significance of cathepsin S expression in human astrocytomas. Am J Pathol 163(1):175–182PubMed
22.
go back to reference Flannery T, McQuaid S, McGoohan C et al (2006) Cathepsin S expression: An independent prognostic factor in glioblastoma tumours-A pilot study. Int J Cancer 119(4):854–860CrossRefPubMed Flannery T, McQuaid S, McGoohan C et al (2006) Cathepsin S expression: An independent prognostic factor in glioblastoma tumours-A pilot study. Int J Cancer 119(4):854–860CrossRefPubMed
23.
go back to reference Kos J, Lah TT (2006) Cystatins in cancer. In: Zerovnik E, Kopitar-Jerala N (eds) Human Stefins and Cystatins. Nova Science Publishers Inc, New York Kos J, Lah TT (2006) Cystatins in cancer. In: Zerovnik E, Kopitar-Jerala N (eds) Human Stefins and Cystatins. Nova Science Publishers Inc, New York
25.
go back to reference Lignelid H, Collins VP, Jacobsson B (1997) Cystatin C and transthyretin expression in normal and neoplastic tissues of the human brain and pituitary. Acta Neuropathol 93(5):494–500CrossRefPubMed Lignelid H, Collins VP, Jacobsson B (1997) Cystatin C and transthyretin expression in normal and neoplastic tissues of the human brain and pituitary. Acta Neuropathol 93(5):494–500CrossRefPubMed
26.
go back to reference Nakabayashi H, Hara M, Shimuzu K (2005) Clinicopathologic significance of cystatin C expression in gliomas. Hum Pathol 36(9):1008–1015CrossRefPubMed Nakabayashi H, Hara M, Shimuzu K (2005) Clinicopathologic significance of cystatin C expression in gliomas. Hum Pathol 36(9):1008–1015CrossRefPubMed
27.
go back to reference Konduri SD, Yanamandra N, Siddique K et al (2002) Modulation of cystatin C expression impairs the invasive and tumorigenic potential of human glioblastoma cells. Oncogene 21(57):8705–8712CrossRefPubMed Konduri SD, Yanamandra N, Siddique K et al (2002) Modulation of cystatin C expression impairs the invasive and tumorigenic potential of human glioblastoma cells. Oncogene 21(57):8705–8712CrossRefPubMed
28.
go back to reference Bervar A, Zajc I, Sever B et al (2003) Invasiveness of transformed human breast epithelial cell lines is related to cathepsin B and inhibited by cysteine proteinase inhibitors. Biol Chem 384(3):447–455CrossRefPubMed Bervar A, Zajc I, Sever B et al (2003) Invasiveness of transformed human breast epithelial cell lines is related to cathepsin B and inhibited by cysteine proteinase inhibitors. Biol Chem 384(3):447–455CrossRefPubMed
29.
go back to reference Zajc I, Hreljac I, Lah T (2006) Cathepsin L affects apoptosis of glioblastoma cells: a potential implication in the design of cancer therapeutics. Anticancer Res 26(5A):3357-64 Zajc I, Hreljac I, Lah T (2006) Cathepsin L affects apoptosis of glioblastoma cells: a potential implication in the design of cancer therapeutics. Anticancer Res 26(5A):3357-64
30.
go back to reference Hegedüs B, Marga F, Jakab K et al (2006) The Interplay of Cell-Cell and Cell-Matrix Interactions in the Invasive Properties of Brain Tumors. Biophys J 91(7):2708–2716CrossRefPubMed Hegedüs B, Marga F, Jakab K et al (2006) The Interplay of Cell-Cell and Cell-Matrix Interactions in the Invasive Properties of Brain Tumors. Biophys J 91(7):2708–2716CrossRefPubMed
31.
