Skip to main content
Top
Published in: European Spine Journal 11/2007

01-11-2007 | Original Article

Porous silk scaffolds can be used for tissue engineering annulus fibrosus

Authors: G. Chang, H.-J. Kim, D. Kaplan, G. Vunjak-Novakovic, R. A. Kandel

Published in: European Spine Journal | Issue 11/2007

Login to get access

Abstract

There is no optimal treatment for symptomatic degenerative disc disease which affects millions of people worldwide. One novel approach would be to form a patch or tissue replacement to repair the annulus fibrosus (AF) through which the NP herniates. As the optimal scaffold for this has not been defined the purpose of this study was to determine if porous silk scaffolds would support AF cell attachment and extracellular matrix accumulation and whether chemically decorating the scaffold with RGD peptide, which has been shown to enhance attachment for other cell types, would further improve AF cell attachment and tissue formation. Annulus fibrosus cells were isolated from bovine caudal discs and seeded into porous silk scaffolds. The percent cell attachment was quantified and the cell morphology and distribution within the scaffold was evaluated using scanning electron microscopy. The cell-seeded scaffolds were grown for up to 8 weeks and evaluated for gene expression, histological appearance and matrix accumulation. AF cells attach to porous silk scaffolds, proliferate and synthesize and accumulate extracellular matrix as demonstrated biochemically and histologically. Coupling the silk scaffold with RGD-peptides did not enhance cell attachment nor tissue formation but did affect cell morphology. As well, the cells had higher levels of type II collagen and aggrecan gene expression when compared to cells grown on the non-modified scaffold, a feature more in keeping with cells of the inner annulus. Porous silk is an appropriate scaffold on which to grow AF cells. Coupling RGD peptide to the scaffold appears to influence AF cell phenotype suggesting that it may be possible to select an appropriate scaffold that favours inner annulus versus outer annulus differentiation which will be important for tissue engineering an intervertebral disc.
Literature
1.
go back to reference Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine 31(18):2151–2161PubMedCrossRef Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine 31(18):2151–2161PubMedCrossRef
2.
go back to reference Alini M, Li W, Markovic P, Aebi M, Spiro RC, Roughley PJ (2003) The potential and limitations of a cell-seeded collagen/hyaluronan scaffold to engineer an intervertebral disc-like matrix. Spine 28(5):446–454PubMedCrossRef Alini M, Li W, Markovic P, Aebi M, Spiro RC, Roughley PJ (2003) The potential and limitations of a cell-seeded collagen/hyaluronan scaffold to engineer an intervertebral disc-like matrix. Spine 28(5):446–454PubMedCrossRef
3.
go back to reference Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J et al (2003) Silk-based biomaterials. Biomaterials 24(3):401–416PubMedCrossRef Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J et al (2003) Silk-based biomaterials. Biomaterials 24(3):401–416PubMedCrossRef
4.
go back to reference Anderson DG, Tannoury C (2005) Molecular pathogenic factors in symptomatic disc degeneration. Spine J 5(6 Suppl):S260–S266CrossRef Anderson DG, Tannoury C (2005) Molecular pathogenic factors in symptomatic disc degeneration. Spine J 5(6 Suppl):S260–S266CrossRef
5.
go back to reference Baer AE, Wang JY, Kraus VB, Setton LA (2001) Collagen gene expression and mechanical properties of intervertebral disc cell-alginate cultures. J Orthop Res 19(1):2–10PubMedCrossRef Baer AE, Wang JY, Kraus VB, Setton LA (2001) Collagen gene expression and mechanical properties of intervertebral disc cell-alginate cultures. J Orthop Res 19(1):2–10PubMedCrossRef
6.
go back to reference Battie MC, Videman T (2006) Lumbar disc degeneration: epidemiology and genetics. J Bone Joint Surg Am 88(Suppl 2):3–9PubMedCrossRef Battie MC, Videman T (2006) Lumbar disc degeneration: epidemiology and genetics. J Bone Joint Surg Am 88(Suppl 2):3–9PubMedCrossRef
7.
go back to reference Bogduk N (1997) The inter-body joints and the intervertebral discs. In: Bogduk N (ed) Clinical anatomy of the lumbar spine and sacrum. Churchill Livingstone, New York, pp 13–31 Bogduk N (1997) The inter-body joints and the intervertebral discs. In: Bogduk N (ed) Clinical anatomy of the lumbar spine and sacrum. Churchill Livingstone, New York, pp 13–31
8.
9.
go back to reference Carman CV, Springer TA (2003) Integrin avidity regulation: are changes in affinity and conformation underemphasized? Curr Opin Cell Biol 15(5):547–556PubMedCrossRef Carman CV, Springer TA (2003) Integrin avidity regulation: are changes in affinity and conformation underemphasized? Curr Opin Cell Biol 15(5):547–556PubMedCrossRef
10.
go back to reference Chen J, Altman GH, Karageorgiou V, Horan R, Collette A, Volloch V et al (2003) Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. J Biomed Mater Res A 67(2):559–570PubMedCrossRef Chen J, Altman GH, Karageorgiou V, Horan R, Collette A, Volloch V et al (2003) Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. J Biomed Mater Res A 67(2):559–570PubMedCrossRef
11.
go back to reference Gruber HE, Leslie K, Ingram J, Norton HJ, Hanley EN (2004) Cell-based tissue engineering for the intervertebral disc: in vitro studies of human disc cell gene expression and matrix production within selected cell carriers. Spine J 4(1):44–55PubMedCrossRef Gruber HE, Leslie K, Ingram J, Norton HJ, Hanley EN (2004) Cell-based tissue engineering for the intervertebral disc: in vitro studies of human disc cell gene expression and matrix production within selected cell carriers. Spine J 4(1):44–55PubMedCrossRef
12.
go back to reference Hayes AJ, Benjamin M, Ralphs JR (1999) Role of actin stress fibres in the development of the intervertebral disc: cytoskeletal control of extracellular matrix assembly. Dev Dyn 215(3):179–189PubMedCrossRef Hayes AJ, Benjamin M, Ralphs JR (1999) Role of actin stress fibres in the development of the intervertebral disc: cytoskeletal control of extracellular matrix assembly. Dev Dyn 215(3):179–189PubMedCrossRef
13.
go back to reference Hayes AJ, Benjamin M, Ralphs JR (2001) Extracellular matrix in development of the intervertebral disc. Matrix Biol 20(2):107–121PubMedCrossRef Hayes AJ, Benjamin M, Ralphs JR (2001) Extracellular matrix in development of the intervertebral disc. Matrix Biol 20(2):107–121PubMedCrossRef
14.
go back to reference Horan RL, Antle K, Collette AL, Wang Y, Huang J, Moreau JE et al (2005) In vitro degradation of silk fibroin. Biomaterials 26(17):3385–3393PubMedCrossRef Horan RL, Antle K, Collette AL, Wang Y, Huang J, Moreau JE et al (2005) In vitro degradation of silk fibroin. Biomaterials 26(17):3385–3393PubMedCrossRef
15.
16.
go back to reference Iatridis JC, Maclean JJ, Roughley PJ, Alini M (2006) Effects of mechanical loading on intervertebral disc metabolism in vivo. J Bone Joint Surg Am 88(Suppl 2):41–46PubMedCrossRef Iatridis JC, Maclean JJ, Roughley PJ, Alini M (2006) Effects of mechanical loading on intervertebral disc metabolism in vivo. J Bone Joint Surg Am 88(Suppl 2):41–46PubMedCrossRef
17.
go back to reference Iatridis JC, MaClean JJ, Ryan DA (2005) Mechanical damage to the intervertebral disc annulus fibrosus subjected to tensile loading. J Biomech 38(3):557–565PubMedCrossRef Iatridis JC, MaClean JJ, Ryan DA (2005) Mechanical damage to the intervertebral disc annulus fibrosus subjected to tensile loading. J Biomech 38(3):557–565PubMedCrossRef
18.
go back to reference Kim UJ, Park J, Li C, Jin HJ, Valluzzi R, Kaplan DL (2004) Structure and properties of silk hydrogels. Biomacromolecules 5(3):786–792PubMedCrossRef Kim UJ, Park J, Li C, Jin HJ, Valluzzi R, Kaplan DL (2004) Structure and properties of silk hydrogels. Biomacromolecules 5(3):786–792PubMedCrossRef
19.
go back to reference Klein JA, Hickey DS, Hukins DW (1983) Radial bulging of the annulus fibrosus during compression of the intervertebral disc. J Biomech 16(3):211–217PubMedCrossRef Klein JA, Hickey DS, Hukins DW (1983) Radial bulging of the annulus fibrosus during compression of the intervertebral disc. J Biomech 16(3):211–217PubMedCrossRef
20.
go back to reference Kluba T, Niemeyer T, Gaissmaier C, Grunder T (2005) Human anulus fibrosis and nucleus pulposus cells of the intervertebral disc: effect of degeneration and culture system on cell phenotype. Spine 30(24):2743–2748PubMedCrossRef Kluba T, Niemeyer T, Gaissmaier C, Grunder T (2005) Human anulus fibrosis and nucleus pulposus cells of the intervertebral disc: effect of degeneration and culture system on cell phenotype. Spine 30(24):2743–2748PubMedCrossRef
21.
go back to reference Martin G (1980) Recurrent disc prolapse as a cause of recurrent pain after laminectomy for lumbar disc lesions. NZ Med J 91(656):206–208 Martin G (1980) Recurrent disc prolapse as a cause of recurrent pain after laminectomy for lumbar disc lesions. NZ Med J 91(656):206–208
22.
go back to reference Meinel L, Hofmann S, Karageorgiou V, Kirker-Head C, McCool J, Gronowicz G et al (2005) The inflammatory responses to silk films in vitro and in vivo. Biomaterials 26(2):147–155PubMedCrossRef Meinel L, Hofmann S, Karageorgiou V, Kirker-Head C, McCool J, Gronowicz G et al (2005) The inflammatory responses to silk films in vitro and in vivo. Biomaterials 26(2):147–155PubMedCrossRef
23.
go back to reference Meinel L, Hofmann S, Karageorgiou V, Zichner L, Langer R, Kaplan D et al (2004) Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds. Biotechnol Bioeng 88(3):379–391PubMedCrossRef Meinel L, Hofmann S, Karageorgiou V, Zichner L, Langer R, Kaplan D et al (2004) Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds. Biotechnol Bioeng 88(3):379–391PubMedCrossRef
24.
go back to reference Meinel L, Karageorgiou V, Hofmann S, Fajardo R, Snyder B, Li C et al (2004) Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds. J Biomed Mater Res A 71(1):25–34PubMedCrossRef Meinel L, Karageorgiou V, Hofmann S, Fajardo R, Snyder B, Li C et al (2004) Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds. J Biomed Mater Res A 71(1):25–34PubMedCrossRef
25.
go back to reference Mizuno H, Roy AK, Vacanti CA, Kojima K, Ueda M, Bonassar LJ (2004) Tissue-engineered composites of anulus fibrosus and nucleus pulposus for intervertebral disc replacement. Spine 29(12):1290–1297PubMedCrossRef Mizuno H, Roy AK, Vacanti CA, Kojima K, Ueda M, Bonassar LJ (2004) Tissue-engineered composites of anulus fibrosus and nucleus pulposus for intervertebral disc replacement. Spine 29(12):1290–1297PubMedCrossRef
26.
go back to reference Mizuno H, Roy AK, Zaporojan V, Vacanti CA, Ueda M, Bonassar LJ (2006) Biomechanical and biochemical characterization of composite tissue-engineered intervertebral discs. Biomaterials 27(3):362–370PubMedCrossRef Mizuno H, Roy AK, Zaporojan V, Vacanti CA, Ueda M, Bonassar LJ (2006) Biomechanical and biochemical characterization of composite tissue-engineered intervertebral discs. Biomaterials 27(3):362–370PubMedCrossRef
27.
go back to reference Nazarov R, Jin HJ, Kaplan DL (2004) Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules 5(3):718–726PubMedCrossRef Nazarov R, Jin HJ, Kaplan DL (2004) Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules 5(3):718–726PubMedCrossRef
28.
go back to reference Nettles DL, Richardson WJ, Setton LA (2004) Integrin expression in cells of the intervertebral disc. J Anat 204(6):515–520PubMedCrossRef Nettles DL, Richardson WJ, Setton LA (2004) Integrin expression in cells of the intervertebral disc. J Anat 204(6):515–520PubMedCrossRef
29.
go back to reference Ochsenhirt SE, Kokkoli E, McCarthy JB, Tirrell M (2006) Effect of RGD secondary structure and the synergy site PHSRN on cell adhesion, spreading and specific integrin engagement. Biomaterials 27(20):3863–3874PubMedCrossRef Ochsenhirt SE, Kokkoli E, McCarthy JB, Tirrell M (2006) Effect of RGD secondary structure and the synergy site PHSRN on cell adhesion, spreading and specific integrin engagement. Biomaterials 27(20):3863–3874PubMedCrossRef
30.
go back to reference Oharazawa H, Ibaraki N, Ohara K, Reddy VN (2005) Inhibitory effects of Arg–Gly–Asp (RGD) peptide on cell attachment and migration in a human lens epithelial cell line. Ophthalmic Res 37(4):191–196PubMedCrossRef Oharazawa H, Ibaraki N, Ohara K, Reddy VN (2005) Inhibitory effects of Arg–Gly–Asp (RGD) peptide on cell attachment and migration in a human lens epithelial cell line. Ophthalmic Res 37(4):191–196PubMedCrossRef
31.
go back to reference Pulai JI, Del Carlo M Jr, Loeser RF (2002) The alpha5beta1 integrin provides matrix survival signals for normal and osteoarthritic human articular chondrocytes in vitro. Arthritis Rheum 46(6):1528–1535PubMedCrossRef Pulai JI, Del Carlo M Jr, Loeser RF (2002) The alpha5beta1 integrin provides matrix survival signals for normal and osteoarthritic human articular chondrocytes in vitro. Arthritis Rheum 46(6):1528–1535PubMedCrossRef
32.
go back to reference Roberts S, Evans H, Trivedi J, Menage J (2006) Histology and pathology of the human intervertebral disc. J Bone Joint Surg Am 88(Suppl 2):10–14PubMedCrossRef Roberts S, Evans H, Trivedi J, Menage J (2006) Histology and pathology of the human intervertebral disc. J Bone Joint Surg Am 88(Suppl 2):10–14PubMedCrossRef
33.
go back to reference Rong Y, Sugumaran G, Silbert JE, Spector M (2002) Proteoglycans synthesized by canine intervertebral disc cells grown in a type I collagen-glycosaminoglycan matrix. Tissue Eng 8(6):1037–1047PubMedCrossRef Rong Y, Sugumaran G, Silbert JE, Spector M (2002) Proteoglycans synthesized by canine intervertebral disc cells grown in a type I collagen-glycosaminoglycan matrix. Tissue Eng 8(6):1037–1047PubMedCrossRef
34.
go back to reference Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12:697–715PubMedCrossRef Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12:697–715PubMedCrossRef
35.
go back to reference Sato M, Kikuchi M, Ishihara M, Ishihara M, Asazuma T, Kikuchi T et al (2003) Tissue engineering of the intervertebral disc with cultured annulus fibrosus cells using atelocollagen honeycomb-shaped scaffold with a membrane seal (ACHMS scaffold). Med Biol Eng Comput 41(3):365–371PubMedCrossRef Sato M, Kikuchi M, Ishihara M, Ishihara M, Asazuma T, Kikuchi T et al (2003) Tissue engineering of the intervertebral disc with cultured annulus fibrosus cells using atelocollagen honeycomb-shaped scaffold with a membrane seal (ACHMS scaffold). Med Biol Eng Comput 41(3):365–371PubMedCrossRef
36.
go back to reference Seguin CA, Pilliar RM, Roughley PJ, Kandel RA (2005) Tumor necrosis factor-alpha modulates matrix production and catabolism in nucleus pulposus tissue. Spine 30(17):1940–1948PubMedCrossRef Seguin CA, Pilliar RM, Roughley PJ, Kandel RA (2005) Tumor necrosis factor-alpha modulates matrix production and catabolism in nucleus pulposus tissue. Spine 30(17):1940–1948PubMedCrossRef
37.
go back to reference Setton LA, Chen J (2006) Mechanobiology of the intervertebral disc and relevance to disc degeneration. J Bone Joint Surg Am 88:(Suppl 2):52–57PubMedCrossRef Setton LA, Chen J (2006) Mechanobiology of the intervertebral disc and relevance to disc degeneration. J Bone Joint Surg Am 88:(Suppl 2):52–57PubMedCrossRef
38.
go back to reference Thonar EJ, An H, Masuda K (2002) Compartmentalization of the matrix formed by nucleus pulposus and annulus fibrosus cells in alginate gel. Biochem Soc Trans 30:874–878PubMedCrossRef Thonar EJ, An H, Masuda K (2002) Compartmentalization of the matrix formed by nucleus pulposus and annulus fibrosus cells in alginate gel. Biochem Soc Trans 30:874–878PubMedCrossRef
39.
go back to reference Waldman SD, Grynpas M, Pilliar RM, Kandel RA (2002) Characterization of cartilagenous tissue formed on calcium polyphosphate substrates in vitro. J Biomed Mater Res 62(3):323–330PubMedCrossRef Waldman SD, Grynpas M, Pilliar RM, Kandel RA (2002) Characterization of cartilagenous tissue formed on calcium polyphosphate substrates in vitro. J Biomed Mater Res 62(3):323–330PubMedCrossRef
40.
go back to reference Woessner JF Jr (1961) The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys 93:440–447PubMedCrossRef Woessner JF Jr (1961) The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys 93:440–447PubMedCrossRef
Metadata
Title
Porous silk scaffolds can be used for tissue engineering annulus fibrosus
Authors
G. Chang
H.-J. Kim
D. Kaplan
G. Vunjak-Novakovic
R. A. Kandel
Publication date
01-11-2007
Publisher
Springer-Verlag
Published in
European Spine Journal / Issue 11/2007
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-007-0364-4

Other articles of this Issue 11/2007

European Spine Journal 11/2007 Go to the issue