Skip to main content
Top
Published in: Molecular Brain 1/2015

Open Access 01-12-2015 | Research

Post-transcriptional regulation of SHANK3 expression by microRNAs related to multiple neuropsychiatric disorders

Authors: Su-Yeon Choi, Kaifang Pang, Joo Yeon Kim, Jae Ryun Ryu, Hyojin Kang, Zhandong Liu, Won-Ki Kim, Woong Sun, Hyun Kim, Kihoon Han

Published in: Molecular Brain | Issue 1/2015

Login to get access

Abstract

Background

Proper neuronal function requires tight control of gene dosage, and failure of this process underlies the pathogenesis of multiple neuropsychiatric disorders. The SHANK3 gene encoding core scaffolding proteins at glutamatergic postsynapse is a typical dosage-sensitive gene, both deletions and duplications of which are associated with Phelan-McDermid syndrome, autism spectrum disorders, bipolar disorder, intellectual disability, or schizophrenia. However, the regulatory mechanism of SHANK3 expression in neurons itself is poorly understood.

Results

Here we show post-transcriptional regulation of SHANK3 expression by three microRNAs (miRNAs), miR-7, miR-34a, and miR-504. Notably, the expression profiles of these miRNAs were previously shown to be altered in some neuropsychiatric disorders which are also associated with SHANK3 dosage changes. These miRNAs regulated the expression of SHANK3 and other genes encoding actin-related proteins that interact with Shank3, through direct binding sites in the 3′ untranslated region (UTR). Moreover, overexpression or inhibition of miR-7 and miR-504 affected the dendritic spines of the cultured hippocampal neurons in a Shank3-dependent manner. We further characterized miR-504 as it showed the most significant effect on both SHANK3 expression and dendritic spines among the three miRNAs. Lentivirus-mediated overexpression of miR-504, which mimics its reported expression change in postmortem brain tissues of bipolar disorder, decreased endogenous Shank3 protein in cultured hippocampal neurons. We also revealed that miR-504 is expressed in the cortical and hippocampal regions of human and mouse brains.