go back to reference Corcoran A, De Ridder LI, Del Duca D et al (2003) Evolution of the brain tumour spheroid model: transcending current model limitations. Acta Neurochir (Wien) 145(9):819–824CrossRef Corcoran A, De Ridder LI, Del Duca D et al (2003) Evolution of the brain tumour spheroid model: transcending current model limitations. Acta Neurochir (Wien) 145(9):819–824CrossRef
32.
go back to reference Rubenstein BM, Kaufman LJ (2008) The role of extracellular matrix in glioma invasion:a cellular potts model approach. Biophys J 95(12):5661–5680CrossRefPubMed Rubenstein BM, Kaufman LJ (2008) The role of extracellular matrix in glioma invasion:a cellular potts model approach. Biophys J 95(12):5661–5680CrossRefPubMed
33.
go back to reference Gondi CS, Kandhukuri N, Kondraganti S et al (2006) RNA interference–mediated simultaneous down-regulation of urokinase-type plasminogen activator receptor and cathepsin B induces caspase-mediated apoptosis in SNB 19 human glioma cells. Mol Cancer Ther 5(12):3197–3208CrossRefPubMed Gondi CS, Kandhukuri N, Kondraganti S et al (2006) RNA interference–mediated simultaneous down-regulation of urokinase-type plasminogen activator receptor and cathepsin B induces caspase-mediated apoptosis in SNB 19 human glioma cells. Mol Cancer Ther 5(12):3197–3208CrossRefPubMed
34.
go back to reference Gocheva V, Zeng W, Ke D et al (2006) Distinct role for cysteine cathepsin genes in multistage tumourigenesis. Genes Dev 20(5):543–556CrossRefPubMed Gocheva V, Zeng W, Ke D et al (2006) Distinct role for cysteine cathepsin genes in multistage tumourigenesis. Genes Dev 20(5):543–556CrossRefPubMed
35.
go back to reference Reinheckel T, Gocheva V, Peters C, Joyce JA (2008) Roles of cysteine proteases in tumour progression: Analysis of cysteine cathepsins knockout mice in cancer models. In: Edwards D, Hoyer-Hansen G, Blasi F, Sloane BF (eds) The Cancer Degradome. Springer Science + Business Media, New York Reinheckel T, Gocheva V, Peters C, Joyce JA (2008) Roles of cysteine proteases in tumour progression: Analysis of cysteine cathepsins knockout mice in cancer models. In: Edwards D, Hoyer-Hansen G, Blasi F, Sloane BF (eds) The Cancer Degradome. Springer Science + Business Media, New York
36.
go back to reference Lakka C, Gondi CS, Yanamandra N et al (2004) Inhibition of cathepsin B and MMP-9 gene expression in glioblastoma cell line via RNA interference reduces tumour cell invasion, tumour growth and angiogenesis. Oncogene 23(27):4681–4689CrossRefPubMed Lakka C, Gondi CS, Yanamandra N et al (2004) Inhibition of cathepsin B and MMP-9 gene expression in glioblastoma cell line via RNA interference reduces tumour cell invasion, tumour growth and angiogenesis. Oncogene 23(27):4681–4689CrossRefPubMed
37.
go back to reference Premzl A, Zavasnik-Bergant V, Turk V, Kos J (2003) Intracellular and extracellular cathepsin B facilitate invasion of MCF-10A neoT cells through reconstituted extracellular matrix in vitro. Exp Cell Res 283(2):206–214CrossRefPubMed Premzl A, Zavasnik-Bergant V, Turk V, Kos J (2003) Intracellular and extracellular cathepsin B facilitate invasion of MCF-10A neoT cells through reconstituted extracellular matrix in vitro. Exp Cell Res 283(2):206–214CrossRefPubMed
38.
go back to reference Klose A, Wilbrand-Hennes A, Zigrino P et al (2006) Contact of high-invasive, but not low-invasive, melanoma cells to native collagen I induces the release of mature cathepsin B. Int J Cancer 118(11):2735–2743CrossRefPubMed Klose A, Wilbrand-Hennes A, Zigrino P et al (2006) Contact of high-invasive, but not low-invasive, melanoma cells to native collagen I induces the release of mature cathepsin B. Int J Cancer 118(11):2735–2743CrossRefPubMed
39.
go back to reference Podgorski I, Linebough BE, Sameni M et al (2005) Bone microenvironment modulates expression and activity of cathepsin B in prostate cancer. Neoplasia 7(3):207–223CrossRefPubMed Podgorski I, Linebough BE, Sameni M et al (2005) Bone microenvironment modulates expression and activity of cathepsin B in prostate cancer. Neoplasia 7(3):207–223CrossRefPubMed
40.
go back to reference Sameni M, Dosescu J, Sloane BF (2001) Imaging proteolysis by living human glioma cells. Biol Chem 382(5):785–788CrossRefPubMed Sameni M, Dosescu J, Sloane BF (2001) Imaging proteolysis by living human glioma cells. Biol Chem 382(5):785–788CrossRefPubMed
41.
go back to reference Zhu DM, Uckun FM (2000) Z-Phe-Gly-NHO-Bz, an inhibitor of cysteine cathepsins, induces apoptosis in human cancer cells. Clin Cancer Res 6(5):2064–2069PubMed Zhu DM, Uckun FM (2000) Z-Phe-Gly-NHO-Bz, an inhibitor of cysteine cathepsins, induces apoptosis in human cancer cells. Clin Cancer Res 6(5):2064–2069PubMed
42.
go back to reference Felbor U, Kesseler B, Mothes W et al (2002) Neuronal loss and brain atrophy in mice lacking cathepsins B and L. Proc Natl Acad Sci USA 99(12):7883–7888CrossRefPubMed Felbor U, Kesseler B, Mothes W et al (2002) Neuronal loss and brain atrophy in mice lacking cathepsins B and L. Proc Natl Acad Sci USA 99(12):7883–7888CrossRefPubMed
43.
go back to reference Levičar N, Dewey RA, Daley E et al (2003) Selective supression of cathepsin L by antisense cDNA impairs human brain tumor cell invasion in vitro and promotes apoptosis. Cancer Gene Ther 10(2):141–151CrossRefPubMed Levičar N, Dewey RA, Daley E et al (2003) Selective supression of cathepsin L by antisense cDNA impairs human brain tumor cell invasion in vitro and promotes apoptosis. Cancer Gene Ther 10(2):141–151CrossRefPubMed
44.
go back to reference Castino R, Pace D, Démoz M et al (2002) Lysosomal proteases as potential targets for the induction of apoptotic cell death in human neuroblastomas. Int J Cancer 97(6):775–779CrossRefPubMed Castino R, Pace D, Démoz M et al (2002) Lysosomal proteases as potential targets for the induction of apoptotic cell death in human neuroblastomas. Int J Cancer 97(6):775–779CrossRefPubMed
45.
go back to reference Bellail AC, Hunter SB, Brat DJ et al (2004) Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int J Biochem Cell Biol 36(6):1046–1069CrossRefPubMed Bellail AC, Hunter SB, Brat DJ et al (2004) Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int J Biochem Cell Biol 36(6):1046–1069CrossRefPubMed
Metadata
Title
Post-Translational Regulation of Cathepsin B, but not of Other Cysteine Cathepsins, Contributes to Increased Glioblastoma Cell Invasiveness In Vitro
Authors
Boris Gole
María Beatriz Durán Alonso
Vincenc Dolenc
Tamara Lah
Publication date
01-12-2009
Publisher
Springer Netherlands
Published in
Pathology & Oncology Research / Issue 4/2009
Print ISSN: 1219-4956
Electronic ISSN: 1532-2807
DOI
https://doi.org/10.1007/s12253-009-9175-8

Other articles of this Issue 4/2009

Pathology & Oncology Research 4/2009 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine