Skip to main content
Top
Published in: Clinical Oral Investigations 4/2013

01-05-2013 | Short Communication

Porphyromonas gingivalis LPS stimulation downregulates DNMT1, DNMT3a, and JMJD3 gene expression levels in human HaCaT keratinocytes

Authors: Gláucia de Camargo Pereira, Gustavo Narvaes Guimarães, Aline Cristiane Planello, Mauro Pedrine Santamaria, Ana Paula de Souza, Sergio Roberto Line, Marcelo Rocha Marques

Published in: Clinical Oral Investigations | Issue 4/2013

Login to get access

Abstract

Objective

The role of epigenetic regulation in inflammatory diseases such as periodontitis is poorly known. The aim of this study was to assess whether Porphyromonas gingivalis lipopolysaccharide (LPS) can modulate gene expression levels of the some enzymes that promote epigenetic events in cultures of the human keratinocytes and gingival fibroblasts. In addition, the same enzymes were evaluated in gingival samples from healthy and periodontitis-affected individuals.

Materials and methods

Primary gingival fibroblast and keratinocyte (HaCaT) cultures were treated with medium containing P. gingivalis LPS or P. gingivalis LPS vehicle for 24 h. After this period, cell viability was assessed by MTT test and total RNA extracted to evaluate gene expression levels of the following enzymes by qRT-PCR: DNA methyltransferase 1 (DNMT1), DNA methyltransferase 3a (DNMT3a), histone demethylases Jumonji domain containing 3 (JMJD3) and ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX). To evaluate gene expression in healthy and periodontitis-affected individuals, total RNA was extracted from biopsies of gingival tissue from healthy and periodontitis sites, and gene expression of DNMT1, DNAMT3a, JMJD3, and UTX was evaluated by qRT-PCR.

Results

No significant differences were found in the gene expression analysis between healthy and periodontitis-affected gingival samples. The results showed that LPS downregulated DNMT1 (p < 0.05), DNMT3a (p < 0.05), and JMJD3 (p < 0.01) gene expression in HaCaT cells, but no modulation was observed in gingival fibroblasts.

Conclusion

P. gingivalis LPS exposure to human HaCaT keratinocytes downregulates gene expression of the enzymes that promote epigenetic events.

Clinical relevance

The advance knowledge about epigenetic modifications caused by periodontopathogens may to possibly led to the development of new periodontal therapies.
Literature
1.
2.
go back to reference Armitage GC (1995) Clinical evaluation of periodontal diseases. Periodontol 2000(7):39–53CrossRef Armitage GC (1995) Clinical evaluation of periodontal diseases. Periodontol 2000(7):39–53CrossRef
3.
go back to reference Marques MR, dos Santos MC, da Silva AF, Nociti FH Jr, Barros SP (2010) Parathyroid hormone administration may modulate periodontal tissue levels of interleukin-6, matrix metalloproteinase-2 and matrix metalloproteinase-9 in experimental periodontitis. J Periodontal Res 44:744–750CrossRef Marques MR, dos Santos MC, da Silva AF, Nociti FH Jr, Barros SP (2010) Parathyroid hormone administration may modulate periodontal tissue levels of interleukin-6, matrix metalloproteinase-2 and matrix metalloproteinase-9 in experimental periodontitis. J Periodontal Res 44:744–750CrossRef
4.
go back to reference Michalek SM, Katz J, Childers NK, Martin M, Balkovetz DF (2002) Microbial/host interactions: mechanisms involved in host responses to microbial antigens. Immunol Res 26:223–234PubMedCrossRef Michalek SM, Katz J, Childers NK, Martin M, Balkovetz DF (2002) Microbial/host interactions: mechanisms involved in host responses to microbial antigens. Immunol Res 26:223–234PubMedCrossRef
5.
go back to reference Johnson GK, Guthmiller JM, Joly S, Organ CC, Dawson DV (2010) Interleukin-1 and interleukin-8 in nicotine- and lipopolysaccharide-exposed gingival keratinocyte cultures. J Periodontal Res 45:583–588PubMed Johnson GK, Guthmiller JM, Joly S, Organ CC, Dawson DV (2010) Interleukin-1 and interleukin-8 in nicotine- and lipopolysaccharide-exposed gingival keratinocyte cultures. J Periodontal Res 45:583–588PubMed
6.
go back to reference Scheres N, Laine ML, de Vries TJ, Everts V, van Winkelhoff AJ (2010) Gingival and periodontal ligament fibroblasts differ in their inflammatory response to viable Porphyromonas gingivalis. J Periodontal Res 45:262–270PubMedCrossRef Scheres N, Laine ML, de Vries TJ, Everts V, van Winkelhoff AJ (2010) Gingival and periodontal ligament fibroblasts differ in their inflammatory response to viable Porphyromonas gingivalis. J Periodontal Res 45:262–270PubMedCrossRef
7.
go back to reference Zhang P, Liu J, Xu Q, Harber G, Feng X, Michalek SM, Katz J (2011) TLR2-dependent modulation of osteoclastogenesis by Porphyromonas gingivalis. J Biol Chem 286:24159–24169PubMedCrossRef Zhang P, Liu J, Xu Q, Harber G, Feng X, Michalek SM, Katz J (2011) TLR2-dependent modulation of osteoclastogenesis by Porphyromonas gingivalis. J Biol Chem 286:24159–24169PubMedCrossRef
8.
go back to reference Socransky SS, Haffajee AD (1992) The bacterial etiology of destructive periodontal disease: current concepts. J Periodontol 63:322–331PubMedCrossRef Socransky SS, Haffajee AD (1992) The bacterial etiology of destructive periodontal disease: current concepts. J Periodontol 63:322–331PubMedCrossRef
9.
go back to reference Lamont RJ, Jenkinson HF (1998) Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiol Mol Biol Rev 62:1244–1263PubMed Lamont RJ, Jenkinson HF (1998) Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiol Mol Biol Rev 62:1244–1263PubMed
10.
11.
go back to reference Gomez RS, Dutra WO, Moreira PR (2009) Epigenetics and periodontal disease: future perspectives. Inflamm Res 58:625–629PubMedCrossRef Gomez RS, Dutra WO, Moreira PR (2009) Epigenetics and periodontal disease: future perspectives. Inflamm Res 58:625–629PubMedCrossRef
12.
go back to reference Zhang S, Crivello A, Offenbacher S, Moretti A, Paquette DW, Barros SP (2010) Interferon-gamma promoter hypomethylation and increased expression in chronic periodontitis. J Clin Periodontol 37:953–961PubMedCrossRef Zhang S, Crivello A, Offenbacher S, Moretti A, Paquette DW, Barros SP (2010) Interferon-gamma promoter hypomethylation and increased expression in chronic periodontitis. J Clin Periodontol 37:953–961PubMedCrossRef
13.
go back to reference De Oliveira NF, Andia DC, Planello AC, Pasetto S, Marques MR, Nociti FH Jr, Line SR, De Souza AP (2011) TLR2 and TLR4 gene promoter methylation status during chronic periodontitis. J Clin Periodontol 38:975–983PubMedCrossRef De Oliveira NF, Andia DC, Planello AC, Pasetto S, Marques MR, Nociti FH Jr, Line SR, De Souza AP (2011) TLR2 and TLR4 gene promoter methylation status during chronic periodontitis. J Clin Periodontol 38:975–983PubMedCrossRef
14.
go back to reference Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447:433–440PubMedCrossRef Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447:433–440PubMedCrossRef
15.
go back to reference Vaissière T, Sawan C, Herceg Z (2008) Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat Res 659:40–48PubMedCrossRef Vaissière T, Sawan C, Herceg Z (2008) Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat Res 659:40–48PubMedCrossRef
16.
go back to reference Colot V, Rossignol JL (1999) Eukaryotic DNA methylation as an evolutionary device. Bioessays 21:402–411PubMedCrossRef Colot V, Rossignol JL (1999) Eukaryotic DNA methylation as an evolutionary device. Bioessays 21:402–411PubMedCrossRef
18.
19.
go back to reference El Gazzar M, Yoza BK, Chen X, Hu J, Hawkins GA, McCall CE (2008) G9a and HP1 couple histone and DNA methylation to TNFalpha transcription silencing during endotoxin tolerance. J Biol Chem 283:32198–32208PubMedCrossRef El Gazzar M, Yoza BK, Chen X, Hu J, Hawkins GA, McCall CE (2008) G9a and HP1 couple histone and DNA methylation to TNFalpha transcription silencing during endotoxin tolerance. J Biol Chem 283:32198–32208PubMedCrossRef
20.
go back to reference Yin L, Chung WO (2011) Epigenetic regulation of human β-defensin 2 and CC chemokine ligand 20 expression in gingival epithelial cells in response to oral bacteria. Mucosal Immunol 4:409–419PubMedCrossRef Yin L, Chung WO (2011) Epigenetic regulation of human β-defensin 2 and CC chemokine ligand 20 expression in gingival epithelial cells in response to oral bacteria. Mucosal Immunol 4:409–419PubMedCrossRef
23.
go back to reference Zhao XD, Han X, Chew JL et al (2007) Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell 1:286–298PubMedCrossRef Zhao XD, Han X, Chew JL et al (2007) Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell 1:286–298PubMedCrossRef
24.
go back to reference Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappsilber J, Issaeva I, Canaani E, Salcini AE, Helin K (2007) UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449:731–734PubMedCrossRef Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappsilber J, Issaeva I, Canaani E, Salcini AE, Helin K (2007) UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449:731–734PubMedCrossRef
25.
go back to reference Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7:21–33PubMedCrossRef Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7:21–33PubMedCrossRef
26.
go back to reference Grabiec AM, Tak PP, Reedquist KA (2008) Targeting histone deacetylase activity in rheumatoid arthritis and asthma as prototypes of inflammatory disease: should we keep our HATs on? Arthritis Res Ther 10:1–13CrossRef Grabiec AM, Tak PP, Reedquist KA (2008) Targeting histone deacetylase activity in rheumatoid arthritis and asthma as prototypes of inflammatory disease: should we keep our HATs on? Arthritis Res Ther 10:1–13CrossRef
27.
go back to reference Huber LC, Stanczyk J, Jungel A, Gay S (2007) Epigenetics in inflammatory rheumatic diseases. Arthritis Rheum 56:3523–3531PubMedCrossRef Huber LC, Stanczyk J, Jungel A, Gay S (2007) Epigenetics in inflammatory rheumatic diseases. Arthritis Rheum 56:3523–3531PubMedCrossRef
28.
go back to reference Sanchez-Pernaute O, Ospelt C, Neidhart M, Gay S (2008) Epigenetic clues to rheumatoid arthritis. J Autoimmun 30:12–2PubMedCrossRef Sanchez-Pernaute O, Ospelt C, Neidhart M, Gay S (2008) Epigenetic clues to rheumatoid arthritis. J Autoimmun 30:12–2PubMedCrossRef
29.
go back to reference Kinane DF, Galicia JC, Gorr SU, Stathopoulou PG, Benakanakere M (2008) P. gingivalis interactions with epithelial cells. Front Biosci 13:966–984PubMedCrossRef Kinane DF, Galicia JC, Gorr SU, Stathopoulou PG, Benakanakere M (2008) P. gingivalis interactions with epithelial cells. Front Biosci 13:966–984PubMedCrossRef
30.
go back to reference Kocgozlu L, Elkaim R, Tenenbaum H, Werner S (2009) Variable cell responses to P. gingivalis lipopolysaccharide. J Dent Res 88:741–745PubMedCrossRef Kocgozlu L, Elkaim R, Tenenbaum H, Werner S (2009) Variable cell responses to P. gingivalis lipopolysaccharide. J Dent Res 88:741–745PubMedCrossRef
31.
go back to reference Jain S, Darveau RP (2010) Contribution of Porphyromonas gingivalis lipopolysaccharide to periodontitis. Periodontol 54:53–70, 2000CrossRef Jain S, Darveau RP (2010) Contribution of Porphyromonas gingivalis lipopolysaccharide to periodontitis. Periodontol 54:53–70, 2000CrossRef
32.
go back to reference Kraus D, Winter J, Jepsen S, Jäger A, Meyer R, Deschner J (2012) Interactions of adiponectin and lipopolysaccharide from Porphyromonas gingivalis on human oral epithelial cells. PLoS One 7:e30716PubMedCrossRef Kraus D, Winter J, Jepsen S, Jäger A, Meyer R, Deschner J (2012) Interactions of adiponectin and lipopolysaccharide from Porphyromonas gingivalis on human oral epithelial cells. PLoS One 7:e30716PubMedCrossRef
33.
go back to reference Brunner J, Scheres N, El Idrissi NB, Deng DM, Laine ML, van Winkelhoff AJ, Crielaard W (2010) The capsule of Porphyromonas gingivalis reduces the immune response of human gingival fibroblasts. BMC Microbiol 10:5PubMedCrossRef Brunner J, Scheres N, El Idrissi NB, Deng DM, Laine ML, van Winkelhoff AJ, Crielaard W (2010) The capsule of Porphyromonas gingivalis reduces the immune response of human gingival fibroblasts. BMC Microbiol 10:5PubMedCrossRef
34.
go back to reference Kou Y, Inaba H, Kato T, Tagashira M, Honma D, Kanda T, Ohtake Y, Amano A (2008) Inflammatory responses of gingival epithelial cells stimulated with Porphyromonas gingivalis vesicles are inhibited by hop-associated polyphenols. J Periodontol 79:174–180PubMedCrossRef Kou Y, Inaba H, Kato T, Tagashira M, Honma D, Kanda T, Ohtake Y, Amano A (2008) Inflammatory responses of gingival epithelial cells stimulated with Porphyromonas gingivalis vesicles are inhibited by hop-associated polyphenols. J Periodontol 79:174–180PubMedCrossRef
35.
go back to reference Takahashi N, Honda T, Domon H, Nakajima T, Tabeta K, Yamazaki K (2010) Interleukin-1 receptor-associated kinase-M in gingival epithelial cells attenuates the inflammatory response elicited by Porphyromonas gingivalis. J Periodontal Res 45:512–519PubMed Takahashi N, Honda T, Domon H, Nakajima T, Tabeta K, Yamazaki K (2010) Interleukin-1 receptor-associated kinase-M in gingival epithelial cells attenuates the inflammatory response elicited by Porphyromonas gingivalis. J Periodontal Res 45:512–519PubMed
36.
go back to reference Natoli G (2009) Control of NF-kappaB-dependent transcriptional responses by chromatin organization. Cold Spring Harb Perspect Biol 1:a000224PubMedCrossRef Natoli G (2009) Control of NF-kappaB-dependent transcriptional responses by chromatin organization. Cold Spring Harb Perspect Biol 1:a000224PubMedCrossRef
37.
go back to reference De Santa F, Totaro MG, Prosperini E, Notarbartolo S, Testa G, Natoli G (2007) The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell 130:1083–1094PubMedCrossRef De Santa F, Totaro MG, Prosperini E, Notarbartolo S, Testa G, Natoli G (2007) The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell 130:1083–1094PubMedCrossRef
39.
go back to reference Barros SP, Offenbacher S (2009) Epigenetics: connecting environment and genotype to phenotype and disease. J Dent Res 88:400–408PubMedCrossRef Barros SP, Offenbacher S (2009) Epigenetics: connecting environment and genotype to phenotype and disease. J Dent Res 88:400–408PubMedCrossRef
Metadata
Title
Porphyromonas gingivalis LPS stimulation downregulates DNMT1, DNMT3a, and JMJD3 gene expression levels in human HaCaT keratinocytes
Authors
Gláucia de Camargo Pereira
Gustavo Narvaes Guimarães
Aline Cristiane Planello
Mauro Pedrine Santamaria
Ana Paula de Souza
Sergio Roberto Line
Marcelo Rocha Marques
Publication date
01-05-2013
Publisher
Springer-Verlag
Published in
Clinical Oral Investigations / Issue 4/2013
Print ISSN: 1432-6981
Electronic ISSN: 1436-3771
DOI
https://doi.org/10.1007/s00784-012-0816-z

Other articles of this Issue 4/2013

Clinical Oral Investigations 4/2013 Go to the issue