Skip to main content
Top
Published in: Cancer Chemotherapy and Pharmacology 4/2017

01-04-2017 | Review Article

Polymeric micelles as mighty nanocarriers for cancer gene therapy: a review

Authors: Mahsa Yousefpour Marzbali, Ahmad Yari Khosroushahi

Published in: Cancer Chemotherapy and Pharmacology | Issue 4/2017

Login to get access

Abstract

Purpose

Gene therapy has shown extensive potential to treat human diseases occurring from the defection of genes like various types of cancers. The cationic polymers, as non-viral gene carriers, offer the ability to engineer carrier systems having customized features that can be adapted to suit any system. Upon polymeric micelle systems’ core–shell structure, micelles can create the capacity to load genes/gene-drugs into the different micelle compartments, respectively.

Methods

The search will be managed in Pubmed, Medline, Cochrane library, Embase and Proquest for articles related to polymeric micelle-based gene delivery in order to cancer gene therapy using the accommodative search terms. A database of the first search of all search engines results will be made and repeated articles will be removed. After that, the related articles will be selected, and also the references of selected articles will be searched in order to find any other articles to complete the search database.

Results

This study reviews kinds of polymeric nanomicelles, which have been used in gene therapy, critical parameters for micelle-based gene delivery, challenges and advantages/disadvantages as well as biosafety of nanomicelles in gene delivery systems. Furthermore, the discussion has focused on stimuli-responsive polymers and strategy and mechanisms regarding tumor-selective gene delivery.

Conclusions

This study provides an overview of the advantages/disadvantages of polymeric-based nanocarriers for cancer gene therapy.
Literature
3.
go back to reference Lv F, Cao J, Zhang J, Qian J, Peng W, Sun S, Li W, Zhang W, Guo W, Li J (2014) Phase I and pharmacokinetic study of polymeric micelle-formulated paclitaxel in adult Chinese patients with advanced solid tumors. Cancer Chemother Pharmacol. doi:10.1007/s00280-014-2452-6 PubMedCentral Lv F, Cao J, Zhang J, Qian J, Peng W, Sun S, Li W, Zhang W, Guo W, Li J (2014) Phase I and pharmacokinetic study of polymeric micelle-formulated paclitaxel in adult Chinese patients with advanced solid tumors. Cancer Chemother Pharmacol. doi:10.​1007/​s00280-014-2452-6 PubMedCentral
13.
go back to reference Keller S, Wilson JT, Patilea GI, Kern HB, Convertine AJ, Stayton PS (2014) Neutral polymer micelle carriers with pH-responsive, endosome-releasing activity modulate antigen trafficking to enhance CD8+ T cell responses. J Controll Release. doi:10.1016/j.jconrel.2014.03.041 Keller S, Wilson JT, Patilea GI, Kern HB, Convertine AJ, Stayton PS (2014) Neutral polymer micelle carriers with pH-responsive, endosome-releasing activity modulate antigen trafficking to enhance CD8+ T cell responses. J Controll Release. doi:10.​1016/​j.​jconrel.​2014.​03.​041
19.
21.
go back to reference Brissault B, Leborgne C, Scherman D, Guis C, Kichler A (2011) Synthesis of poly(propylene glycol)-block-polyethylenimine triblock copolymers for the delivery of nucleic acids. Macromol Biosci 11(5):652–661. doi:10.1002/mabi.201000404 CrossRefPubMed Brissault B, Leborgne C, Scherman D, Guis C, Kichler A (2011) Synthesis of poly(propylene glycol)-block-polyethylenimine triblock copolymers for the delivery of nucleic acids. Macromol Biosci 11(5):652–661. doi:10.​1002/​mabi.​201000404 CrossRefPubMed
24.
go back to reference Godin B, P. Driessen WH, Proneth B, Lee S-Y, Srinivasan S, Rumbaut R, Arap W, Pasqualini R, Ferrari M, Decuzzi P (2010) 2-An integrated approach for the rational design of nanovectors for biomedical imaging and therapy. Adv Genet 69:31–64. doi:10.1016/S0065-2660(10)69009-8 PubMedPubMedCentral Godin B, P. Driessen WH, Proneth B, Lee S-Y, Srinivasan S, Rumbaut R, Arap W, Pasqualini R, Ferrari M, Decuzzi P (2010) 2-An integrated approach for the rational design of nanovectors for biomedical imaging and therapy. Adv Genet 69:31–64. doi:10.​1016/​S0065-2660(10)69009-8 PubMedPubMedCentral
29.
go back to reference Zhu J-L, Cheng H, Jin Y, Cheng S-X, Zhang X-Z, Zhuo R-X (2008) Novel polycationic micelles for drug delivery and gene transfer. J Mater Chem 18(37):4433–4441. doi:10.1039/B801249K CrossRef Zhu J-L, Cheng H, Jin Y, Cheng S-X, Zhang X-Z, Zhuo R-X (2008) Novel polycationic micelles for drug delivery and gene transfer. J Mater Chem 18(37):4433–4441. doi:10.​1039/​B801249K CrossRef
33.
go back to reference Endres TK, Beck-Broichsitter M, Samsonova O, Renette T, Kissel TH (2011) Self-assembled biodegradable amphiphilic PEG–PCL–lPEI triblock copolymers at the borderline between micelles and nanoparticles designed for drug and gene delivery. Biomaterials 32(30):7721–7731. doi:10.1016/j.biomaterials.2011.06.064 CrossRefPubMed Endres TK, Beck-Broichsitter M, Samsonova O, Renette T, Kissel TH (2011) Self-assembled biodegradable amphiphilic PEG–PCL–lPEI triblock copolymers at the borderline between micelles and nanoparticles designed for drug and gene delivery. Biomaterials 32(30):7721–7731. doi:10.​1016/​j.​biomaterials.​2011.​06.​064 CrossRefPubMed
37.
go back to reference Inoue Y, Kurihara R, Tsuchida A, Hasegawa M, Nagashima T, Mori T, Niidome T, Katayama Y, Okitsu O (2008) Efficient delivery of siRNA using dendritic poly(l-lysine) for loss-of-function analysis. J Controlled Release 126(1):59–66. doi:10.1016/j.jconrel.2007.10.022 CrossRef Inoue Y, Kurihara R, Tsuchida A, Hasegawa M, Nagashima T, Mori T, Niidome T, Katayama Y, Okitsu O (2008) Efficient delivery of siRNA using dendritic poly(l-lysine) for loss-of-function analysis. J Controlled Release 126(1):59–66. doi:10.​1016/​j.​jconrel.​2007.​10.​022 CrossRef
38.
go back to reference Meyer M, Dohmen C, Philipp A, Kiener D, Maiwald G, Scheu C, Ogris M, Wagner E (2009) Synthesis and biological evaluation of a bioresponsive and endosomolytic siRNA-polymer conjugate. Mol Pharm 6(3):752–762. doi:10.1021/mp9000124 CrossRefPubMed Meyer M, Dohmen C, Philipp A, Kiener D, Maiwald G, Scheu C, Ogris M, Wagner E (2009) Synthesis and biological evaluation of a bioresponsive and endosomolytic siRNA-polymer conjugate. Mol Pharm 6(3):752–762. doi:10.​1021/​mp9000124 CrossRefPubMed
39.
go back to reference Kano A, Moriyama K, Yamano T, Nakamura I, Shimada N, Maruyama A (2011) Grafting of poly(ethylene glycol) to poly-lysine augments its lifetime in blood circulation and accumulation in tumors without loss of the ability to associate with siRNA. J Control Release 149(1):2–7. doi:10.1016/j.jconrel.2009.12.007 CrossRefPubMed Kano A, Moriyama K, Yamano T, Nakamura I, Shimada N, Maruyama A (2011) Grafting of poly(ethylene glycol) to poly-lysine augments its lifetime in blood circulation and accumulation in tumors without loss of the ability to associate with siRNA. J Control Release 149(1):2–7. doi:10.​1016/​j.​jconrel.​2009.​12.​007 CrossRefPubMed
40.
go back to reference Watanabe K, Harada-Shiba M, Suzuki A, Gokuden R, Kurihara R, Sugao Y, Mori T, Katayama Y, Niidome T (2009) In vivo siRNA delivery with dendritic poly(l-lysine) for the treatment of hypercholesterolemia. Mol Biosyst 5(11):1306–1310. doi:10.1039/b900880b CrossRefPubMed Watanabe K, Harada-Shiba M, Suzuki A, Gokuden R, Kurihara R, Sugao Y, Mori T, Katayama Y, Niidome T (2009) In vivo siRNA delivery with dendritic poly(l-lysine) for the treatment of hypercholesterolemia. Mol Biosyst 5(11):1306–1310. doi:10.​1039/​b900880b CrossRefPubMed
41.
go back to reference Oba M, Vachutinsky Y, Miyata K, Kano MR, Ikeda S, Nishiyama N, Itaka K, Miyazono K, Koyama H, Kataoka K (2010) Antiangiogenic gene therapy of solid tumor by systemic injection of polyplex micelles loading plasmid dna encoding soluble Flt-1. Mol Pharm 7(2):501–509. doi:10.1021/mp9002317 CrossRefPubMed Oba M, Vachutinsky Y, Miyata K, Kano MR, Ikeda S, Nishiyama N, Itaka K, Miyazono K, Koyama H, Kataoka K (2010) Antiangiogenic gene therapy of solid tumor by systemic injection of polyplex micelles loading plasmid dna encoding soluble Flt-1. Mol Pharm 7(2):501–509. doi:10.​1021/​mp9002317 CrossRefPubMed
42.
go back to reference Christie RJ, Matsumoto Y, Miyata K, Nomoto T, Fukushima S, Osada K, Halnaut J, Pittella F, Kim HJ, Nishiyama N, Kataoka K (2012) Targeted polymeric micelles for siRNA treatment of experimental cancer by intravenous injection. ACS Nano 6(6):5174–5189. doi:10.1021/nn300942b CrossRefPubMed Christie RJ, Matsumoto Y, Miyata K, Nomoto T, Fukushima S, Osada K, Halnaut J, Pittella F, Kim HJ, Nishiyama N, Kataoka K (2012) Targeted polymeric micelles for siRNA treatment of experimental cancer by intravenous injection. ACS Nano 6(6):5174–5189. doi:10.​1021/​nn300942b CrossRefPubMed
46.
go back to reference Uchida S, Itaka K, Chen Q, Osada K, Miyata K, Ishii T, Harada-Shiba M, Kataoka K (2011) Combination of chondroitin sulfate and polyplex micelles from Poly(ethylene glycol)-poly{N’-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} block copolymer for prolonged in vivo gene transfection with reduced toxicity. J Control Release 155(2):296–302. doi:10.1016/j.jconrel.2011.04.026 CrossRefPubMed Uchida S, Itaka K, Chen Q, Osada K, Miyata K, Ishii T, Harada-Shiba M, Kataoka K (2011) Combination of chondroitin sulfate and polyplex micelles from Poly(ethylene glycol)-poly{N’-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} block copolymer for prolonged in vivo gene transfection with reduced toxicity. J Control Release 155(2):296–302. doi:10.​1016/​j.​jconrel.​2011.​04.​026 CrossRefPubMed
47.
go back to reference Kumagai M, Shimoda S, Wakabayashi R, Kunisawa Y, Ishii T, Osada K, Itaka K, Nishiyama N, Kataoka K, Nakano K (2012) Effective transgene expression without toxicity by intraperitoneal administration of PEG-detachable polyplex micelles in mice with peritoneal dissemination. J Controll Release 160(3):542–551. doi:10.1016/j.jconrel.2012.03.021 CrossRef Kumagai M, Shimoda S, Wakabayashi R, Kunisawa Y, Ishii T, Osada K, Itaka K, Nishiyama N, Kataoka K, Nakano K (2012) Effective transgene expression without toxicity by intraperitoneal administration of PEG-detachable polyplex micelles in mice with peritoneal dissemination. J Controll Release 160(3):542–551. doi:10.​1016/​j.​jconrel.​2012.​03.​021 CrossRef
48.
go back to reference Sun T-M, Du J-Z, Yao Y-D, Mao C-Q, Dou S, Huang S-Y, Zhang P-Z, Leong KW, Song E-W, Wang J (2011) Simultaneous delivery of siRNA and paclitaxel via a “two-in-one” micelleplex promotes synergistic tumor suppression. ACS Nano 5(2):1483–1494. doi:10.1021/nn103349h CrossRefPubMed Sun T-M, Du J-Z, Yao Y-D, Mao C-Q, Dou S, Huang S-Y, Zhang P-Z, Leong KW, Song E-W, Wang J (2011) Simultaneous delivery of siRNA and paclitaxel via a “two-in-one” micelleplex promotes synergistic tumor suppression. ACS Nano 5(2):1483–1494. doi:10.​1021/​nn103349h CrossRefPubMed
52.
go back to reference Yang Y, Xia X, Dong W, Wang H, Li L, Ma P, Sheng W, Xu X, Liu Y (2016) Acid sensitive polymeric micelles combining folate and bioreducible conjugate for specific intracellular siRNA delivery. Macromol Biosci 16(5):759–773. doi:10.1002/mabi.201500389 CrossRefPubMed Yang Y, Xia X, Dong W, Wang H, Li L, Ma P, Sheng W, Xu X, Liu Y (2016) Acid sensitive polymeric micelles combining folate and bioreducible conjugate for specific intracellular siRNA delivery. Macromol Biosci 16(5):759–773. doi:10.​1002/​mabi.​201500389 CrossRefPubMed
53.
go back to reference Garg SM, Falamarzian A, Vakili MR, Aliabadi HM, Uludag H, Lavasanifar A (2016) Polymeric micelles for MCL-1 gene silencing in breast tumors following systemic administration. Nanomedicine (Lond) 11 (17):2319–2339. doi:10.2217/nnm-2016-0178 CrossRef Garg SM, Falamarzian A, Vakili MR, Aliabadi HM, Uludag H, Lavasanifar A (2016) Polymeric micelles for MCL-1 gene silencing in breast tumors following systemic administration. Nanomedicine (Lond) 11 (17):2319–2339. doi:10.​2217/​nnm-2016-0178 CrossRef
55.
go back to reference Tangsangasaksri M, Takemoto H, Naito M, Maeda Y, Sueyoshi D, Kim HJ, Miura Y, Ahn J, Azuma R, Nishiyama N, Miyata K, Kataoka K (2016) siRNA-loaded polyion complex micelle decorated with charge-conversional polymer tuned to undergo stepwise response to intra-tumoral and intra-endosomal pHs for exerting enhanced RNAi efficacy. Biomacromolecules 17(1):246–255. doi:10.1021/acs.biomac.5b01334 CrossRefPubMed Tangsangasaksri M, Takemoto H, Naito M, Maeda Y, Sueyoshi D, Kim HJ, Miura Y, Ahn J, Azuma R, Nishiyama N, Miyata K, Kataoka K (2016) siRNA-loaded polyion complex micelle decorated with charge-conversional polymer tuned to undergo stepwise response to intra-tumoral and intra-endosomal pHs for exerting enhanced RNAi efficacy. Biomacromolecules 17(1):246–255. doi:10.​1021/​acs.​biomac.​5b01334 CrossRefPubMed
