Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2023

Open Access 01-12-2023 | Pneumococcus | Research

Filter exchange imaging with crusher gradient modelling detects increased blood–brain barrier water permeability in response to mild lung infection

Authors: Yolanda Ohene, William J. Harris, Elizabeth Powell, Nina W. Wycech, Katherine F. Smethers, Samo Lasič, Kieron South, Graham Coutts, Andrew Sharp, Catherine B. Lawrence, Hervé Boutin, Geoff J. M. Parker, Laura M. Parkes, Ben R. Dickie

Published in: Fluids and Barriers of the CNS | Issue 1/2023

Login to get access

Abstract

Blood–brain barrier (BBB) dysfunction occurs in many brain diseases, and there is increasing evidence to suggest that it is an early process in dementia which may be exacerbated by peripheral infection. Filter-exchange imaging (FEXI) is an MRI technique for measuring trans-membrane water exchange. FEXI data is typically analysed using the apparent exchange rate (AXR) model, yielding estimates of the AXR. Crusher gradients are commonly used to remove unwanted coherence pathways arising from longitudinal storage pulses during the mixing period. We first demonstrate that when using thin slices, as is needed for imaging the rodent brain, crusher gradients result in underestimation of the AXR. To address this, we propose an extended crusher-compensated exchange rate (CCXR) model to account for diffusion-weighting introduced by the crusher gradients, which is able to recover ground truth values of BBB water exchange (kin) in simulated data. When applied to the rat brain, kin estimates obtained using the CCXR model were 3.10 s−1 and 3.49 s−1 compared to AXR estimates of 1.24 s−1 and 0.49 s−1 for slice thicknesses of 4.0 mm and 2.5 mm respectively. We then validated our approach using a clinically relevant Streptococcus pneumoniae lung infection. We observed a significant 70 ± 10% increase in BBB water exchange in rats during active infection (kin = 3.78 ± 0.42 s−1) compared to before infection (kin = 2.72 ± 0.30 s−1; p = 0.02). The BBB water exchange rate during infection was associated with higher levels of plasma von Willebrand factor (VWF), a marker of acute vascular inflammation. We also observed 42% higher expression of perivascular aquaporin-4 (AQP4) in infected animals compared to non-infected controls, while levels of tight junction proteins remain consistent between groups. In summary, we propose a modelling approach for FEXI data which removes the bias in estimated water-exchange rates associated with the use of crusher gradients. Using this approach, we demonstrate the impact of peripheral infection on BBB water exchange, which appears to be mediated by endothelial dysfunction and associated with an increase in perivascular AQP4.
Appendix
Available only for authorised users
Literature
1.
go back to reference Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron. 2015;85(2):296–302.PubMedPubMedCentralCrossRef Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron. 2015;85(2):296–302.PubMedPubMedCentralCrossRef
2.
go back to reference Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018;14(3):133–50.PubMedPubMedCentralCrossRef Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018;14(3):133–50.PubMedPubMedCentralCrossRef
4.
go back to reference Kook SY, Hong HS, Moon M, Ha CM, Chang S, Mook-Jung I. Aβ1-42-RAGE interaction disrupts tight junctions of the blood-brain barrier via Ca2+-calcineurin signaling. J Neurosci. 2012;32(26):8845–54.PubMedPubMedCentralCrossRef Kook SY, Hong HS, Moon M, Ha CM, Chang S, Mook-Jung I. Aβ1-42-RAGE interaction disrupts tight junctions of the blood-brain barrier via Ca2+-calcineurin signaling. J Neurosci. 2012;32(26):8845–54.PubMedPubMedCentralCrossRef
5.
go back to reference Carrano A, Hoozemans JJ, van der Vies SM, Rozemuller AJ, van Horssen J, de Vries HE. Amyloid beta induces oxidative stress-mediated blood-brain barrier changes in capillary amyloid angiopathy. Antioxid Redox Signal. 2011;15(5):1167–78.PubMedCrossRef Carrano A, Hoozemans JJ, van der Vies SM, Rozemuller AJ, van Horssen J, de Vries HE. Amyloid beta induces oxidative stress-mediated blood-brain barrier changes in capillary amyloid angiopathy. Antioxid Redox Signal. 2011;15(5):1167–78.PubMedCrossRef
6.
go back to reference Varatharaj A, Galea I. The blood-brain barrier in systemic inflammation. Brain Behav Immun. 2017;60:1–12.PubMedCrossRef Varatharaj A, Galea I. The blood-brain barrier in systemic inflammation. Brain Behav Immun. 2017;60:1–12.PubMedCrossRef
8.
go back to reference van de Haar HJ, Burgmans S, Jansen JF, van Osch MJ, van Buchem MA, Muller M, et al. Blood-brain barrier leakage in patients with early Alzheimer disease. Radiology. 2016;281(2):527–35.PubMedCrossRef van de Haar HJ, Burgmans S, Jansen JF, van Osch MJ, van Buchem MA, Muller M, et al. Blood-brain barrier leakage in patients with early Alzheimer disease. Radiology. 2016;281(2):527–35.PubMedCrossRef
9.
go back to reference Nation DA, Sweeney MD, Montagne A, Sagare AP, D’Orazio LM, Pachicano M, et al. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat Med. 2019;25(2):270–6.PubMedPubMedCentralCrossRef Nation DA, Sweeney MD, Montagne A, Sagare AP, D’Orazio LM, Pachicano M, et al. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat Med. 2019;25(2):270–6.PubMedPubMedCentralCrossRef
10.
go back to reference Thrippleton MJ, Backes WH, Sourbron S, Ingrisch M, van Osch MJP, Dichgans M, et al. Quantifying blood-brain barrier leakage in small vessel disease: review and consensus recommendations. Alzheimers Dement. 2019;15(6):840–58.PubMedPubMedCentralCrossRef Thrippleton MJ, Backes WH, Sourbron S, Ingrisch M, van Osch MJP, Dichgans M, et al. Quantifying blood-brain barrier leakage in small vessel disease: review and consensus recommendations. Alzheimers Dement. 2019;15(6):840–58.PubMedPubMedCentralCrossRef
11.
go back to reference Armitage PA, Farrall AJ, Carpenter TK, Doubal FN, Wardlaw JM. Use of dynamic contrast-enhanced MRI to measure subtle blood-brain barrier abnormalities. Magn Reson Imaging. 2011;29(3):305–14.PubMedPubMedCentralCrossRef Armitage PA, Farrall AJ, Carpenter TK, Doubal FN, Wardlaw JM. Use of dynamic contrast-enhanced MRI to measure subtle blood-brain barrier abnormalities. Magn Reson Imaging. 2011;29(3):305–14.PubMedPubMedCentralCrossRef
12.
go back to reference Heye AK, Thrippleton MJ, Armitage PA, Valdés Hernández MDC, Makin SD, Glatz A, et al. Tracer kinetic modelling for DCE-MRI quantification of subtle blood-brain barrier permeability. Neuroimage. 2016;125:446–55.PubMedCrossRef Heye AK, Thrippleton MJ, Armitage PA, Valdés Hernández MDC, Makin SD, Glatz A, et al. Tracer kinetic modelling for DCE-MRI quantification of subtle blood-brain barrier permeability. Neuroimage. 2016;125:446–55.PubMedCrossRef
13.
go back to reference Manning C, Stringer M, Dickie B, Clancy U, Valdés Hernandez MC, Wiseman SJ, et al. Sources of systematic error in DCE-MRI estimation of low-level blood-brain barrier leakage. Magn Reson Med. 2021;86(4):1888–903.PubMedCrossRef Manning C, Stringer M, Dickie B, Clancy U, Valdés Hernandez MC, Wiseman SJ, et al. Sources of systematic error in DCE-MRI estimation of low-level blood-brain barrier leakage. Magn Reson Med. 2021;86(4):1888–903.PubMedCrossRef
14.
go back to reference Schwarzbauer C, Morrissey SP, Deichmann R, Hillenbrand C, Syha J, Adolf H, et al. Quantitative magnetic resonance imaging of capillary water permeability and regional blood volume with an intravascular MR contrast agent. Magn Reson Med. 1997;37(5):769–77.PubMedCrossRef Schwarzbauer C, Morrissey SP, Deichmann R, Hillenbrand C, Syha J, Adolf H, et al. Quantitative magnetic resonance imaging of capillary water permeability and regional blood volume with an intravascular MR contrast agent. Magn Reson Med. 1997;37(5):769–77.PubMedCrossRef
15.
go back to reference Rooney WD, Li X, Sammi MK, Bourdette DN, Neuwelt EA, Springer CS Jr. Mapping human brain capillary water lifetime: high-resolution metabolic neuroimaging. NMR Biomed. 2015;28(6):607–23.PubMedPubMedCentralCrossRef Rooney WD, Li X, Sammi MK, Bourdette DN, Neuwelt EA, Springer CS Jr. Mapping human brain capillary water lifetime: high-resolution metabolic neuroimaging. NMR Biomed. 2015;28(6):607–23.PubMedPubMedCentralCrossRef
16.
go back to reference Dickie BR, Vandesquille M, Ulloa J, Boutin H, Parkes LM, Parker GJM. Water-exchange MRI detects subtle blood-brain barrier breakdown in Alzheimer’s disease rats. Neuroimage. 2019;184:349–58.PubMedCrossRef Dickie BR, Vandesquille M, Ulloa J, Boutin H, Parkes LM, Parker GJM. Water-exchange MRI detects subtle blood-brain barrier breakdown in Alzheimer’s disease rats. Neuroimage. 2019;184:349–58.PubMedCrossRef
17.
go back to reference Dickie BR, Boutin H, Parker GJM, Parkes LM. Alzheimer’s disease pathology is associated with earlier alterations to blood–brain barrier water permeability compared with healthy ageing in TgF344-AD rats. NMR Biomed. 2021;34(7):e4510.PubMedCrossRef Dickie BR, Boutin H, Parker GJM, Parkes LM. Alzheimer’s disease pathology is associated with earlier alterations to blood–brain barrier water permeability compared with healthy ageing in TgF344-AD rats. NMR Biomed. 2021;34(7):e4510.PubMedCrossRef
18.
go back to reference Beaumont HPA, van Osch MJ, Parkes LM. Estimation of water exchange across the blood brain barrier using contrast-enhanced ASL. 24th Annual Meeting of International Society for Magnetic Resonance in Medicine; Singapore 2016. Beaumont HPA, van Osch MJ, Parkes LM. Estimation of water exchange across the blood brain barrier using contrast-enhanced ASL. 24th Annual Meeting of International Society for Magnetic Resonance in Medicine; Singapore 2016.
19.
go back to reference Powell E, Dickie BR, Ohene Y, Parker GJM, Parkes LM. Blood-brain barrier water exchange estimation using optimised contrast-enhanced ASL. 30th Annual Meeting of International Society of Magnetic Resonance in Medicine; Online 2021. Powell E, Dickie BR, Ohene Y, Parker GJM, Parkes LM. Blood-brain barrier water exchange estimation using optimised contrast-enhanced ASL. 30th Annual Meeting of International Society of Magnetic Resonance in Medicine; Online 2021.
20.
go back to reference Wengler K, Bangiyev L, Canli T, Duong TQ, Schweitzer ME, He X. 3D MRI of whole-brain water permeability with intrinsic diffusivity encoding of arterial labeled spin (IDEALS). Neuroimage. 2019;189:401–14.PubMedCrossRef Wengler K, Bangiyev L, Canli T, Duong TQ, Schweitzer ME, He X. 3D MRI of whole-brain water permeability with intrinsic diffusivity encoding of arterial labeled spin (IDEALS). Neuroimage. 2019;189:401–14.PubMedCrossRef
21.
go back to reference Gregori J, Schuff N, Kern R, Günther M. T2-based arterial spin labeling measurements of blood to tissue water transfer in human brain. J Magn Reson Imaging. 2013;37(2):332–42.PubMedCrossRef Gregori J, Schuff N, Kern R, Günther M. T2-based arterial spin labeling measurements of blood to tissue water transfer in human brain. J Magn Reson Imaging. 2013;37(2):332–42.PubMedCrossRef
22.
go back to reference Wang J, Fernández-Seara MA, Wang S, Lawrence KSS. When perfusion meets diffusion: in vivo measurement of water permeability in human brain. J Cereb Blood Flow Metab. 2007;27(4):839–49.PubMedCrossRef Wang J, Fernández-Seara MA, Wang S, Lawrence KSS. When perfusion meets diffusion: in vivo measurement of water permeability in human brain. J Cereb Blood Flow Metab. 2007;27(4):839–49.PubMedCrossRef
23.
go back to reference Lin Z, Li Y, Su P, Mao D, Wei Z, Pillai JJ, et al. Non-contrast MR imaging of blood-brain barrier permeability to water. Magn Reson Med. 2018;80(4):1507–20.PubMedPubMedCentralCrossRef Lin Z, Li Y, Su P, Mao D, Wei Z, Pillai JJ, et al. Non-contrast MR imaging of blood-brain barrier permeability to water. Magn Reson Med. 2018;80(4):1507–20.PubMedPubMedCentralCrossRef
24.
go back to reference Wells JA, Siow B, Lythgoe MF, Thomas DL. Measuring biexponential transverse relaxation of the ASL signal at 9.4 T to estimate arterial oxygen saturation and the time of exchange of labeled blood water into cortical brain tissue. J Cereb Blood Flow Metab. 2013;33(2):215–24.PubMedCrossRef Wells JA, Siow B, Lythgoe MF, Thomas DL. Measuring biexponential transverse relaxation of the ASL signal at 9.4 T to estimate arterial oxygen saturation and the time of exchange of labeled blood water into cortical brain tissue. J Cereb Blood Flow Metab. 2013;33(2):215–24.PubMedCrossRef
25.
go back to reference St Lawrence KS, Owen D, Wang DJ. A two-stage approach for measuring vascular water exchange and arterial transit time by diffusion-weighted perfusion MRI. Magn Reson Med. 2012;67(5):1275–84.PubMedCrossRef St Lawrence KS, Owen D, Wang DJ. A two-stage approach for measuring vascular water exchange and arterial transit time by diffusion-weighted perfusion MRI. Magn Reson Med. 2012;67(5):1275–84.PubMedCrossRef
26.
go back to reference Hales PW, Clark CA. Combined arterial spin labeling and diffusion-weighted imaging for noninvasive estimation of capillary volume fraction and permeability-surface product in the human brain. J Cereb Blood Flow Metab. 2013;33(1):67–75.PubMedCrossRef Hales PW, Clark CA. Combined arterial spin labeling and diffusion-weighted imaging for noninvasive estimation of capillary volume fraction and permeability-surface product in the human brain. J Cereb Blood Flow Metab. 2013;33(1):67–75.PubMedCrossRef
27.
go back to reference Bai R, Li Z, Sun C, Hsu Y-C, Liang H, Basser P. Feasibility of filter-exchange imaging (FEXI) in measuring different exchange processes in human brain. Neuroimage. 2020;219:117039.PubMedCrossRef Bai R, Li Z, Sun C, Hsu Y-C, Liang H, Basser P. Feasibility of filter-exchange imaging (FEXI) in measuring different exchange processes in human brain. Neuroimage. 2020;219:117039.PubMedCrossRef
28.
go back to reference Powell E, Ohene Y, Battison M, Dickie BR, Parkes LM, Parker GJM. Blood‐brain barrier water exchange measurements using FEXI: Impact of modeling paradigm and relaxation time effects. Magn Reson Med. 2023. Powell E, Ohene Y, Battison M, Dickie BR, Parkes LM, Parker GJM. Blood‐brain barrier water exchange measurements using FEXI: Impact of modeling paradigm and relaxation time effects. Magn Reson Med. 2023.
29.
go back to reference Ramalho J, Semelka RC, Ramalho M, Nunes RH, AlObaidy M, Castillo M. Gadolinium-based contrast agent accumulation and toxicity: an update. AJNR Am J Neuroradiol. 2016;37(7):1192–8.PubMedPubMedCentralCrossRef Ramalho J, Semelka RC, Ramalho M, Nunes RH, AlObaidy M, Castillo M. Gadolinium-based contrast agent accumulation and toxicity: an update. AJNR Am J Neuroradiol. 2016;37(7):1192–8.PubMedPubMedCentralCrossRef
30.
go back to reference Ohene Y, Harrison IF, Nahavandi P, Ismail O, Bird EV, Ottersen OP, et al. Non-invasive MRI of brain clearance pathways using multiple echo time arterial spin labelling: an aquaporin-4 study. Neuroimage. 2019;188:515–23.PubMedCrossRef Ohene Y, Harrison IF, Nahavandi P, Ismail O, Bird EV, Ottersen OP, et al. Non-invasive MRI of brain clearance pathways using multiple echo time arterial spin labelling: an aquaporin-4 study. Neuroimage. 2019;188:515–23.PubMedCrossRef
31.
go back to reference Ohene Y, Harrison IF, Evans PG, Thomas DL, Lythgoe MF, Wells JA. Increased blood–brain barrier permeability to water in the aging brain detected using noninvasive multi-TE ASL MRI. Magn Reson Med. 2021;85(1):326–33.PubMedCrossRef Ohene Y, Harrison IF, Evans PG, Thomas DL, Lythgoe MF, Wells JA. Increased blood–brain barrier permeability to water in the aging brain detected using noninvasive multi-TE ASL MRI. Magn Reson Med. 2021;85(1):326–33.PubMedCrossRef
32.
go back to reference Lin Z, Sur S, Liu P, Li Y, Jiang D, Hou X, et al. Blood-brain barrier breakdown in relationship to Alzheimer and vascular disease. Ann Neurol. 2021;90(2):227–38.PubMedPubMedCentralCrossRef Lin Z, Sur S, Liu P, Li Y, Jiang D, Hou X, et al. Blood-brain barrier breakdown in relationship to Alzheimer and vascular disease. Ann Neurol. 2021;90(2):227–38.PubMedPubMedCentralCrossRef
33.
go back to reference Shao X, Ma SJ, Casey M, D’Orazio L, Ringman JM, Wang DJJ. Mapping water exchange across the blood–brain barrier using 3D diffusion-prepared arterial spin labeled perfusion MRI. Magn Reson Med. 2019;81(5):3065–79.PubMedCrossRef Shao X, Ma SJ, Casey M, D’Orazio L, Ringman JM, Wang DJJ. Mapping water exchange across the blood–brain barrier using 3D diffusion-prepared arterial spin labeled perfusion MRI. Magn Reson Med. 2019;81(5):3065–79.PubMedCrossRef
34.
go back to reference Lasič S, Nilsson M, Lätt J, Ståhlberg F, Topgaard D. Apparent exchange rate mapping with diffusion MRI. Magn Reson Med. 2011;66(2):356–65.PubMedCrossRef Lasič S, Nilsson M, Lätt J, Ståhlberg F, Topgaard D. Apparent exchange rate mapping with diffusion MRI. Magn Reson Med. 2011;66(2):356–65.PubMedCrossRef
35.
go back to reference Nilsson M, Lätt J, van Westen D, Brockstedt S, Lasič S, Ståhlberg F, et al. Noninvasive mapping of water diffusional exchange in the human brain using filter-exchange imaging. Magn Reson Med. 2013;69(6):1573–81.PubMedCrossRef Nilsson M, Lätt J, van Westen D, Brockstedt S, Lasič S, Ståhlberg F, et al. Noninvasive mapping of water diffusional exchange in the human brain using filter-exchange imaging. Magn Reson Med. 2013;69(6):1573–81.PubMedCrossRef
37.
go back to reference Lasič S, Oredsson S, Partridge SC, Saal LH, Topgaard D, Nilsson M, et al. Apparent exchange rate for breast cancer characterization. NMR Biomed. 2016;29(5):631–9.PubMedPubMedCentralCrossRef Lasič S, Oredsson S, Partridge SC, Saal LH, Topgaard D, Nilsson M, et al. Apparent exchange rate for breast cancer characterization. NMR Biomed. 2016;29(5):631–9.PubMedPubMedCentralCrossRef
38.
go back to reference Schilling F, Ros S, Hu DE, D’Santos P, McGuire S, Mair R, et al. MRI measurements of reporter-mediated increases in transmembrane water exchange enable detection of a gene reporter. Nat Biotechnol. 2017;35(1):75–80.PubMedCrossRef Schilling F, Ros S, Hu DE, D’Santos P, McGuire S, Mair R, et al. MRI measurements of reporter-mediated increases in transmembrane water exchange enable detection of a gene reporter. Nat Biotechnol. 2017;35(1):75–80.PubMedCrossRef
39.
go back to reference Powell E, Ohene Y, Battiston M, Parkes LM, Parker GJM. Voxel-wise compartmental modelling of blood-brain barrier water exchange measurements using FEXI. 31st Annual Meeting of International Society for Magnetic Resonance in Medicine; London, UK. 2022. Powell E, Ohene Y, Battiston M, Parkes LM, Parker GJM. Voxel-wise compartmental modelling of blood-brain barrier water exchange measurements using FEXI. 31st Annual Meeting of International Society for Magnetic Resonance in Medicine; London, UK. 2022.
40.
go back to reference Wang Z, Wang B, Liu Y, Bai R. Comparison of DCE-MRI and FEXI in the measurement of vascular water exchange in high-grade glioma. 30th Annual Meeting of International Society for Magnetic Resonance in Medicine; Online. 2021. Wang Z, Wang B, Liu Y, Bai R. Comparison of DCE-MRI and FEXI in the measurement of vascular water exchange in high-grade glioma. 30th Annual Meeting of International Society for Magnetic Resonance in Medicine; Online. 2021.
41.
go back to reference Zhang Y, Wang Y, Li Z, Wang Z, Cheng J, Bai X, et al. Vascular-water-exchange MRI (VEXI) enables the detection of subtle AXR alterations in Alzheimer’s disease without MRI contrast agent, which may relate to BBB integrity. NeuroImage. 2023;270:119951.PubMedCrossRef Zhang Y, Wang Y, Li Z, Wang Z, Cheng J, Bai X, et al. Vascular-water-exchange MRI (VEXI) enables the detection of subtle AXR alterations in Alzheimer’s disease without MRI contrast agent, which may relate to BBB integrity. NeuroImage. 2023;270:119951.PubMedCrossRef
42.
go back to reference Wang B, Wang Z, Jia Y, Zhao P, Han G, Meng C, et al. Water exchange detected by shutter speed dynamic contrast enhanced-MRI help distinguish solitary brain metastasis from glioblastoma. Eur J Radiol. 2022;156:110526.PubMedCrossRef Wang B, Wang Z, Jia Y, Zhao P, Han G, Meng C, et al. Water exchange detected by shutter speed dynamic contrast enhanced-MRI help distinguish solitary brain metastasis from glioblastoma. Eur J Radiol. 2022;156:110526.PubMedCrossRef
43.
go back to reference Lasič S, Lundell H, Topgaard D, Dyrby TB. Effects of imaging gradients in sequences with varying longitudinal storage time—case of diffusion exchange imaging. Magn Reson Med. 2018;79(4):2228–35.PubMedCrossRef Lasič S, Lundell H, Topgaard D, Dyrby TB. Effects of imaging gradients in sequences with varying longitudinal storage time—case of diffusion exchange imaging. Magn Reson Med. 2018;79(4):2228–35.PubMedCrossRef
44.
go back to reference Bernstein MA, King KF, Zhou XJ. Handbook of MRI pulse sequence. 1st ed. Cambridge: Academic Press; 2007. Bernstein MA, King KF, Zhou XJ. Handbook of MRI pulse sequence. 1st ed. Cambridge: Academic Press; 2007.
45.
go back to reference Scott LA, Dickie BR, Rawson SD, Coutts G, Burnett TL, Allan SM, et al. Characterisation of microvessel blood velocity and segment length in the brain using multi-diffusion-time diffusion-weighted MRI. J Cereb Blood Flow Metab. 2020;41(8):1939–53.PubMedPubMedCentralCrossRef Scott LA, Dickie BR, Rawson SD, Coutts G, Burnett TL, Allan SM, et al. Characterisation of microvessel blood velocity and segment length in the brain using multi-diffusion-time diffusion-weighted MRI. J Cereb Blood Flow Metab. 2020;41(8):1939–53.PubMedPubMedCentralCrossRef
46.
go back to reference Eriksson S, Elbing K, Söderman O, Lindkvist-Petersson K, Topgaard D, Lasič S. NMR quantification of diffusional exchange in cell suspensions with relaxation rate differences between intra and extracellular compartments. PLoS ONE. 2017;12(5):e0177273.PubMedPubMedCentralCrossRef Eriksson S, Elbing K, Söderman O, Lindkvist-Petersson K, Topgaard D, Lasič S. NMR quantification of diffusional exchange in cell suspensions with relaxation rate differences between intra and extracellular compartments. PLoS ONE. 2017;12(5):e0177273.PubMedPubMedCentralCrossRef
47.
go back to reference Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLOS Biol. 2020;18(7):e3000410.PubMedPubMedCentralCrossRef Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLOS Biol. 2020;18(7):e3000410.PubMedPubMedCentralCrossRef
48.
go back to reference Dickie BR, Parker GJM, Parkes LM. Measuring water exchange across the blood-brain barrier using MRI. Prog Nucl Magn Reson Spectrosc. 2020;116:19–39.PubMedCrossRef Dickie BR, Parker GJM, Parkes LM. Measuring water exchange across the blood-brain barrier using MRI. Prog Nucl Magn Reson Spectrosc. 2020;116:19–39.PubMedCrossRef
50.
go back to reference Kamintsky L, Beyea SD, Fisk JD, Hashmi JA, Omisade A, Calkin C, et al. Blood-brain barrier leakage in systemic lupus erythematosus is associated with gray matter loss and cognitive impairment. Ann Rheum Dis. 2020;79(12):1580–7.PubMedCrossRef Kamintsky L, Beyea SD, Fisk JD, Hashmi JA, Omisade A, Calkin C, et al. Blood-brain barrier leakage in systemic lupus erythematosus is associated with gray matter loss and cognitive impairment. Ann Rheum Dis. 2020;79(12):1580–7.PubMedCrossRef
51.
go back to reference Gulati G, Jones JT, Lee G, Altaye M, Beebe DW, Meyers-Eaton J, et al. Altered blood-brain barrier permeability in patients with systemic lupus erythematosus: a novel imaging approach. Arthritis Care Res. 2017;69(2):299–305.CrossRef Gulati G, Jones JT, Lee G, Altaye M, Beebe DW, Meyers-Eaton J, et al. Altered blood-brain barrier permeability in patients with systemic lupus erythematosus: a novel imaging approach. Arthritis Care Res. 2017;69(2):299–305.CrossRef
52.
go back to reference Dénes Á, Pradillo JM, Drake C, Sharp A, Warn P, Murray KN, et al. Streptococcus pneumoniae worsens cerebral ischemia via interleukin 1 and platelet glycoprotein Ibα. Ann Neurol. 2014;75(5):670–83.PubMedCrossRef Dénes Á, Pradillo JM, Drake C, Sharp A, Warn P, Murray KN, et al. Streptococcus pneumoniae worsens cerebral ischemia via interleukin 1 and platelet glycoprotein Ibα. Ann Neurol. 2014;75(5):670–83.PubMedCrossRef
53.
go back to reference Du Y, Meng Y, Lv X, Guo L, Wang X, Su Z, et al. Dexamethasone attenuates LPS-induced changes in expression of urea transporter and aquaporin proteins, ameliorating brain endotoxemia in mice. Int J Clin Exp Pathol. 2014;7(12):8443–52.PubMedPubMedCentral Du Y, Meng Y, Lv X, Guo L, Wang X, Su Z, et al. Dexamethasone attenuates LPS-induced changes in expression of urea transporter and aquaporin proteins, ameliorating brain endotoxemia in mice. Int J Clin Exp Pathol. 2014;7(12):8443–52.PubMedPubMedCentral
56.
go back to reference Dai W, Yan J, Chen G, Hu G, Zhou X, Zeng X. AQP4-knockout alleviates the lipopolysaccharide-induced inflammatory response in astrocytes via SPHK1/MAPK/AKT signaling. Int J Mol Med. 2018;42(3):1716–22.PubMed Dai W, Yan J, Chen G, Hu G, Zhou X, Zeng X. AQP4-knockout alleviates the lipopolysaccharide-induced inflammatory response in astrocytes via SPHK1/MAPK/AKT signaling. Int J Mol Med. 2018;42(3):1716–22.PubMed
57.
go back to reference Khrapitchev AA, Callaghan PT. Double PGSE NMR with stimulated echoes: phase cycles for the selection of desired encoding. J Magn Reson. 2001;152(2):259–68.CrossRef Khrapitchev AA, Callaghan PT. Double PGSE NMR with stimulated echoes: phase cycles for the selection of desired encoding. J Magn Reson. 2001;152(2):259–68.CrossRef
Metadata
Title
Filter exchange imaging with crusher gradient modelling detects increased blood–brain barrier water permeability in response to mild lung infection
Authors
Yolanda Ohene
William J. Harris
Elizabeth Powell
Nina W. Wycech
Katherine F. Smethers
Samo Lasič
Kieron South
Graham Coutts
Andrew Sharp
Catherine B. Lawrence
Hervé Boutin
Geoff J. M. Parker
Laura M. Parkes
Ben R. Dickie
Publication date
01-12-2023
Publisher
BioMed Central
Keyword
Pneumococcus
Published in
Fluids and Barriers of the CNS / Issue 1/2023
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/s12987-023-00422-7

Other articles of this Issue 1/2023

Fluids and Barriers of the CNS 1/2023 Go to the issue