Conclusions

Our study provides new insight into the miRNA-mediated regulation of SHANK3 expression, and its potential implication in multiple neuropsychiatric disorders associated with altered SHANK3 and miRNA expression profiles.
Appendix
Available only for authorised users
Literature
4.
go back to reference Lin GN, Corominas R, Lemmens I, Yang X, Tavernier J, Hill DE, et al. Spatiotemporal 16p11.2 protein network implicates cortical late mid-fetal brain development and KCTD13-Cul3-RhoA pathway in psychiatric diseases. Neuron. 2015;85(4):742–54. doi:10.1016/j.neuron.2015.01.010.CrossRefPubMed Lin GN, Corominas R, Lemmens I, Yang X, Tavernier J, Hill DE, et al. Spatiotemporal 16p11.2 protein network implicates cortical late mid-fetal brain development and KCTD13-Cul3-RhoA pathway in psychiatric diseases. Neuron. 2015;85(4):742–54. doi:10.​1016/​j.​neuron.​2015.​01.​010.CrossRefPubMed
5.
go back to reference Sheng M, Kim E. The Shank family of scaffold proteins. J Cell Sci. 2000;113(Pt 11):1851–6.PubMed Sheng M, Kim E. The Shank family of scaffold proteins. J Cell Sci. 2000;113(Pt 11):1851–6.PubMed
9.
go back to reference Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet. 2007;39(1):25–7. doi:10.1038/ng1933.PubMedCentralCrossRefPubMed Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet. 2007;39(1):25–7. doi:10.​1038/​ng1933.PubMedCentralCrossRefPubMed
15.
go back to reference Bozdagi O, Sakurai T, Papapetrou D, Wang X, Dickstein DL, Takahashi N, et al. Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Mol Autism. 2010;1(1):15. doi:10.1186/2040-2392-1-15.PubMedCentralCrossRefPubMed Bozdagi O, Sakurai T, Papapetrou D, Wang X, Dickstein DL, Takahashi N, et al. Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Mol Autism. 2010;1(1):15. doi:10.​1186/​2040-2392-1-15.PubMedCentralCrossRefPubMed
19.
go back to reference Schmeisser MJ, Ey E, Wegener S, Bockmann J, Stempel AV, Kuebler A, et al. Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature. 2012;486(7402):256–60. doi:10.1038/nature11015.PubMed Schmeisser MJ, Ey E, Wegener S, Bockmann J, Stempel AV, Kuebler A, et al. Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature. 2012;486(7402):256–60. doi:10.​1038/​nature11015.PubMed
33.
go back to reference Lai C-Y, Yu S-L, Hsieh MH, Chen C-H, Chen H-Y, Wen C-C, et al. MicroRNA expression aberration as potential peripheral blood biomarkers for schizophrenia. PLoS One. 2011;6(6):e21635.PubMedCentralCrossRefPubMed Lai C-Y, Yu S-L, Hsieh MH, Chen C-H, Chen H-Y, Wen C-C, et al. MicroRNA expression aberration as potential peripheral blood biomarkers for schizophrenia. PLoS One. 2011;6(6):e21635.PubMedCentralCrossRefPubMed
34.
go back to reference Smalheiser NR, Lugli G, Zhang H, Rizavi H, Cook EH, Dwivedi Y. Expression of microRNAs and other small RNAs in prefrontal cortex in schizophrenia, bipolar disorder and depressed subjects. PLoS One. 2014;9(1):e86469.PubMedCentralCrossRefPubMed Smalheiser NR, Lugli G, Zhang H, Rizavi H, Cook EH, Dwivedi Y. Expression of microRNAs and other small RNAs in prefrontal cortex in schizophrenia, bipolar disorder and depressed subjects. PLoS One. 2014;9(1):e86469.PubMedCentralCrossRefPubMed
43.
45.
go back to reference Ching TT, Maunakea AK, Jun P, Hong C, Zardo G, Pinkel D, et al. Epigenome analyses using BAC microarrays identify evolutionary conservation of tissue-specific methylation of SHANK3. Nat Genet. 2005;37(6):645–51. doi:10.1038/ng1563.CrossRefPubMed Ching TT, Maunakea AK, Jun P, Hong C, Zardo G, Pinkel D, et al. Epigenome analyses using BAC microarrays identify evolutionary conservation of tissue-specific methylation of SHANK3. Nat Genet. 2005;37(6):645–51. doi:10.​1038/​ng1563.CrossRefPubMed
49.
52.
go back to reference Denayer A, Van Esch H, de Ravel T, Frijns JP, Van Buggenhout G, Vogels A, et al. Neuropsychopathology in 7 Patients with the 22q13 Deletion Syndrome: Presence of Bipolar Disorder and Progressive Loss of Skills. Mol Syndromol. 2012;3(1):14–20.PubMedCentralPubMed Denayer A, Van Esch H, de Ravel T, Frijns JP, Van Buggenhout G, Vogels A, et al. Neuropsychopathology in 7 Patients with the 22q13 Deletion Syndrome: Presence of Bipolar Disorder and Progressive Loss of Skills. Mol Syndromol. 2012;3(1):14–20.PubMedCentralPubMed
55.
go back to reference Choi S-Y, Han K. Emerging role of synaptic actin-regulatory pathway in the pathophysiology of mood disorders. Animal Cells Syst (Seoul). 2015;19(5):283–8.CrossRef Choi S-Y, Han K. Emerging role of synaptic actin-regulatory pathway in the pathophysiology of mood disorders. Animal Cells Syst (Seoul). 2015;19(5):283–8.CrossRef
Metadata
Title
Post-transcriptional regulation of SHANK3 expression by microRNAs related to multiple neuropsychiatric disorders
Authors
Su-Yeon Choi
Kaifang Pang
Joo Yeon Kim
Jae Ryun Ryu
Hyojin Kang
Zhandong Liu
Won-Ki Kim
Woong Sun
Hyun Kim
Kihoon Han
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Molecular Brain / Issue 1/2015
Electronic ISSN: 1756-6606
DOI
https://doi.org/10.1186/s13041-015-0165-3

Other articles of this Issue 1/2015

Molecular Brain 1/2015 Go to the issue