56.
57.
go back to reference Goncz KK, Prokopishyn NL, Abdolmohammadi A, Bedayat B, Maurisse R, Davis BR, Gruenert DC (2006) Small fragment homologous replacement-mediated modification of genomic beta-globin sequences in human hematopoietic stem/progenitor cells. Oligonucleotides 16(3):213–224. doi:10.1089/oli.2006.16.213 CrossRefPubMed Goncz KK, Prokopishyn NL, Abdolmohammadi A, Bedayat B, Maurisse R, Davis BR, Gruenert DC (2006) Small fragment homologous replacement-mediated modification of genomic beta-globin sequences in human hematopoietic stem/progenitor cells. Oligonucleotides 16(3):213–224. doi:10.​1089/​oli.​2006.​16.​213 CrossRefPubMed
58.
go back to reference Vasquez KM, Narayanan L, Glazer PM (2000) Specific mutations induced by triplex-forming oligonucleotides in mice. Science 290(5491):530–533CrossRefPubMed Vasquez KM, Narayanan L, Glazer PM (2000) Specific mutations induced by triplex-forming oligonucleotides in mice. Science 290(5491):530–533CrossRefPubMed
60.
63.
go back to reference Takahashi A, Ozaki Y, Kuzuya A, Ohya Y (2014) Impact of core-forming segment structure on drug loading in biodegradable polymeric micelles using PEG-b-poly(lactide-co-depsipeptide) block copolymers. Biomed Res Int 2014:579212. doi:10.1155/2014/579212 PubMedPubMedCentral Takahashi A, Ozaki Y, Kuzuya A, Ohya Y (2014) Impact of core-forming segment structure on drug loading in biodegradable polymeric micelles using PEG-b-poly(lactide-co-depsipeptide) block copolymers. Biomed Res Int 2014:579212. doi:10.​1155/​2014/​579212 PubMedPubMedCentral
66.
go back to reference Yang X, Cao D, Wang N, Sun L, Li L, Nie S, Wu Q, Liu X, Yi C, Gong C (2014) In vitro and in vivo safety evaluation of biodegradable self-assembled monomethyl poly (ethylene glycol)-poly (epsilon-caprolactone)-poly (trimethylene carbonate) micelles. J Pharm Sci 103(1):305–313. doi:10.1002/jps.23800 CrossRefPubMed Yang X, Cao D, Wang N, Sun L, Li L, Nie S, Wu Q, Liu X, Yi C, Gong C (2014) In vitro and in vivo safety evaluation of biodegradable self-assembled monomethyl poly (ethylene glycol)-poly (epsilon-caprolactone)-poly (trimethylene carbonate) micelles. J Pharm Sci 103(1):305–313. doi:10.​1002/​jps.​23800 CrossRefPubMed
68.
go back to reference Knudsen KB, Northeved H, Kumar Ek P, Permin A, Gjetting T, Andresen TL, Larsen S, Wegener KM, Lykkesfeldt J, Jantzen K, Loft S, Moller P, Roursgaard M (2014) In vivo toxicity of cationic micelles and liposomes. Nanomedicine (Lond). doi:10.1016/j.nano.2014.08.004 Knudsen KB, Northeved H, Kumar Ek P, Permin A, Gjetting T, Andresen TL, Larsen S, Wegener KM, Lykkesfeldt J, Jantzen K, Loft S, Moller P, Roursgaard M (2014) In vivo toxicity of cationic micelles and liposomes. Nanomedicine (Lond). doi:10.​1016/​j.​nano.​2014.​08.​004
73.
go back to reference Kyosuke Isoda NK, Daisuke Miyamoto, Tohru Takarada, Mizuo Maeda (2011) RAFT-generated poly(N-isopropylacrylamide)–DNA block copolymers for temperature-responsive formation of polymer micelles. React Funct Polym 71:367–371CrossRef Kyosuke Isoda NK, Daisuke Miyamoto, Tohru Takarada, Mizuo Maeda (2011) RAFT-generated poly(N-isopropylacrylamide)–DNA block copolymers for temperature-responsive formation of polymer micelles. React Funct Polym 71:367–371CrossRef
80.
go back to reference Nagasaki Y, Yasugi K, Yamamoto Y, Harada A, Kataoka K (2001) Sugar-installed block copolymer micelles: their preparation and specific interaction with lectin molecules. Biomacromolecules 2(4):1067–1070. doi:10.1021/bm015574q CrossRefPubMed Nagasaki Y, Yasugi K, Yamamoto Y, Harada A, Kataoka K (2001) Sugar-installed block copolymer micelles: their preparation and specific interaction with lectin molecules. Biomacromolecules 2(4):1067–1070. doi:10.​1021/​bm015574q CrossRefPubMed
81.
go back to reference Ohya Y, Takeda S, Shibata Y, Ouchi T, Maruyama A (2010) Preparation of highly stable biodegradable polymer micelles by coating with polyion complex. Macromol Chem Phys 211(16):1750–1756. doi:10.1002/macp.201000167 CrossRef Ohya Y, Takeda S, Shibata Y, Ouchi T, Maruyama A (2010) Preparation of highly stable biodegradable polymer micelles by coating with polyion complex. Macromol Chem Phys 211(16):1750–1756. doi:10.​1002/​macp.​201000167 CrossRef
84.
go back to reference Vinogradov S, Batrakova E, Li S, Kabanov A (1999) Polyion complex micelles with protein-modified corona for receptor-mediated delivery of oligonucleotides into cells. Bioconjug Chem 10(5):851–860. doi:10.1021/bc990037c CrossRefPubMed Vinogradov S, Batrakova E, Li S, Kabanov A (1999) Polyion complex micelles with protein-modified corona for receptor-mediated delivery of oligonucleotides into cells. Bioconjug Chem 10(5):851–860. doi:10.​1021/​bc990037c CrossRefPubMed
85.
go back to reference Vachutinsky Y, Oba M, Miyata K, Hiki S, Kano MR, Nishiyama N, Koyama H, Miyazono K, Kataoka K (2011) Antiangiogenic gene therapy of experimental pancreatic tumor by sFlt-1 plasmid DNA carried by RGD-modified crosslinked polyplex micelles. J Control Release 149(1):51–57. doi:10.1016/j.jconrel.2010.02.002 CrossRefPubMed Vachutinsky Y, Oba M, Miyata K, Hiki S, Kano MR, Nishiyama N, Koyama H, Miyazono K, Kataoka K (2011) Antiangiogenic gene therapy of experimental pancreatic tumor by sFlt-1 plasmid DNA carried by RGD-modified crosslinked polyplex micelles. J Control Release 149(1):51–57. doi:10.​1016/​j.​jconrel.​2010.​02.​002 CrossRefPubMed
86.
go back to reference Ge Z, Chen Q, Osada K, Liu X, Tockary TA, Uchida S, Dirisala A, Ishii T, Nomoto T, Toh K, Matsumoto Y, Oba M, Kano MR, Itaka K, Kataoka K (2014) Targeted gene delivery by polyplex micelles with crowded PEG palisade and cRGD moiety for systemic treatment of pancreatic tumors. Biomaterials 35(10):3416–3426. doi:10.1016/j.biomaterials.2013.12.086 CrossRefPubMed Ge Z, Chen Q, Osada K, Liu X, Tockary TA, Uchida S, Dirisala A, Ishii T, Nomoto T, Toh K, Matsumoto Y, Oba M, Kano MR, Itaka K, Kataoka K (2014) Targeted gene delivery by polyplex micelles with crowded PEG palisade and cRGD moiety for systemic treatment of pancreatic tumors. Biomaterials 35(10):3416–3426. doi:10.​1016/​j.​biomaterials.​2013.​12.​086 CrossRefPubMed
87.
go back to reference Qian Y, Zha Y, Feng B, Pang Z, Zhang B, Sun X, Ren J, Zhang C, Shao X, Zhang Q, Jiang X (2013) PEGylated poly(2-(dimethylamino) ethyl methacrylate)/DNA polyplex micelles decorated with phage-displayed TGN peptide for brain-targeted gene delivery. Biomaterials 34(8):2117–2129. doi:10.1016/j.biomaterials.2012.11.050 CrossRefPubMed Qian Y, Zha Y, Feng B, Pang Z, Zhang B, Sun X, Ren J, Zhang C, Shao X, Zhang Q, Jiang X (2013) PEGylated poly(2-(dimethylamino) ethyl methacrylate)/DNA polyplex micelles decorated with phage-displayed TGN peptide for brain-targeted gene delivery. Biomaterials 34(8):2117–2129. doi:10.​1016/​j.​biomaterials.​2012.​11.​050 CrossRefPubMed
Metadata
Title
Polymeric micelles as mighty nanocarriers for cancer gene therapy: a review
Authors
Mahsa Yousefpour Marzbali
Ahmad Yari Khosroushahi
Publication date
01-04-2017
Publisher
Springer Berlin Heidelberg
Published in
Cancer Chemotherapy and Pharmacology / Issue 4/2017
Print ISSN: 0344-5704
Electronic ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-017-3273-1

Other articles of this Issue 4/2017

Cancer Chemotherapy and Pharmacology 4/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine