Skip to main content
Top
Published in: Respiratory Research 1/2022

Open Access 01-12-2022 | Pneumococcus | Research

Myeloid liver kinase B1 contributes to lung inflammation induced by lipoteichoic acid but not by viable Streptococcus pneumoniae

Authors: Liza Pereverzeva, Natasja A. Otto, Joris J. T. H. Roelofs, Alex F. de Vos, Tom van der Poll

Published in: Respiratory Research | Issue 1/2022

Login to get access

Abstract

Background

Liver kinase B1 (Lkb1, gene name Stk11) functions as a tumor suppressor in cancer. Myeloid cell Lkb1 potentiates lung inflammation induced by the Gram-negative bacterial cell wall component lipopolysaccharide and in host defense during Gram-negative pneumonia. Here, we sought to investigate the role of myeloid Lkb1 in lung inflammation elicited by the Gram-positive bacterial cell wall component lipoteichoic acid (LTA) and during pneumonia caused by the Gram-positive respiratory pathogen Streptococcus pneumoniae (Spneu).

Methods

Alveolar and bone marrow derived macrophages (AMs, BMDMs) harvested from myeloid-specific Lkb1 deficient (Stk11-ΔM) and littermate control mice were stimulated with LTA or Spneu in vitro. Stk11-ΔM and control mice were challenged via the airways with LTA or infected with Spneu in vivo.

Results

Lkb1 deficient AMs and BMDMs produced less tumor necrosis factor (TNF)α upon activation by LTA or Spneu. During LTA-induced lung inflammation, Stk11-ΔM mice had reduced numbers of AMs in the lungs, as well as diminished cytokine release and neutrophil recruitment into the airways. During pneumonia induced by either encapsulated or non-encapsulated Spneu, Stk11-ΔM and control mice had comparable bacterial loads and inflammatory responses in the lung, with the exception of lower TNFα levels in Stk11-ΔM mice after infection with the non-encapsulated strain.

Conclusion

Myeloid Lkb1 contributes to LTA-induced lung inflammation, but is not important for host defense during pneumococcal pneumonia.
Appendix
Available only for authorised users
Literature
1.
go back to reference World Health Organization. Global health estimates 2016 (deaths by cause, age, sex, by country and by region, 2000–2016; and life expectancy, 2000–2016). Geneva: World Health Organization; 2018. World Health Organization. Global health estimates 2016 (deaths by cause, age, sex, by country and by region, 2000–2016; and life expectancy, 2000–2016). Geneva: World Health Organization; 2018.
2.
go back to reference van der Poll T, Opal SM. Pathogenesis, treatment, and prevention of pneumococcal pneumonia. Lancet. 2009;374(9700):1543–56.CrossRef van der Poll T, Opal SM. Pathogenesis, treatment, and prevention of pneumococcal pneumonia. Lancet. 2009;374(9700):1543–56.CrossRef
3.
go back to reference Hussell T, Bell TJ. Alveolar macrophages: plasticity in a tissue-specific context. Nat Rev Immunol. 2014;14(2):81–93.CrossRef Hussell T, Bell TJ. Alveolar macrophages: plasticity in a tissue-specific context. Nat Rev Immunol. 2014;14(2):81–93.CrossRef
4.
go back to reference Deng J, Wen C, Ding X, Zhang X, Hou G, Liu A, et al. LKB1-MARK2 signalling mediates lipopolysaccharide-induced production of cytokines in mouse macrophages. J Cell Mol Med. 2020;24(19):11307–17.CrossRef Deng J, Wen C, Ding X, Zhang X, Hou G, Liu A, et al. LKB1-MARK2 signalling mediates lipopolysaccharide-induced production of cytokines in mouse macrophages. J Cell Mol Med. 2020;24(19):11307–17.CrossRef
5.
go back to reference Liu Z, Zhang W, Zhang M, Zhu H, Moriasi C, Zou MH. Liver kinase B1 suppresses lipopolysaccharide-induced nuclear factor kappaB (NF-kappaB) activation in macrophages. J Biol Chem. 2015;290(4):2312–20.CrossRef Liu Z, Zhang W, Zhang M, Zhu H, Moriasi C, Zou MH. Liver kinase B1 suppresses lipopolysaccharide-induced nuclear factor kappaB (NF-kappaB) activation in macrophages. J Biol Chem. 2015;290(4):2312–20.CrossRef
7.
go back to reference Wang Q, Chen S, Li T, Yang Q, Liu J, Tao Y, et al. Critical role of Lkb1 in the maintenance of alveolar macrophage self-renewal and immune homeostasis. Front Immunol. 2021;12: 629281.CrossRef Wang Q, Chen S, Li T, Yang Q, Liu J, Tao Y, et al. Critical role of Lkb1 in the maintenance of alveolar macrophage self-renewal and immune homeostasis. Front Immunol. 2021;12: 629281.CrossRef
8.
go back to reference Gan B, Hu J, Jiang S, Liu Y, Sahin E, Zhuang L, et al. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature. 2010;468(7324):701–4.CrossRef Gan B, Hu J, Jiang S, Liu Y, Sahin E, Zhuang L, et al. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature. 2010;468(7324):701–4.CrossRef
9.
go back to reference Gurumurthy S, Xie SZ, Alagesan B, Kim J, Yusuf RZ, Saez B, et al. The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature. 2010;468(7324):659–63.CrossRef Gurumurthy S, Xie SZ, Alagesan B, Kim J, Yusuf RZ, Saez B, et al. The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature. 2010;468(7324):659–63.CrossRef
10.
go back to reference Nakada D, Saunders TL, Morrison SJ. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature. 2010;468(7324):653–8.CrossRef Nakada D, Saunders TL, Morrison SJ. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature. 2010;468(7324):653–8.CrossRef
11.
go back to reference Zhang Y, Meng Q, Sun Q, Xu ZX, Zhou H, Wang Y. LKB1 deficiency-induced metabolic reprogramming in tumorigenesis and non-neoplastic diseases. Mol Metab. 2021;44: 101131.CrossRef Zhang Y, Meng Q, Sun Q, Xu ZX, Zhou H, Wang Y. LKB1 deficiency-induced metabolic reprogramming in tumorigenesis and non-neoplastic diseases. Mol Metab. 2021;44: 101131.CrossRef
12.
go back to reference Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A, et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature. 1998;391(6663):184–7.CrossRef Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A, et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature. 1998;391(6663):184–7.CrossRef
13.
go back to reference Li TT, Zhu HB. LKB1 and cancer: the dual role of metabolic regulation. Biomed Pharmacother. 2020;132: 110872.CrossRef Li TT, Zhu HB. LKB1 and cancer: the dual role of metabolic regulation. Biomed Pharmacother. 2020;132: 110872.CrossRef
14.
go back to reference Draing C, Sigel S, Deininger S, Traub S, Munke R, Mayer C, et al. Cytokine induction by Gram-positive bacteria. Immunobiology. 2008;213(3–4):285–96.CrossRef Draing C, Sigel S, Deininger S, Traub S, Munke R, Mayer C, et al. Cytokine induction by Gram-positive bacteria. Immunobiology. 2008;213(3–4):285–96.CrossRef
15.
go back to reference Clausen BE, Burkhardt C, Reith W, Renkawitz R, Forster I. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res. 1999;8(4):265–77.CrossRef Clausen BE, Burkhardt C, Reith W, Renkawitz R, Forster I. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res. 1999;8(4):265–77.CrossRef
17.
go back to reference de Vos AF, Dessing MC, Lammers AJ, de Porto AP, Florquin S, de Boer OJ, et al. The polysaccharide capsule of Streptococcus pneumonia partially impedes MyD88-mediated immunity during pneumonia in mice. PLoS ONE. 2015;10(2): e0118181.CrossRef de Vos AF, Dessing MC, Lammers AJ, de Porto AP, Florquin S, de Boer OJ, et al. The polysaccharide capsule of Streptococcus pneumonia partially impedes MyD88-mediated immunity during pneumonia in mice. PLoS ONE. 2015;10(2): e0118181.CrossRef
18.
go back to reference de Porto AP, Liu Z, de Beer R, Florquin S, de Boer OJ, Hendriks RW, et al. Btk inhibitor ibrutinib reduces inflammatory myeloid cell responses in the lung during murine pneumococcal pneumonia. Mol Med. 2019;25(1):3.CrossRef de Porto AP, Liu Z, de Beer R, Florquin S, de Boer OJ, Hendriks RW, et al. Btk inhibitor ibrutinib reduces inflammatory myeloid cell responses in the lung during murine pneumococcal pneumonia. Mol Med. 2019;25(1):3.CrossRef
19.
go back to reference Hoogendijk AJ, Roelofs JJ, Duitman J, van Lieshout MH, Blok DC, van der Poll T, et al. R-roscovitine reduces lung inflammation induced by lipoteichoic acid and Streptococcus pneumoniae. Mol Med. 2012;18:1086–95.CrossRef Hoogendijk AJ, Roelofs JJ, Duitman J, van Lieshout MH, Blok DC, van der Poll T, et al. R-roscovitine reduces lung inflammation induced by lipoteichoic acid and Streptococcus pneumoniae. Mol Med. 2012;18:1086–95.CrossRef
20.
go back to reference Meijer MT, de Vos AF, Scicluna BP, Roelofs JJ, Abou Faycal C, Orend G, et al. Tenascin-C deficiency is associated with reduced bacterial outgrowth during Klebsiella pneumoniae-evoked pneumosepsis in mice. Front Immunol. 2021;12: 600979.CrossRef Meijer MT, de Vos AF, Scicluna BP, Roelofs JJ, Abou Faycal C, Orend G, et al. Tenascin-C deficiency is associated with reduced bacterial outgrowth during Klebsiella pneumoniae-evoked pneumosepsis in mice. Front Immunol. 2021;12: 600979.CrossRef
21.
go back to reference Qin W, Liu Z, van der Poll T, de Vos AF. Induction of acute or disseminating bacterial pneumonia in mice and sampling of infected organs for studying the host response to bacterial pneumonia. Bio Protoc. 2022;12(1): e4287.CrossRef Qin W, Liu Z, van der Poll T, de Vos AF. Induction of acute or disseminating bacterial pneumonia in mice and sampling of infected organs for studying the host response to bacterial pneumonia. Bio Protoc. 2022;12(1): e4287.CrossRef
22.
go back to reference de Porto AP, Liu Z, de Beer R, Florquin S, Roelofs J, de Boer OJ, et al. Bruton’s tyrosine kinase-mediated signaling in myeloid cells is required for protective innate immunity during pneumococcal pneumonia. Front Immunol. 2021;12: 723967.CrossRef de Porto AP, Liu Z, de Beer R, Florquin S, Roelofs J, de Boer OJ, et al. Bruton’s tyrosine kinase-mediated signaling in myeloid cells is required for protective innate immunity during pneumococcal pneumonia. Front Immunol. 2021;12: 723967.CrossRef
23.
go back to reference Knapp S, Wieland CW, van’t Veer C, Takeuchi O, Akira S, Florquin S, et al. Toll-like receptor 2 plays a role in the early inflammatory response to murine pneumococcal pneumonia but does not contribute to antibacterial defense. J Immunol. 2004;172(5):3132–8.CrossRef Knapp S, Wieland CW, van’t Veer C, Takeuchi O, Akira S, Florquin S, et al. Toll-like receptor 2 plays a role in the early inflammatory response to murine pneumococcal pneumonia but does not contribute to antibacterial defense. J Immunol. 2004;172(5):3132–8.CrossRef
24.
go back to reference van der Poll T, Keogh CV, Buurman WA, Lowry SF. Passive immunization against tumor necrosis factor-alpha impairs host defense during pneumococcal pneumonia in mice. Am J Respir Crit Care Med. 1997;155(2):603–8.CrossRef van der Poll T, Keogh CV, Buurman WA, Lowry SF. Passive immunization against tumor necrosis factor-alpha impairs host defense during pneumococcal pneumonia in mice. Am J Respir Crit Care Med. 1997;155(2):603–8.CrossRef
25.
go back to reference Luck JN, Tettelin H, Orihuela CJ. Sugar-coated killer: serotype 3 pneumococcal disease. Front Cell Infect Microbiol. 2020;10: 613287.CrossRef Luck JN, Tettelin H, Orihuela CJ. Sugar-coated killer: serotype 3 pneumococcal disease. Front Cell Infect Microbiol. 2020;10: 613287.CrossRef
26.
go back to reference Liu Z, Dai X, Zhu H, Zhang M, Zou MH. Lipopolysaccharides promote S-nitrosylation and proteasomal degradation of liver kinase B1 (LKB1) in macrophages in vivo. J Biol Chem. 2015;290(31):19011–7.CrossRef Liu Z, Dai X, Zhu H, Zhang M, Zou MH. Lipopolysaccharides promote S-nitrosylation and proteasomal degradation of liver kinase B1 (LKB1) in macrophages in vivo. J Biol Chem. 2015;290(31):19011–7.CrossRef
27.
go back to reference Zemans RL, Matthay MA. What drives neutrophils to the alveoli in ARDS? Thorax. 2017;72(1):1–3.CrossRef Zemans RL, Matthay MA. What drives neutrophils to the alveoli in ARDS? Thorax. 2017;72(1):1–3.CrossRef
28.
go back to reference Dessing MC, Schouten M, Draing C, Levi M, von Aulock S, van der Poll T. Role played by Toll-like receptors 2 and 4 in lipoteichoic acid-induced lung inflammation and coagulation. J Infect Dis. 2008;197(2):245–52.CrossRef Dessing MC, Schouten M, Draing C, Levi M, von Aulock S, van der Poll T. Role played by Toll-like receptors 2 and 4 in lipoteichoic acid-induced lung inflammation and coagulation. J Infect Dis. 2008;197(2):245–52.CrossRef
29.
go back to reference Fielding CA, McLoughlin RM, McLeod L, Colmont CS, Najdovska M, Grail D, et al. IL-6 regulates neutrophil trafficking during acute inflammation via STAT3. J Immunol. 2008;181(3):2189–95.CrossRef Fielding CA, McLoughlin RM, McLeod L, Colmont CS, Najdovska M, Grail D, et al. IL-6 regulates neutrophil trafficking during acute inflammation via STAT3. J Immunol. 2008;181(3):2189–95.CrossRef
30.
go back to reference Malley R, Henneke P, Morse SC, Cieslewicz MJ, Lipsitch M, Thompson CM, et al. Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc Natl Acad Sci USA. 2003;100(4):1966–71.CrossRef Malley R, Henneke P, Morse SC, Cieslewicz MJ, Lipsitch M, Thompson CM, et al. Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc Natl Acad Sci USA. 2003;100(4):1966–71.CrossRef
31.
go back to reference Srivastava A, Henneke P, Visintin A, Morse SC, Martin V, Watkins C, et al. The apoptotic response to pneumolysin is Toll-like receptor 4 dependent and protects against pneumococcal disease. Infect Immun. 2005;73(10):6479–87.CrossRef Srivastava A, Henneke P, Visintin A, Morse SC, Martin V, Watkins C, et al. The apoptotic response to pneumolysin is Toll-like receptor 4 dependent and protects against pneumococcal disease. Infect Immun. 2005;73(10):6479–87.CrossRef
32.
go back to reference Albiger B, Dahlberg S, Sandgren A, Wartha F, Beiter K, Katsuragi H, et al. Toll-like receptor 9 acts at an early stage in host defence against pneumococcal infection. Cell Microbiol. 2007;9(3):633–44.CrossRef Albiger B, Dahlberg S, Sandgren A, Wartha F, Beiter K, Katsuragi H, et al. Toll-like receptor 9 acts at an early stage in host defence against pneumococcal infection. Cell Microbiol. 2007;9(3):633–44.CrossRef
33.
go back to reference Wu Q, Jiang D, Minor MN, Martin RJ, Chu HW. In vivo function of airway epithelial TLR2 in host defense against bacterial infection. Am J Physiol Lung Cell Mol Physiol. 2011;300(4):L579–86.CrossRef Wu Q, Jiang D, Minor MN, Martin RJ, Chu HW. In vivo function of airway epithelial TLR2 in host defense against bacterial infection. Am J Physiol Lung Cell Mol Physiol. 2011;300(4):L579–86.CrossRef
34.
go back to reference Hippenstiel S, Opitz B, Schmeck B, Suttorp N. Lung epithelium as a sentinel and effector system in pneumonia–molecular mechanisms of pathogen recognition and signal transduction. Respir Res. 2006;7:97.CrossRef Hippenstiel S, Opitz B, Schmeck B, Suttorp N. Lung epithelium as a sentinel and effector system in pneumonia–molecular mechanisms of pathogen recognition and signal transduction. Respir Res. 2006;7:97.CrossRef
35.
go back to reference Percy MG, Grundling A. Lipoteichoic acid synthesis and function in gram-positive bacteria. Annu Rev Microbiol. 2014;68:81–100.CrossRef Percy MG, Grundling A. Lipoteichoic acid synthesis and function in gram-positive bacteria. Annu Rev Microbiol. 2014;68:81–100.CrossRef
36.
go back to reference Draing C, Pfitzenmaier M, Zummo S, Mancuso G, Geyer A, Hartung T, et al. Comparison of lipoteichoic acid from different serotypes of Streptococcus pneumoniae. J Biol Chem. 2006;281(45):33849–59.CrossRef Draing C, Pfitzenmaier M, Zummo S, Mancuso G, Geyer A, Hartung T, et al. Comparison of lipoteichoic acid from different serotypes of Streptococcus pneumoniae. J Biol Chem. 2006;281(45):33849–59.CrossRef
37.
go back to reference Hashimoto M, Tawaratsumida K, Kariya H, Kiyohara A, Suda Y, Krikae F, et al. Not lipoteichoic acid but lipoproteins appear to be the dominant immunobiologically active compounds in Staphylococcus aureus. J Immunol. 2006;177(5):3162–9.CrossRef Hashimoto M, Tawaratsumida K, Kariya H, Kiyohara A, Suda Y, Krikae F, et al. Not lipoteichoic acid but lipoproteins appear to be the dominant immunobiologically active compounds in Staphylococcus aureus. J Immunol. 2006;177(5):3162–9.CrossRef
38.
go back to reference Kang JY, Nan X, Jin MS, Youn SJ, Ryu YH, Mah S, et al. Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity. 2009;31(6):873–84.CrossRef Kang JY, Nan X, Jin MS, Youn SJ, Ryu YH, Mah S, et al. Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity. 2009;31(6):873–84.CrossRef
39.
go back to reference Zahringer U, Lindner B, Inamura S, Heine H, Alexander C. TLR2—promiscuous or specific? A critical re-evaluation of a receptor expressing apparent broad specificity. Immunobiology. 2008;213(3–4):205–24.CrossRef Zahringer U, Lindner B, Inamura S, Heine H, Alexander C. TLR2—promiscuous or specific? A critical re-evaluation of a receptor expressing apparent broad specificity. Immunobiology. 2008;213(3–4):205–24.CrossRef
40.
go back to reference Schroder NW, Morath S, Alexander C, Hamann L, Hartung T, Zahringer U, et al. Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J Biol Chem. 2003;278(18):15587–94.CrossRef Schroder NW, Morath S, Alexander C, Hamann L, Hartung T, Zahringer U, et al. Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J Biol Chem. 2003;278(18):15587–94.CrossRef
41.
go back to reference Tomlinson G, Chimalapati S, Pollard T, Lapp T, Cohen J, Camberlein E, et al. TLR-mediated inflammatory responses to Streptococcus pneumoniae are highly dependent on surface expression of bacterial lipoproteins. J Immunol. 2014;193(7):3736–45.CrossRef Tomlinson G, Chimalapati S, Pollard T, Lapp T, Cohen J, Camberlein E, et al. TLR-mediated inflammatory responses to Streptococcus pneumoniae are highly dependent on surface expression of bacterial lipoproteins. J Immunol. 2014;193(7):3736–45.CrossRef
Metadata
Title
Myeloid liver kinase B1 contributes to lung inflammation induced by lipoteichoic acid but not by viable Streptococcus pneumoniae
Authors
Liza Pereverzeva
Natasja A. Otto
Joris J. T. H. Roelofs
Alex F. de Vos
Tom van der Poll
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2022
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-022-02168-6

Other articles of this Issue 1/2022

Respiratory Research 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine