Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2019

Open Access 01-12-2019 | Review

Platelet integrin αIIbβ3: signal transduction, regulation, and its therapeutic targeting

Authors: Jiansong Huang, Xia Li, Xiaofeng Shi, Mark Zhu, Jinghan Wang, Shujuan Huang, Xin Huang, Huafeng Wang, Ling Li, Huan Deng, Yulan Zhou, Jianhua Mao, Zhangbiao Long, Zhixin Ma, Wenle Ye, Jiajia Pan, Xiaodong Xi, Jie Jin

Published in: Journal of Hematology & Oncology | Issue 1/2019

Login to get access

Abstract

Integrins are a family of transmembrane glycoprotein signaling receptors that can transmit bioinformation bidirectionally across the plasma membrane. Integrin αIIbβ3 is expressed at a high level in platelets and their progenitors, where it plays a central role in platelet functions, hemostasis, and arterial thrombosis. Integrin αIIbβ3 also participates in cancer progression, such as tumor cell proliferation and metastasis. In resting platelets, integrin αIIbβ3 adopts an inactive conformation. Upon agonist stimulation, the transduction of inside-out signals leads integrin αIIbβ3 to switch from a low- to high-affinity state for fibrinogen and other ligands. Ligand binding causes integrin clustering and subsequently promotes outside-in signaling, which initiates and amplifies a range of cellular events to drive essential platelet functions such as spreading, aggregation, clot retraction, and thrombus consolidation. Regulation of the bidirectional signaling of integrin αIIbβ3 requires the involvement of numerous interacting proteins, which associate with the cytoplasmic tails of αIIbβ3 in particular. Integrin αIIbβ3 and its signaling pathways are considered promising targets for antithrombotic therapy. This review describes the bidirectional signal transduction of integrin αIIbβ3 in platelets, as well as the proteins responsible for its regulation and therapeutic agents that target integrin αIIbβ3 and its signaling pathways.
Literature
1.
2.
go back to reference Staatz WD, Rajpara SM, Wayner EA, Carter WG, Santoro SA. The membrane glycoprotein Ia-IIa (VLA-2) complex mediates the Mg++-dependent adhesion of platelets to collagen. J Cell Biol. 1989;108(5):1917–24.PubMedCrossRef Staatz WD, Rajpara SM, Wayner EA, Carter WG, Santoro SA. The membrane glycoprotein Ia-IIa (VLA-2) complex mediates the Mg++-dependent adhesion of platelets to collagen. J Cell Biol. 1989;108(5):1917–24.PubMedCrossRef
3.
go back to reference Piotrowicz RS, Orchekowski RP, Nugent DJ, Yamada KY, Kunicki TJ. Glycoprotein Ic-IIa functions as an activation-independent fibronectin receptor on human platelets. J Cell Biol. 1988;106(4):1359–64.PubMedCrossRef Piotrowicz RS, Orchekowski RP, Nugent DJ, Yamada KY, Kunicki TJ. Glycoprotein Ic-IIa functions as an activation-independent fibronectin receptor on human platelets. J Cell Biol. 1988;106(4):1359–64.PubMedCrossRef
4.
go back to reference Ill CR, Engvall E, Ruoslahti E. Adhesion of platelets to laminin in the absence of activation. J Cell Biol. 1984;99(6):2140–5.PubMedCrossRef Ill CR, Engvall E, Ruoslahti E. Adhesion of platelets to laminin in the absence of activation. J Cell Biol. 1984;99(6):2140–5.PubMedCrossRef
5.
go back to reference Sonnenberg A, Modderman PW, Hogervorst F. Laminin receptor on platelets is the integrin VLA-6. Nature. 1988;336(6198):487–9.PubMedCrossRef Sonnenberg A, Modderman PW, Hogervorst F. Laminin receptor on platelets is the integrin VLA-6. Nature. 1988;336(6198):487–9.PubMedCrossRef
6.
go back to reference Bennett JS, Chan C, Vilaire G, Mousa SA, DeGrado WF. Agonist-activated αvβ3 on platelets and lymphocytes binds to the matrix protein osteopontin. J Biol Chem. 1997;272(13):8137–40.PubMedCrossRef Bennett JS, Chan C, Vilaire G, Mousa SA, DeGrado WF. Agonist-activated αvβ3 on platelets and lymphocytes binds to the matrix protein osteopontin. J Biol Chem. 1997;272(13):8137–40.PubMedCrossRef
7.
go back to reference Paul BZ, Vilaire G, Kunapuli SP, Bennett JS. Concurrent signaling from Gαq- and Gαi-coupled pathways is essential for agonist-induced αvβ3 activation on human platelets. J Thromb Haemost. 2003;1(4):814–20.PubMedCrossRef Paul BZ, Vilaire G, Kunapuli SP, Bennett JS. Concurrent signaling from Gαq- and Gαi-coupled pathways is essential for agonist-induced αvβ3 activation on human platelets. J Thromb Haemost. 2003;1(4):814–20.PubMedCrossRef
8.
go back to reference Lavergne M, Janus-Bell E, Schaff M, Gachet C, Mangin PH. Platelet integrins in tumor metastasis: do they represent a therapeutic target? Cancers (Basel). 2017;9(10):133. Lavergne M, Janus-Bell E, Schaff M, Gachet C, Mangin PH. Platelet integrins in tumor metastasis: do they represent a therapeutic target? Cancers (Basel). 2017;9(10):133.
9.
go back to reference Springer TA, Zhu J, Xiao T. Structural basis for distinctive recognition of fibrinogen γC peptide by the platelet integrin αIIbβ3. J Cell Biol. 2008;182(4):791–800.PubMedPubMedCentralCrossRef Springer TA, Zhu J, Xiao T. Structural basis for distinctive recognition of fibrinogen γC peptide by the platelet integrin αIIbβ3. J Cell Biol. 2008;182(4):791–800.PubMedPubMedCentralCrossRef
10.
go back to reference Nurden AT, Caen JP. An abnormal platelet glycoprotein pattern in three cases of Glanzmann’s thrombasthenia. Br J Haematol. 1974;28(2):253–60.PubMedCrossRef Nurden AT, Caen JP. An abnormal platelet glycoprotein pattern in three cases of Glanzmann’s thrombasthenia. Br J Haematol. 1974;28(2):253–60.PubMedCrossRef
11.
go back to reference George JN, Caen JP, Nurden AT. Glanzmann’s thrombasthenia: the spectrum of clinical disease. Blood. 1990;75(7):1383–95.PubMed George JN, Caen JP, Nurden AT. Glanzmann’s thrombasthenia: the spectrum of clinical disease. Blood. 1990;75(7):1383–95.PubMed
12.
go back to reference Zhou L, Jiang M, Shen H, You T, Ding Z, Cui Q, et al. Clinical and molecular insights into Glanzmann’s thrombasthenia in China. Clin Genet. 2018;94(2):213–20.PubMedCrossRef Zhou L, Jiang M, Shen H, You T, Ding Z, Cui Q, et al. Clinical and molecular insights into Glanzmann’s thrombasthenia in China. Clin Genet. 2018;94(2):213–20.PubMedCrossRef
13.
go back to reference Qiao J, Wu X, Luo Q, Wei G, Xu M, Wu Y, et al. NLRP3 regulates platelet integrin αIIbβ3 outside-in signaling, hemostasis and arterial thrombosis. Haematologica. 2018;103(9):1568–76.PubMedPubMedCentralCrossRef Qiao J, Wu X, Luo Q, Wei G, Xu M, Wu Y, et al. NLRP3 regulates platelet integrin αIIbβ3 outside-in signaling, hemostasis and arterial thrombosis. Haematologica. 2018;103(9):1568–76.PubMedPubMedCentralCrossRef
14.
go back to reference Wagner CL, Mascelli MA, Neblock DS, Weisman HF, Coller BS, Jordan RE. Analysis of GPIIb/IIIa receptor number by quantification of 7E3 binding to human platelets. Blood. 1996;88(3):907–14.PubMed Wagner CL, Mascelli MA, Neblock DS, Weisman HF, Coller BS, Jordan RE. Analysis of GPIIb/IIIa receptor number by quantification of 7E3 binding to human platelets. Blood. 1996;88(3):907–14.PubMed
15.
go back to reference Woods VL Jr, Wolff LE, Keller DM. Resting platelets contain a substantial centrally located pool of glycoprotein IIb-IIIa complex which may be accessible to some but not other extracellular proteins. J Biol Chem. 1986;261(32):15242–51.PubMed Woods VL Jr, Wolff LE, Keller DM. Resting platelets contain a substantial centrally located pool of glycoprotein IIb-IIIa complex which may be accessible to some but not other extracellular proteins. J Biol Chem. 1986;261(32):15242–51.PubMed
16.
go back to reference Wencel-Drake JD, Plow EF, Kunicki TJ, Woods VL, Keller DM, Ginsberg MH. Localization of internal pools of membrane glycoproteins involved in platelet adhesive responses. Am J Pathol. 1986;124(2):324–34.PubMedPubMedCentral Wencel-Drake JD, Plow EF, Kunicki TJ, Woods VL, Keller DM, Ginsberg MH. Localization of internal pools of membrane glycoproteins involved in platelet adhesive responses. Am J Pathol. 1986;124(2):324–34.PubMedPubMedCentral
17.
go back to reference Amirkhosravi A, Amaya M, Siddiqui F, Biggerstaff JP, Meyer TV, Francis JL. Blockade of GpIIb/IIIa inhibits the release of vascular endothelial growth factor (VEGF) from tumor cell-activated platelets and experimental metastasis. Platelets. 1999;10(5):285–92.PubMedCrossRef Amirkhosravi A, Amaya M, Siddiqui F, Biggerstaff JP, Meyer TV, Francis JL. Blockade of GpIIb/IIIa inhibits the release of vascular endothelial growth factor (VEGF) from tumor cell-activated platelets and experimental metastasis. Platelets. 1999;10(5):285–92.PubMedCrossRef
18.
go back to reference Campbell ID, Humphries MJ. Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol. 2011;3(3):a004994. Campbell ID, Humphries MJ. Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol. 2011;3(3):a004994.
19.
22.
go back to reference Ye F, Snider AK, Ginsberg MH. Talin and kindlin: the one-two punch in integrin activation. Front Med. 2014;8(1):6–16.PubMedCrossRef Ye F, Snider AK, Ginsberg MH. Talin and kindlin: the one-two punch in integrin activation. Front Med. 2014;8(1):6–16.PubMedCrossRef
24.
go back to reference Nieswandt B, Varga-Szabo D, Elvers M. Integrins in platelet activation. J Thromb Haemost. 2009;7(Suppl 1):206–9.PubMedCrossRef Nieswandt B, Varga-Szabo D, Elvers M. Integrins in platelet activation. J Thromb Haemost. 2009;7(Suppl 1):206–9.PubMedCrossRef
25.
go back to reference Goksoy E, Ma YQ, Wang X, Kong X, Perera D, Plow EF, et al. Structural basis for the autoinhibition of talin in regulating integrin activation. Mol Cell. 2008;31(1):124–33.PubMedPubMedCentralCrossRef Goksoy E, Ma YQ, Wang X, Kong X, Perera D, Plow EF, et al. Structural basis for the autoinhibition of talin in regulating integrin activation. Mol Cell. 2008;31(1):124–33.PubMedPubMedCentralCrossRef
26.
go back to reference Anthis NJ, Wegener KL, Ye F, Kim C, Goult BT, Lowe ED, et al. The structure of an integrin/talin complex reveals the basis of inside-out signal transduction. EMBO J. 2009;28(22):3623–32.PubMedPubMedCentralCrossRef Anthis NJ, Wegener KL, Ye F, Kim C, Goult BT, Lowe ED, et al. The structure of an integrin/talin complex reveals the basis of inside-out signal transduction. EMBO J. 2009;28(22):3623–32.PubMedPubMedCentralCrossRef
27.
go back to reference Critchley DR. Cytoskeletal proteins talin and vinculin in integrin-mediated adhesion. Biochem Soc Trans. 2004;32(Pt 5):831–6.PubMedCrossRef Critchley DR. Cytoskeletal proteins talin and vinculin in integrin-mediated adhesion. Biochem Soc Trans. 2004;32(Pt 5):831–6.PubMedCrossRef
28.
go back to reference Garcia-Alvarez B, de Pereda JM, Calderwood DA, Ulmer TS, Critchley D, Campbell ID, et al. Structural determinants of integrin recognition by talin. Mol Cell. 2003;11(1):49–58.PubMedCrossRef Garcia-Alvarez B, de Pereda JM, Calderwood DA, Ulmer TS, Critchley D, Campbell ID, et al. Structural determinants of integrin recognition by talin. Mol Cell. 2003;11(1):49–58.PubMedCrossRef
29.
go back to reference Di Paolo G, Pellegrini L, Letinic K, Cestra G, Zoncu R, Voronov S, et al. Recruitment and regulation of phosphatidylinositol phosphate kinase type 1 γ by the FERM domain of talin. Nature. 2002;420(6911):85–9.PubMedCrossRef Di Paolo G, Pellegrini L, Letinic K, Cestra G, Zoncu R, Voronov S, et al. Recruitment and regulation of phosphatidylinositol phosphate kinase type 1 γ by the FERM domain of talin. Nature. 2002;420(6911):85–9.PubMedCrossRef
30.
go back to reference Ling K, Doughman RL, Firestone AJ, Bunce MW, Anderson RA. Type I γ phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature. 2002;420(6911):89–93.PubMedCrossRef Ling K, Doughman RL, Firestone AJ, Bunce MW, Anderson RA. Type I γ phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature. 2002;420(6911):89–93.PubMedCrossRef
31.
go back to reference Wegener KL, Basran J, Bagshaw CR, Campbell ID, Roberts GC, Critchley DR, et al. Structural basis for the interaction between the cytoplasmic domain of the hyaluronate receptor layilin and the talin F3 subdomain. J Mol Biol. 2008;382(1):112–26.PubMedCrossRef Wegener KL, Basran J, Bagshaw CR, Campbell ID, Roberts GC, Critchley DR, et al. Structural basis for the interaction between the cytoplasmic domain of the hyaluronate receptor layilin and the talin F3 subdomain. J Mol Biol. 2008;382(1):112–26.PubMedCrossRef
32.
go back to reference Chen HC, Appeddu PA, Parsons JT, Hildebrand JD, Schaller MD, Guan JL. Interaction of focal adhesion kinase with cytoskeletal protein talin. J Biol Chem. 1995;270(28):16995–9.PubMedCrossRef Chen HC, Appeddu PA, Parsons JT, Hildebrand JD, Schaller MD, Guan JL. Interaction of focal adhesion kinase with cytoskeletal protein talin. J Biol Chem. 1995;270(28):16995–9.PubMedCrossRef
33.
go back to reference Hemmings L, Rees DJ, Ohanian V, Bolton SJ, Gilmore AP, Patel B, et al. Talin contains three actin-binding sites each of which is adjacent to a vinculin-binding site. J Cell Sci. 1996;109(Pt 11):2715–26.PubMed Hemmings L, Rees DJ, Ohanian V, Bolton SJ, Gilmore AP, Patel B, et al. Talin contains three actin-binding sites each of which is adjacent to a vinculin-binding site. J Cell Sci. 1996;109(Pt 11):2715–26.PubMed
34.
go back to reference Moes M, Rodius S, Coleman SJ, Monkley SJ, Goormaghtigh E, Tremuth L, et al. The integrin binding site 2 (IBS2) in the talin rod domain is essential for linking integrin β subunits to the cytoskeleton. J Biol Chem. 2007;282(23):17280–8.PubMedCrossRef Moes M, Rodius S, Coleman SJ, Monkley SJ, Goormaghtigh E, Tremuth L, et al. The integrin binding site 2 (IBS2) in the talin rod domain is essential for linking integrin β subunits to the cytoskeleton. J Biol Chem. 2007;282(23):17280–8.PubMedCrossRef
35.
go back to reference Gingras AR, Ziegler WH, Frank R, Barsukov IL, Roberts GC, Critchley DR, et al. Mapping and consensus sequence identification for multiple vinculin binding sites within the talin rod. J Biol Chem. 2005;280(44):37217–24.PubMedCrossRef Gingras AR, Ziegler WH, Frank R, Barsukov IL, Roberts GC, Critchley DR, et al. Mapping and consensus sequence identification for multiple vinculin binding sites within the talin rod. J Biol Chem. 2005;280(44):37217–24.PubMedCrossRef
36.
go back to reference Nakazawa T, Tadokoro S, Kamae T, Kiyomizu K, Kashiwagi H, Honda S, et al. Agonist stimulation, talin-1, and kindlin-3 are crucial for αIIbβ3 activation in a human megakaryoblastic cell line, CMK. Exp Hematol. 2013;41(1):79–90.e1.PubMedCrossRef Nakazawa T, Tadokoro S, Kamae T, Kiyomizu K, Kashiwagi H, Honda S, et al. Agonist stimulation, talin-1, and kindlin-3 are crucial for αIIbβ3 activation in a human megakaryoblastic cell line, CMK. Exp Hematol. 2013;41(1):79–90.e1.PubMedCrossRef
37.
go back to reference Haling JR, Monkley SJ, Critchley DR, Petrich BG. Talin-dependent integrin activation is required for fibrin clot retraction by platelets. Blood. 2011;117(5):1719–22.PubMedPubMedCentralCrossRef Haling JR, Monkley SJ, Critchley DR, Petrich BG. Talin-dependent integrin activation is required for fibrin clot retraction by platelets. Blood. 2011;117(5):1719–22.PubMedPubMedCentralCrossRef
38.
go back to reference Kasirer-Friede A, Kang J, Kahner B, Ye F, Ginsberg MH, Shattil SJ. ADAP interactions with talin and kindlin promote platelet integrin αIIbβ3 activation and stable fibrinogen binding. Blood. 2014;123(20):3156–65.PubMedPubMedCentralCrossRef Kasirer-Friede A, Kang J, Kahner B, Ye F, Ginsberg MH, Shattil SJ. ADAP interactions with talin and kindlin promote platelet integrin αIIbβ3 activation and stable fibrinogen binding. Blood. 2014;123(20):3156–65.PubMedPubMedCentralCrossRef
39.
go back to reference Ye F, Hu G, Taylor D, Ratnikov B, Bobkov AA, McLean MA, et al. Recreation of the terminal events in physiological integrin activation. J Cell Biol. 2010;188(1):157–73.PubMedPubMedCentralCrossRef Ye F, Hu G, Taylor D, Ratnikov B, Bobkov AA, McLean MA, et al. Recreation of the terminal events in physiological integrin activation. J Cell Biol. 2010;188(1):157–73.PubMedPubMedCentralCrossRef
40.
go back to reference Calderwood DA, Zent R, Grant R, Rees DJ, Hynes RO, Ginsberg MH. The talin head domain binds to integrin β subunit cytoplasmic tails and regulates integrin activation. J Biol Chem. 1999;274(40):28071–4.PubMedCrossRef Calderwood DA, Zent R, Grant R, Rees DJ, Hynes RO, Ginsberg MH. The talin head domain binds to integrin β subunit cytoplasmic tails and regulates integrin activation. J Biol Chem. 1999;274(40):28071–4.PubMedCrossRef
41.
go back to reference Tadokoro S, Shattil SJ, Eto K, Tai V, Liddington RC, de Pereda JM, et al. Talin binding to integrin β tails: a final common step in integrin activation. Science. 2003;302(5642):103–6.PubMedCrossRef Tadokoro S, Shattil SJ, Eto K, Tai V, Liddington RC, de Pereda JM, et al. Talin binding to integrin β tails: a final common step in integrin activation. Science. 2003;302(5642):103–6.PubMedCrossRef
42.
go back to reference Petrich BG, Fogelstrand P, Partridge AW, Yousefi N, Ablooglu AJ, Shattil SJ, et al. The antithrombotic potential of selective blockade of talin-dependent integrin αIIbβ3 (platelet GPIIb-IIIa) activation. J Clin Invest. 2007;117(8):2250–9.PubMedPubMedCentralCrossRef Petrich BG, Fogelstrand P, Partridge AW, Yousefi N, Ablooglu AJ, Shattil SJ, et al. The antithrombotic potential of selective blockade of talin-dependent integrin αIIbβ3 (platelet GPIIb-IIIa) activation. J Clin Invest. 2007;117(8):2250–9.PubMedPubMedCentralCrossRef
43.
go back to reference Petrich BG, Marchese P, Ruggeri ZM, Spiess S, Weichert RA, Ye F, et al. Talin is required for integrin-mediated platelet function in hemostasis and thrombosis. J Exp Med. 2007;204(13):3103–11.PubMedPubMedCentralCrossRef Petrich BG, Marchese P, Ruggeri ZM, Spiess S, Weichert RA, Ye F, et al. Talin is required for integrin-mediated platelet function in hemostasis and thrombosis. J Exp Med. 2007;204(13):3103–11.PubMedPubMedCentralCrossRef
44.
go back to reference Nieswandt B, Moser M, Pleines I, Varga-Szabo D, Monkley S, Critchley D, et al. Loss of talin1 in platelets abrogates integrin activation, platelet aggregation, and thrombus formation in vitro and in vivo. J Exp Med. 2007;204(13):3113–8.PubMedPubMedCentralCrossRef Nieswandt B, Moser M, Pleines I, Varga-Szabo D, Monkley S, Critchley D, et al. Loss of talin1 in platelets abrogates integrin activation, platelet aggregation, and thrombus formation in vitro and in vivo. J Exp Med. 2007;204(13):3113–8.PubMedPubMedCentralCrossRef
45.
go back to reference Stefanini L, Ye F, Snider AK, Sarabakhsh K, Piatt R, Paul DS, et al. A talin mutant that impairs talin-integrin binding in platelets decelerates αIIbβ3 activation without pathological bleeding. Blood. 2014;123(17):2722–31.PubMedPubMedCentralCrossRef Stefanini L, Ye F, Snider AK, Sarabakhsh K, Piatt R, Paul DS, et al. A talin mutant that impairs talin-integrin binding in platelets decelerates αIIbβ3 activation without pathological bleeding. Blood. 2014;123(17):2722–31.PubMedPubMedCentralCrossRef
46.
go back to reference Bledzka K, Bialkowska K, Nie H, Qin J, Byzova T, Wu C, et al. Tyrosine phosphorylation of integrin β3 regulates kindlin-2 binding and integrin activation. J Biol Chem. 2010;285(40):30370–4.PubMedPubMedCentralCrossRef Bledzka K, Bialkowska K, Nie H, Qin J, Byzova T, Wu C, et al. Tyrosine phosphorylation of integrin β3 regulates kindlin-2 binding and integrin activation. J Biol Chem. 2010;285(40):30370–4.PubMedPubMedCentralCrossRef
47.
go back to reference Moser M, Nieswandt B, Ussar S, Pozgajova M, Fassler R. Kindlin-3 is essential for integrin activation and platelet aggregation. Nat Med. 2008;14(3):325–30.PubMedCrossRef Moser M, Nieswandt B, Ussar S, Pozgajova M, Fassler R. Kindlin-3 is essential for integrin activation and platelet aggregation. Nat Med. 2008;14(3):325–30.PubMedCrossRef
49.
go back to reference Montanez E, Ussar S, Schifferer M, Bosl M, Zent R, Moser M, et al. Kindlin-2 controls bidirectional signaling of integrins. Genes Dev. 2008;22(10):1325–30.PubMedPubMedCentralCrossRef Montanez E, Ussar S, Schifferer M, Bosl M, Zent R, Moser M, et al. Kindlin-2 controls bidirectional signaling of integrins. Genes Dev. 2008;22(10):1325–30.PubMedPubMedCentralCrossRef
50.
go back to reference Klapproth S, Moretti FA, Zeiler M, Ruppert R, Breithaupt U, Mueller S, et al. Minimal amounts of kindlin-3 suffice for basal platelet and leukocyte functions in mice. Blood. 2015;126(24):2592–600.PubMedCrossRef Klapproth S, Moretti FA, Zeiler M, Ruppert R, Breithaupt U, Mueller S, et al. Minimal amounts of kindlin-3 suffice for basal platelet and leukocyte functions in mice. Blood. 2015;126(24):2592–600.PubMedCrossRef
51.
go back to reference Gao J, Huang M, Lai J, Mao K, Sun P, Cao Z, et al. Kindlin supports platelet integrin αIIbβ3 activation by interacting with paxillin. J Cell Sci. 2017;130(21):3764–75.PubMedPubMedCentralCrossRef Gao J, Huang M, Lai J, Mao K, Sun P, Cao Z, et al. Kindlin supports platelet integrin αIIbβ3 activation by interacting with paxillin. J Cell Sci. 2017;130(21):3764–75.PubMedPubMedCentralCrossRef
52.
go back to reference Harburger DS, Bouaouina M, Calderwood DA. Kindlin-1 and -2 directly bind the C-terminal region of β integrin cytoplasmic tails and exert integrin-specific activation effects. J Biol Chem. 2009;284(17):11485–97.PubMedPubMedCentralCrossRef Harburger DS, Bouaouina M, Calderwood DA. Kindlin-1 and -2 directly bind the C-terminal region of β integrin cytoplasmic tails and exert integrin-specific activation effects. J Biol Chem. 2009;284(17):11485–97.PubMedPubMedCentralCrossRef
53.
go back to reference Svensson L, Howarth K, McDowall A, Patzak I, Evans R, Ussar S, et al. Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation. Nat Med. 2009;15(3):306–12.PubMedPubMedCentralCrossRef Svensson L, Howarth K, McDowall A, Patzak I, Evans R, Ussar S, et al. Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation. Nat Med. 2009;15(3):306–12.PubMedPubMedCentralCrossRef
54.
go back to reference Moser M, Legate KR, Zent R, Fassler R. The tail of integrins, talin, and kindlins. Science. 2009;324(5929):895–9.PubMedCrossRef Moser M, Legate KR, Zent R, Fassler R. The tail of integrins, talin, and kindlins. Science. 2009;324(5929):895–9.PubMedCrossRef
55.
go back to reference Lai-Cheong JE, Parsons M, McGrath JA. The role of kindlins in cell biology and relevance to human disease. Int J Biochem Cell Biol. 2010;42(5):595–603.PubMedCrossRef Lai-Cheong JE, Parsons M, McGrath JA. The role of kindlins in cell biology and relevance to human disease. Int J Biochem Cell Biol. 2010;42(5):595–603.PubMedCrossRef
56.
go back to reference Meves A, Stremmel C, Gottschalk K, Fassler R. The Kindlin protein family: new members to the club of focal adhesion proteins. Trends Cell Biol. 2009;19(10):504–13.PubMedCrossRef Meves A, Stremmel C, Gottschalk K, Fassler R. The Kindlin protein family: new members to the club of focal adhesion proteins. Trends Cell Biol. 2009;19(10):504–13.PubMedCrossRef
57.
go back to reference Ussar S, Wang HV, Linder S, Fassler R, Moser M. The Kindlins: subcellular localization and expression during murine development. Exp Cell Res. 2006;312(16):3142–51.PubMedCrossRef Ussar S, Wang HV, Linder S, Fassler R, Moser M. The Kindlins: subcellular localization and expression during murine development. Exp Cell Res. 2006;312(16):3142–51.PubMedCrossRef
58.
go back to reference Bialkowska K, Ma YQ, Bledzka K, Sossey-Alaoui K, Izem L, Zhang X, et al. The integrin co-activator Kindlin-3 is expressed and functional in a non-hematopoietic cell, the endothelial cell. J Biol Chem. 2010;285(24):18640–9.PubMedPubMedCentralCrossRef Bialkowska K, Ma YQ, Bledzka K, Sossey-Alaoui K, Izem L, Zhang X, et al. The integrin co-activator Kindlin-3 is expressed and functional in a non-hematopoietic cell, the endothelial cell. J Biol Chem. 2010;285(24):18640–9.PubMedPubMedCentralCrossRef
59.
go back to reference Zhou C, Song S, Zhang J. A novel 3017-bp deletion mutation in the FERMT1 (KIND1) gene in a Chinese family with Kindler syndrome. Br J Dermatol. 2009;160(5):1119–22.PubMedCrossRef Zhou C, Song S, Zhang J. A novel 3017-bp deletion mutation in the FERMT1 (KIND1) gene in a Chinese family with Kindler syndrome. Br J Dermatol. 2009;160(5):1119–22.PubMedCrossRef
60.
go back to reference Techanukul T, Sethuraman G, Zlotogorski A, Horev L, Macarov M, Trainer A, et al. Novel and recurrent FERMT1 gene mutations in Kindler syndrome. Acta Derm Venereol. 2011;91(3):267–70.PubMedCrossRef Techanukul T, Sethuraman G, Zlotogorski A, Horev L, Macarov M, Trainer A, et al. Novel and recurrent FERMT1 gene mutations in Kindler syndrome. Acta Derm Venereol. 2011;91(3):267–70.PubMedCrossRef
61.
go back to reference Kuijpers TW, van de Vijver E, Weterman MA, de Boer M, Tool AT, van den Berg TK, et al. LAD-1/variant syndrome is caused by mutations in FERMT3. Blood. 2009;113(19):4740–6.PubMedCrossRef Kuijpers TW, van de Vijver E, Weterman MA, de Boer M, Tool AT, van den Berg TK, et al. LAD-1/variant syndrome is caused by mutations in FERMT3. Blood. 2009;113(19):4740–6.PubMedCrossRef
62.
go back to reference Nagy M, Mastenbroek TG, Mattheij NJA, de Witt S, Clemetson KJ, Kirschner J, et al. Variable impairment of platelet functions in patients with severe, genetically linked immune deficiencies. Haematologica. 2018;103(3):540–9.PubMedPubMedCentralCrossRef Nagy M, Mastenbroek TG, Mattheij NJA, de Witt S, Clemetson KJ, Kirschner J, et al. Variable impairment of platelet functions in patients with severe, genetically linked immune deficiencies. Haematologica. 2018;103(3):540–9.PubMedPubMedCentralCrossRef
63.
go back to reference Rognoni E, Ruppert R, Fassler R. The kindlin family: functions, signaling properties and implications for human disease. J Cell Sci. 2016;129(1):17–27.PubMedCrossRef Rognoni E, Ruppert R, Fassler R. The kindlin family: functions, signaling properties and implications for human disease. J Cell Sci. 2016;129(1):17–27.PubMedCrossRef
64.
go back to reference McDowall A, Svensson L, Stanley P, Patzak I, Chakravarty P, Howarth K, et al. Two mutations in the KINDLIN3 gene of a new leukocyte adhesion deficiency III patient reveal distinct effects on leukocyte function in vitro. Blood. 2010;115(23):4834–42.PubMedCrossRef McDowall A, Svensson L, Stanley P, Patzak I, Chakravarty P, Howarth K, et al. Two mutations in the KINDLIN3 gene of a new leukocyte adhesion deficiency III patient reveal distinct effects on leukocyte function in vitro. Blood. 2010;115(23):4834–42.PubMedCrossRef
65.
go back to reference Wang P, Zhan J, Song J, Wang Y, Fang W, Liu Z, et al. Differential expression of Kindlin-1 and Kindlin-2 correlates with esophageal cancer progression and epidemiology. Sci China Life Sci. 2017;60(11):1214–22.PubMedCrossRef Wang P, Zhan J, Song J, Wang Y, Fang W, Liu Z, et al. Differential expression of Kindlin-1 and Kindlin-2 correlates with esophageal cancer progression and epidemiology. Sci China Life Sci. 2017;60(11):1214–22.PubMedCrossRef
66.
go back to reference Dowling JJ, Gibbs E, Russell M, Goldman D, Minarcik J, Golden JA, et al. Kindlin-2 is an essential component of intercalated discs and is required for vertebrate cardiac structure and function. Circ Res. 2008;102(4):423–31.PubMedCrossRef Dowling JJ, Gibbs E, Russell M, Goldman D, Minarcik J, Golden JA, et al. Kindlin-2 is an essential component of intercalated discs and is required for vertebrate cardiac structure and function. Circ Res. 2008;102(4):423–31.PubMedCrossRef
67.
go back to reference Pluskota E, Dowling JJ, Gordon N, Golden JA, Szpak D, West XZ, et al. The integrin coactivator kindlin-2 plays a critical role in angiogenesis in mice and zebrafish. Blood. 2011;117(18):4978–87.PubMedPubMedCentralCrossRef Pluskota E, Dowling JJ, Gordon N, Golden JA, Szpak D, West XZ, et al. The integrin coactivator kindlin-2 plays a critical role in angiogenesis in mice and zebrafish. Blood. 2011;117(18):4978–87.PubMedPubMedCentralCrossRef
68.
go back to reference Goult BT, Bouaouina M, Harburger DS, Bate N, Patel B, Anthis NJ, et al. The structure of the N-terminus of kindlin-1: a domain important for αIIbβ3 integrin activation. J Mol Biol. 2009;394(5):944–56.PubMedPubMedCentralCrossRef Goult BT, Bouaouina M, Harburger DS, Bate N, Patel B, Anthis NJ, et al. The structure of the N-terminus of kindlin-1: a domain important for αIIbβ3 integrin activation. J Mol Biol. 2009;394(5):944–56.PubMedPubMedCentralCrossRef
69.
go back to reference Bledzka K, Liu J, Xu Z, Perera HD, Yadav SP, Bialkowska K, et al. Spatial coordination of kindlin-2 with talin head domain in interaction with integrin β cytoplasmic tails. J Biol Chem. 2012;287(29):24585–94.PubMedPubMedCentralCrossRef Bledzka K, Liu J, Xu Z, Perera HD, Yadav SP, Bialkowska K, et al. Spatial coordination of kindlin-2 with talin head domain in interaction with integrin β cytoplasmic tails. J Biol Chem. 2012;287(29):24585–94.PubMedPubMedCentralCrossRef
70.
go back to reference Anthis NJ, Haling JR, Oxley CL, Memo M, Wegener KL, Lim CJ, et al. β Integrin tyrosine phosphorylation is a conserved mechanism for regulating talin-induced integrin activation. J Biol Chem. 2009;284(52):36700–10.PubMedPubMedCentralCrossRef Anthis NJ, Haling JR, Oxley CL, Memo M, Wegener KL, Lim CJ, et al. β Integrin tyrosine phosphorylation is a conserved mechanism for regulating talin-induced integrin activation. J Biol Chem. 2009;284(52):36700–10.PubMedPubMedCentralCrossRef
71.
go back to reference Oxley CL, Anthis NJ, Lowe ED, Vakonakis I, Campbell ID, Wegener KL. An integrin phosphorylation switch: the effect of β3 integrin tail phosphorylation on Dok1 and talin binding. J Biol Chem. 2008;283(9):5420–6.PubMedCrossRef Oxley CL, Anthis NJ, Lowe ED, Vakonakis I, Campbell ID, Wegener KL. An integrin phosphorylation switch: the effect of β3 integrin tail phosphorylation on Dok1 and talin binding. J Biol Chem. 2008;283(9):5420–6.PubMedCrossRef
72.
73.
go back to reference Li H, Deng Y, Sun K, Yang H, Liu J, Wang M, et al. Structural basis of kindlin-mediated integrin recognition and activation. Proc Natl Acad Sci U S A. 2017;114(35):9349–54.PubMedPubMedCentralCrossRef Li H, Deng Y, Sun K, Yang H, Liu J, Wang M, et al. Structural basis of kindlin-mediated integrin recognition and activation. Proc Natl Acad Sci U S A. 2017;114(35):9349–54.PubMedPubMedCentralCrossRef
74.
go back to reference Fukuda K, Bledzka K, Yang J, Perera HD, Plow EF, Qin J. Molecular basis of kindlin-2 binding to integrin-linked kinase pseudokinase for regulating cell adhesion. J Biol Chem. 2014;289(41):28363–75.PubMedPubMedCentralCrossRef Fukuda K, Bledzka K, Yang J, Perera HD, Plow EF, Qin J. Molecular basis of kindlin-2 binding to integrin-linked kinase pseudokinase for regulating cell adhesion. J Biol Chem. 2014;289(41):28363–75.PubMedPubMedCentralCrossRef
75.
go back to reference Huet-Calderwood C, Brahme NN, Kumar N, Stiegler AL, Raghavan S, Boggon TJ, et al. Differences in binding to the ILK complex determines kindlin isoform adhesion localization and integrin activation. J Cell Sci. 2014;127(Pt 19):4308–21.PubMedPubMedCentralCrossRef Huet-Calderwood C, Brahme NN, Kumar N, Stiegler AL, Raghavan S, Boggon TJ, et al. Differences in binding to the ILK complex determines kindlin isoform adhesion localization and integrin activation. J Cell Sci. 2014;127(Pt 19):4308–21.PubMedPubMedCentralCrossRef
76.
go back to reference Kasirer-Friede A, Moran B, Nagrampa-Orje J, Swanson K, Ruggeri ZM, Schraven B, et al. ADAP is required for normal αIIbβ3 activation by VWF/GP Ib-IX-V and other agonists. Blood. 2007;109(3):1018–25.PubMedPubMedCentralCrossRef Kasirer-Friede A, Moran B, Nagrampa-Orje J, Swanson K, Ruggeri ZM, Schraven B, et al. ADAP is required for normal αIIbβ3 activation by VWF/GP Ib-IX-V and other agonists. Blood. 2007;109(3):1018–25.PubMedPubMedCentralCrossRef
78.
go back to reference Theodosiou M, Widmaier M, Bottcher RT, Rognoni E, Veelders M, Bharadwaj M, et al. Kindlin-2 cooperates with talin to activate integrins and induces cell spreading by directly binding paxillin. Elife. 2016;5:e10130.PubMedPubMedCentralCrossRef Theodosiou M, Widmaier M, Bottcher RT, Rognoni E, Veelders M, Bharadwaj M, et al. Kindlin-2 cooperates with talin to activate integrins and induces cell spreading by directly binding paxillin. Elife. 2016;5:e10130.PubMedPubMedCentralCrossRef
79.
go back to reference Sakata A, Ohmori T, Nishimura S, Suzuki H, Madoiwa S, Mimuro J, et al. Paxillin is an intrinsic negative regulator of platelet activation in mice. Thromb J. 2014;12(1):1.PubMedPubMedCentralCrossRef Sakata A, Ohmori T, Nishimura S, Suzuki H, Madoiwa S, Mimuro J, et al. Paxillin is an intrinsic negative regulator of platelet activation in mice. Thromb J. 2014;12(1):1.PubMedPubMedCentralCrossRef
80.
go back to reference Honda S, Shirotani-Ikejima H, Tadokoro S, Maeda Y, Kinoshita T, Tomiyama Y, et al. Integrin-linked kinase associated with integrin activation. Blood. 2009;113(21):5304–13.PubMedCrossRef Honda S, Shirotani-Ikejima H, Tadokoro S, Maeda Y, Kinoshita T, Tomiyama Y, et al. Integrin-linked kinase associated with integrin activation. Blood. 2009;113(21):5304–13.PubMedCrossRef
81.
go back to reference Shattil SJ, O’Toole T, Eigenthaler M, Thon V, Williams M, Babior BM, et al. β3-Endonexin, a novel polypeptide that interacts specifically with the cytoplasmic tail of the integrin β3 subunit. J Cell Biol. 1995;131(3):807–16.PubMedCrossRef Shattil SJ, O’Toole T, Eigenthaler M, Thon V, Williams M, Babior BM, et al. β3-Endonexin, a novel polypeptide that interacts specifically with the cytoplasmic tail of the integrin β3 subunit. J Cell Biol. 1995;131(3):807–16.PubMedCrossRef
82.
go back to reference Kashiwagi H, Schwartz MA, Eigenthaler M, Davis KA, Ginsberg MH, Shattil SJ. Affinity modulation of platelet integrin αIIbβ3 by β3-endonexin, a selective binding partner of the β3 integrin cytoplasmic tail. J Cell Biol. 1997;137(6):1433–43.PubMedPubMedCentralCrossRef Kashiwagi H, Schwartz MA, Eigenthaler M, Davis KA, Ginsberg MH, Shattil SJ. Affinity modulation of platelet integrin αIIbβ3 by β3-endonexin, a selective binding partner of the β3 integrin cytoplasmic tail. J Cell Biol. 1997;137(6):1433–43.PubMedPubMedCentralCrossRef
83.
go back to reference Tsuboi S. Calcium integrin-binding protein activates platelet integrin αIIbβ3. J Biol Chem. 2002;277(3):1919–23.PubMedCrossRef Tsuboi S. Calcium integrin-binding protein activates platelet integrin αIIbβ3. J Biol Chem. 2002;277(3):1919–23.PubMedCrossRef
84.
go back to reference Yuan W, Leisner TM, McFadden AW, Wang Z, Larson MK, Clark S, et al. CIB1 is an endogenous inhibitor of agonist-induced integrin αIIbβ3 activation. J Cell Biol. 2006;172(2):169–75.PubMedPubMedCentralCrossRef Yuan W, Leisner TM, McFadden AW, Wang Z, Larson MK, Clark S, et al. CIB1 is an endogenous inhibitor of agonist-induced integrin αIIbβ3 activation. J Cell Biol. 2006;172(2):169–75.PubMedPubMedCentralCrossRef
85.
go back to reference Larkin D, Murphy D, Reilly DF, Cahill M, Sattler E, Harriott P, et al. ICln, a novel integrin αIIbβ3-associated protein, functionally regulates platelet activation. J Biol Chem. 2004;279(26):27286–93.PubMedCrossRef Larkin D, Murphy D, Reilly DF, Cahill M, Sattler E, Harriott P, et al. ICln, a novel integrin αIIbβ3-associated protein, functionally regulates platelet activation. J Biol Chem. 2004;279(26):27286–93.PubMedCrossRef
86.
go back to reference Gushiken FC, Hyojeong H, Pradhan S, Langlois KW, Alrehani N, Cruz MA, et al. The catalytic subunit of protein phosphatase 1 γ regulates thrombin-induced murine platelet αIIbβ3 function. PLoS One. 2009;4(12):e8304.PubMedPubMedCentralCrossRef Gushiken FC, Hyojeong H, Pradhan S, Langlois KW, Alrehani N, Cruz MA, et al. The catalytic subunit of protein phosphatase 1 γ regulates thrombin-induced murine platelet αIIbβ3 function. PLoS One. 2009;4(12):e8304.PubMedPubMedCentralCrossRef
87.
go back to reference Ohmori T, Kashiwakura Y, Ishiwata A, Madoiwa S, Mimuro J, Honda S, et al. Vinculin activates inside-out signaling of integrin αIIbβ3 in Chinese hamster ovary cells. Biochem Biophys Res Commun. 2010;400(3):323–8.PubMedCrossRef Ohmori T, Kashiwakura Y, Ishiwata A, Madoiwa S, Mimuro J, Honda S, et al. Vinculin activates inside-out signaling of integrin αIIbβ3 in Chinese hamster ovary cells. Biochem Biophys Res Commun. 2010;400(3):323–8.PubMedCrossRef
88.
go back to reference Tucker KL, Sage T, Stevens JM, Jordan PA, Jones S, Barrett NE, et al. A dual role for integrin-linked kinase in platelets: regulating integrin function and α-granule secretion. Blood. 2008;112(12):4523–31.PubMedPubMedCentralCrossRef Tucker KL, Sage T, Stevens JM, Jordan PA, Jones S, Barrett NE, et al. A dual role for integrin-linked kinase in platelets: regulating integrin function and α-granule secretion. Blood. 2008;112(12):4523–31.PubMedPubMedCentralCrossRef
89.
go back to reference Jones CI, Tucker KL, Sasikumar P, Sage T, Kaiser WJ, Moore C, et al. Integrin-linked kinase regulates the rate of platelet activation and is essential for the formation of stable thrombi. J Thromb Haemost. 2014;12(8):1342–52.PubMedCrossRef Jones CI, Tucker KL, Sasikumar P, Sage T, Kaiser WJ, Moore C, et al. Integrin-linked kinase regulates the rate of platelet activation and is essential for the formation of stable thrombi. J Thromb Haemost. 2014;12(8):1342–52.PubMedCrossRef
90.
go back to reference Pasquet JM, Noury M, Nurden AT. Evidence that the platelet integrin αIIbβ3 is regulated by the integrin-linked kinase, ILK, in a PI3-kinase dependent pathway. Thromb Haemost. 2002;88(1):115–22.PubMed Pasquet JM, Noury M, Nurden AT. Evidence that the platelet integrin αIIbβ3 is regulated by the integrin-linked kinase, ILK, in a PI3-kinase dependent pathway. Thromb Haemost. 2002;88(1):115–22.PubMed
91.
go back to reference Sadoul K, Vignoud L, Mossuz P, Block MR. Proteolysis leads to the appearance of the long form of β3-endonexin in human platelets. Exp Cell Res. 2005;305(2):427–35.PubMedCrossRef Sadoul K, Vignoud L, Mossuz P, Block MR. Proteolysis leads to the appearance of the long form of β3-endonexin in human platelets. Exp Cell Res. 2005;305(2):427–35.PubMedCrossRef
92.
go back to reference Kracun D, Riess F, Kanchev I, Gawaz M, Gorlach A. The β3-integrin binding protein β3-endonexin is a novel negative regulator of hypoxia-inducible factor-1. Antioxid Redox Signal. 2014;20(13):1964–76.PubMedPubMedCentralCrossRef Kracun D, Riess F, Kanchev I, Gawaz M, Gorlach A. The β3-integrin binding protein β3-endonexin is a novel negative regulator of hypoxia-inducible factor-1. Antioxid Redox Signal. 2014;20(13):1964–76.PubMedPubMedCentralCrossRef
93.
go back to reference Naik MU, Naik TU, Summer R, Naik UP. Binding of CIB1 to the αIIb tail of αIIbβ3 is required for FAK recruitment and activation in platelets. PLoS One. 2017;12(5):e0176602.PubMedPubMedCentralCrossRef Naik MU, Naik TU, Summer R, Naik UP. Binding of CIB1 to the αIIb tail of αIIbβ3 is required for FAK recruitment and activation in platelets. PLoS One. 2017;12(5):e0176602.PubMedPubMedCentralCrossRef
94.
go back to reference Lagarrigue F, Vikas Anekal P, Lee HS, Bachir AI, Ablack JN, Horwitz AF, et al. A RIAM/lamellipodin-talin-integrin complex forms the tip of sticky fingers that guide cell migration. Nat Commun. 2015;6:8492.PubMedPubMedCentralCrossRef Lagarrigue F, Vikas Anekal P, Lee HS, Bachir AI, Ablack JN, Horwitz AF, et al. A RIAM/lamellipodin-talin-integrin complex forms the tip of sticky fingers that guide cell migration. Nat Commun. 2015;6:8492.PubMedPubMedCentralCrossRef
95.
go back to reference Mitsios JV, Prevost N, Kasirer-Friede A, Gutierrez E, Groisman A, Abrams CS, et al. What is vinculin needed for in platelets? J Thromb Haemost. 2010;8(10):2294–304.PubMedPubMedCentralCrossRef Mitsios JV, Prevost N, Kasirer-Friede A, Gutierrez E, Groisman A, Abrams CS, et al. What is vinculin needed for in platelets? J Thromb Haemost. 2010;8(10):2294–304.PubMedPubMedCentralCrossRef
96.
go back to reference Kato A, Kawamata N, Tamayose K, Egashira M, Miura R, Fujimura T, et al. Ancient ubiquitous protein 1 binds to the conserved membrane-proximal sequence of the cytoplasmic tail of the integrin α subunits that plays a crucial role in the inside-out signaling of αIIbβ3. J Biol Chem. 2002;277(32):28934–41.PubMedCrossRef Kato A, Kawamata N, Tamayose K, Egashira M, Miura R, Fujimura T, et al. Ancient ubiquitous protein 1 binds to the conserved membrane-proximal sequence of the cytoplasmic tail of the integrin α subunits that plays a crucial role in the inside-out signaling of αIIbβ3. J Biol Chem. 2002;277(32):28934–41.PubMedCrossRef
97.
go back to reference Kiema T, Lad Y, Jiang P, Oxley CL, Baldassarre M, Wegener KL, et al. The molecular basis of filamin binding to integrins and competition with talin. Mol Cell. 2006;21(3):337–47.PubMedCrossRef Kiema T, Lad Y, Jiang P, Oxley CL, Baldassarre M, Wegener KL, et al. The molecular basis of filamin binding to integrins and competition with talin. Mol Cell. 2006;21(3):337–47.PubMedCrossRef
98.
go back to reference McCleverty CJ, Lin DC, Liddington RC. Structure of the PTB domain of tensin1 and a model for its recruitment to fibrillar adhesions. Protein Sci. 2007;16(6):1223–9.PubMedPubMedCentralCrossRef McCleverty CJ, Lin DC, Liddington RC. Structure of the PTB domain of tensin1 and a model for its recruitment to fibrillar adhesions. Protein Sci. 2007;16(6):1223–9.PubMedPubMedCentralCrossRef
99.
go back to reference Wegener KL, Partridge AW, Han J, Pickford AR, Liddington RC, Ginsberg MH, et al. Structural basis of integrin activation by talin. Cell. 2007;128(1):171–82.PubMedCrossRef Wegener KL, Partridge AW, Han J, Pickford AR, Liddington RC, Ginsberg MH, et al. Structural basis of integrin activation by talin. Cell. 2007;128(1):171–82.PubMedCrossRef
100.
go back to reference Denofrio JC, Yuan W, Temple BR, Gentry HR, Parise LV. Characterization of calcium- and integrin-binding protein 1 (CIB1) knockout platelets: potential compensation by CIB family members. Thromb Haemost. 2008;100(5):847–56.PubMedPubMedCentralCrossRef Denofrio JC, Yuan W, Temple BR, Gentry HR, Parise LV. Characterization of calcium- and integrin-binding protein 1 (CIB1) knockout platelets: potential compensation by CIB family members. Thromb Haemost. 2008;100(5):847–56.PubMedPubMedCentralCrossRef
101.
go back to reference Naik MU, Nigam A, Manrai P, Millili P, Czymmek K, Sullivan M, et al. CIB1 deficiency results in impaired thrombosis: the potential role of CIB1 in outside-in signaling through integrin αIIbβ3. J Thromb Haemost. 2009;7(11):1906–14.PubMedCrossRef Naik MU, Nigam A, Manrai P, Millili P, Czymmek K, Sullivan M, et al. CIB1 deficiency results in impaired thrombosis: the potential role of CIB1 in outside-in signaling through integrin αIIbβ3. J Thromb Haemost. 2009;7(11):1906–14.PubMedCrossRef
102.
go back to reference Izard T, Vonrhein C. Structural basis for amplifying vinculin activation by talin. J Biol Chem. 2004;279(26):27667–78.PubMedCrossRef Izard T, Vonrhein C. Structural basis for amplifying vinculin activation by talin. J Biol Chem. 2004;279(26):27667–78.PubMedCrossRef
103.
go back to reference Calderwood DA, Fujioka Y, de Pereda JM, Garcia-Alvarez B, Nakamoto T, Margolis B, et al. Integrin β cytoplasmic domain interactions with phosphotyrosine-binding domains: a structural prototype for diversity in integrin signaling. Proc Natl Acad Sci U S A. 2003;100(5):2272–7.PubMedPubMedCentralCrossRef Calderwood DA, Fujioka Y, de Pereda JM, Garcia-Alvarez B, Nakamoto T, Margolis B, et al. Integrin β cytoplasmic domain interactions with phosphotyrosine-binding domains: a structural prototype for diversity in integrin signaling. Proc Natl Acad Sci U S A. 2003;100(5):2272–7.PubMedPubMedCentralCrossRef
104.
go back to reference Chatterjee D, D’Souza A, Zhang Y, Bin W, Tan SM, Bhattacharjya S. Interaction analyses of 14-3-3ζ, Dok1, and phosphorylated integrin β cytoplasmic tails reveal a bi-molecular switch in integrin regulation. J Mol Biol. 2018;430(21):4419–30.PubMedCrossRef Chatterjee D, D’Souza A, Zhang Y, Bin W, Tan SM, Bhattacharjya S. Interaction analyses of 14-3-3ζ, Dok1, and phosphorylated integrin β cytoplasmic tails reveal a bi-molecular switch in integrin regulation. J Mol Biol. 2018;430(21):4419–30.PubMedCrossRef
105.
go back to reference Niki M, Nayak MK, Jin H, Bhasin N, Plow EF, Pandolfi PP, et al. Dok-1 negatively regulates platelet integrin αIIbβ3 outside-in signalling and inhibits thrombosis in mice. Thromb Haemost. 2016;115(5):969–78.PubMedPubMedCentralCrossRef Niki M, Nayak MK, Jin H, Bhasin N, Plow EF, Pandolfi PP, et al. Dok-1 negatively regulates platelet integrin αIIbβ3 outside-in signalling and inhibits thrombosis in mice. Thromb Haemost. 2016;115(5):969–78.PubMedPubMedCentralCrossRef
106.
go back to reference Hughan SC, Spring CM, Schoenwaelder SM, Sturgeon S, Alwis I, Yuan Y, et al. Dok-2 adaptor protein regulates the shear-dependent adhesive function of platelet integrin αIIbβ3 in mice. J Biol Chem. 2014;289(8):5051–60.PubMedPubMedCentralCrossRef Hughan SC, Spring CM, Schoenwaelder SM, Sturgeon S, Alwis I, Yuan Y, et al. Dok-2 adaptor protein regulates the shear-dependent adhesive function of platelet integrin αIIbβ3 in mice. J Biol Chem. 2014;289(8):5051–60.PubMedPubMedCentralCrossRef
107.
go back to reference Liu J, Das M, Yang J, Ithychanda SS, Yakubenko VP, Plow EF, et al. Structural mechanism of integrin inactivation by filamin. Nat Struct Mol Biol. 2015;22(5):383–9.PubMedPubMedCentralCrossRef Liu J, Das M, Yang J, Ithychanda SS, Yakubenko VP, Plow EF, et al. Structural mechanism of integrin inactivation by filamin. Nat Struct Mol Biol. 2015;22(5):383–9.PubMedPubMedCentralCrossRef
108.
go back to reference Berrou E, Adam F, Lebret M, Planche V, Fergelot P, Issertial O, et al. Gain-of-function mutation in filamin A potentiates platelet integrin αIIbβ3 activation. Arterioscler Thromb Vasc Biol. 2017;37(6):1087–97.PubMedCrossRef Berrou E, Adam F, Lebret M, Planche V, Fergelot P, Issertial O, et al. Gain-of-function mutation in filamin A potentiates platelet integrin αIIbβ3 activation. Arterioscler Thromb Vasc Biol. 2017;37(6):1087–97.PubMedCrossRef
109.
go back to reference Tadokoro S, Nakazawa T, Kamae T, Kiyomizu K, Kashiwagi H, Honda S, et al. A potential role for α-actinin in inside-out αIIbβ3 signaling. Blood. 2011;117(1):250–8.PubMedCrossRef Tadokoro S, Nakazawa T, Kamae T, Kiyomizu K, Kashiwagi H, Honda S, et al. A potential role for α-actinin in inside-out αIIbβ3 signaling. Blood. 2011;117(1):250–8.PubMedCrossRef
110.
go back to reference Legate KR, Fassler R. Mechanisms that regulate adaptor binding to β-integrin cytoplasmic tails. J Cell Sci. 2009;122(Pt 2):187–98.PubMedCrossRef Legate KR, Fassler R. Mechanisms that regulate adaptor binding to β-integrin cytoplasmic tails. J Cell Sci. 2009;122(Pt 2):187–98.PubMedCrossRef
111.
go back to reference Shams H, Mofrad MRK. α-Actinin induces a kink in the transmembrane domain of β3-integrin and impairs activation via talin. Biophys J. 2017;113(4):948–56.PubMedPubMedCentralCrossRef Shams H, Mofrad MRK. α-Actinin induces a kink in the transmembrane domain of β3-integrin and impairs activation via talin. Biophys J. 2017;113(4):948–56.PubMedPubMedCentralCrossRef
112.
go back to reference Vanhoorelbeke K, Ulrichts H, Van de Walle G, Fontayne A, Deckmyn H. Inhibition of platelet glycoprotein Ib and its antithrombotic potential. Curr Pharm Des. 2007;13(26):2684–97.PubMedCrossRef Vanhoorelbeke K, Ulrichts H, Van de Walle G, Fontayne A, Deckmyn H. Inhibition of platelet glycoprotein Ib and its antithrombotic potential. Curr Pharm Des. 2007;13(26):2684–97.PubMedCrossRef
114.
go back to reference Severin S, Nash CA, Mori J, Zhao Y, Abram C, Lowell CA, et al. Distinct and overlapping functional roles of Src family kinases in mouse platelets. J Thromb Haemost. 2012;10(8):1631–45.PubMedPubMedCentralCrossRef Severin S, Nash CA, Mori J, Zhao Y, Abram C, Lowell CA, et al. Distinct and overlapping functional roles of Src family kinases in mouse platelets. J Thromb Haemost. 2012;10(8):1631–45.PubMedPubMedCentralCrossRef
115.
go back to reference Li Z, Zhang G, Liu J, Stojanovic A, Ruan C, Lowell CA, et al. An important role of the SRC family kinase Lyn in stimulating platelet granule secretion. J Biol Chem. 2010;285(17):12559–70.PubMedPubMedCentralCrossRef Li Z, Zhang G, Liu J, Stojanovic A, Ruan C, Lowell CA, et al. An important role of the SRC family kinase Lyn in stimulating platelet granule secretion. J Biol Chem. 2010;285(17):12559–70.PubMedPubMedCentralCrossRef
116.
117.
go back to reference Geue S, Walker-Allgaier B, Eissler D, Tegtmeyer R, Schaub M, Lang F, et al. Doxepin inhibits GPVI-dependent platelet Ca (2+) signaling and collagen-dependent thrombus formation. Am J Physiol Cell Physiol. 2017;312(6):C765–C74.PubMedCrossRef Geue S, Walker-Allgaier B, Eissler D, Tegtmeyer R, Schaub M, Lang F, et al. Doxepin inhibits GPVI-dependent platelet Ca (2+) signaling and collagen-dependent thrombus formation. Am J Physiol Cell Physiol. 2017;312(6):C765–C74.PubMedCrossRef
118.
go back to reference Suzuki-Inoue K, Inoue O, Frampton J, Watson SP. Murine GPVI stimulates weak integrin activation in PLCγ2−/− platelets: involvement of PLCγ1 and PI3-kinase. Blood. 2003;102(4):1367–73.PubMedCrossRef Suzuki-Inoue K, Inoue O, Frampton J, Watson SP. Murine GPVI stimulates weak integrin activation in PLCγ2−/− platelets: involvement of PLCγ1 and PI3-kinase. Blood. 2003;102(4):1367–73.PubMedCrossRef
119.
go back to reference Ozaki Y, Asazuma N, Suzuki-Inoue K, Berndt MC. Platelet GPIb-IX-V-dependent signaling. J Thromb Haemost. 2005;3(8):1745–51.PubMedCrossRef Ozaki Y, Asazuma N, Suzuki-Inoue K, Berndt MC. Platelet GPIb-IX-V-dependent signaling. J Thromb Haemost. 2005;3(8):1745–51.PubMedCrossRef
120.
go back to reference Woulfe D, Jiang H, Mortensen R, Yang J, Brass LF. Activation of Rap1B by G(i) family members in platelets. J Biol Chem. 2002;277(26):23382–90.PubMedCrossRef Woulfe D, Jiang H, Mortensen R, Yang J, Brass LF. Activation of Rap1B by G(i) family members in platelets. J Biol Chem. 2002;277(26):23382–90.PubMedCrossRef
121.
go back to reference Varga-Szabo D, Braun A, Nieswandt B. Calcium signaling in platelets. J Thromb Haemost. 2009;7(7):1057–66.PubMedCrossRef Varga-Szabo D, Braun A, Nieswandt B. Calcium signaling in platelets. J Thromb Haemost. 2009;7(7):1057–66.PubMedCrossRef
122.
go back to reference Cifuni SM, Wagner DD, Bergmeier W. CalDAG-GEFI and protein kinase C represent alternative pathways leading to activation of integrin αIIbβ3 in platelets. Blood. 2008;112(5):1696–703.PubMedPubMedCentralCrossRef Cifuni SM, Wagner DD, Bergmeier W. CalDAG-GEFI and protein kinase C represent alternative pathways leading to activation of integrin αIIbβ3 in platelets. Blood. 2008;112(5):1696–703.PubMedPubMedCentralCrossRef
123.
go back to reference Piatt R, Paul DS, Lee RH, McKenzie SE, Parise LV, Cowley DO, et al. Mice expressing low levels of CalDAG-GEFI exhibit markedly impaired platelet activation with minor impact on hemostasis. Arterioscler Thromb Vasc Biol. 2016;36(9):1838–46.PubMedPubMedCentralCrossRef Piatt R, Paul DS, Lee RH, McKenzie SE, Parise LV, Cowley DO, et al. Mice expressing low levels of CalDAG-GEFI exhibit markedly impaired platelet activation with minor impact on hemostasis. Arterioscler Thromb Vasc Biol. 2016;36(9):1838–46.PubMedPubMedCentralCrossRef
124.
go back to reference Kato H, Nakazawa Y, Kurokawa Y, Kashiwagi H, Morikawa Y, Morita D, et al. Human CalDAG-GEFI deficiency increases bleeding and delays αIIbβ3 activation. Blood. 2016;128(23):2729–33.PubMedCrossRef Kato H, Nakazawa Y, Kurokawa Y, Kashiwagi H, Morikawa Y, Morita D, et al. Human CalDAG-GEFI deficiency increases bleeding and delays αIIbβ3 activation. Blood. 2016;128(23):2729–33.PubMedCrossRef
125.
go back to reference Crittenden JR, Bergmeier W, Zhang Y, Piffath CL, Liang Y, Wagner DD, et al. CalDAG-GEFI integrates signaling for platelet aggregation and thrombus formation. Nat Med. 2004;10(9):982–6.PubMedCrossRef Crittenden JR, Bergmeier W, Zhang Y, Piffath CL, Liang Y, Wagner DD, et al. CalDAG-GEFI integrates signaling for platelet aggregation and thrombus formation. Nat Med. 2004;10(9):982–6.PubMedCrossRef
126.
go back to reference Harper MT, Poole AW. Diverse functions of protein kinase C isoforms in platelet activation and thrombus formation. J Thromb Haemost. 2010;8(3):454–62.PubMedCrossRef Harper MT, Poole AW. Diverse functions of protein kinase C isoforms in platelet activation and thrombus formation. J Thromb Haemost. 2010;8(3):454–62.PubMedCrossRef
127.
go back to reference Han J, Lim CJ, Watanabe N, Soriani A, Ratnikov B, Calderwood DA, et al. Reconstructing and deconstructing agonist-induced activation of integrin αIIbβ3. Curr Biol. 2006;16(18):1796–806.PubMedCrossRef Han J, Lim CJ, Watanabe N, Soriani A, Ratnikov B, Calderwood DA, et al. Reconstructing and deconstructing agonist-induced activation of integrin αIIbβ3. Curr Biol. 2006;16(18):1796–806.PubMedCrossRef
128.
go back to reference Konopatskaya O, Gilio K, Harper MT, Zhao Y, Cosemans JM, Karim ZA, et al. PKCα regulates platelet granule secretion and thrombus formation in mice. J Clin Invest. 2009;119(2):399–407.PubMedPubMedCentral Konopatskaya O, Gilio K, Harper MT, Zhao Y, Cosemans JM, Karim ZA, et al. PKCα regulates platelet granule secretion and thrombus formation in mice. J Clin Invest. 2009;119(2):399–407.PubMedPubMedCentral
129.
go back to reference Chrzanowska-Wodnicka M, Smyth SS, Schoenwaelder SM, Fischer TH, White GC 2nd. Rap1b is required for normal platelet function and hemostasis in mice. J Clin Invest. 2005;115(3):680–7.PubMedPubMedCentralCrossRef Chrzanowska-Wodnicka M, Smyth SS, Schoenwaelder SM, Fischer TH, White GC 2nd. Rap1b is required for normal platelet function and hemostasis in mice. J Clin Invest. 2005;115(3):680–7.PubMedPubMedCentralCrossRef
130.
go back to reference Lee HS, Lim CJ, Puzon-McLaughlin W, Shattil SJ, Ginsberg MH. RIAM activates integrins by linking talin to ras GTPase membrane-targeting sequences. J Biol Chem. 2009;284(8):5119–27.PubMedPubMedCentralCrossRef Lee HS, Lim CJ, Puzon-McLaughlin W, Shattil SJ, Ginsberg MH. RIAM activates integrins by linking talin to ras GTPase membrane-targeting sequences. J Biol Chem. 2009;284(8):5119–27.PubMedPubMedCentralCrossRef
131.
go back to reference Stritt S, Wolf K, Lorenz V, Vogtle T, Gupta S, Bosl MR, et al. Rap1-GTP-interacting adaptor molecule (RIAM) is dispensable for platelet integrin activation and function in mice. Blood. 2015;125(2):219–22.PubMedPubMedCentralCrossRef Stritt S, Wolf K, Lorenz V, Vogtle T, Gupta S, Bosl MR, et al. Rap1-GTP-interacting adaptor molecule (RIAM) is dispensable for platelet integrin activation and function in mice. Blood. 2015;125(2):219–22.PubMedPubMedCentralCrossRef
132.
go back to reference Watanabe N, Bodin L, Pandey M, Krause M, Coughlin S, Boussiotis VA, et al. Mechanisms and consequences of agonist-induced talin recruitment to platelet integrin αIIbβ3. J Cell Biol. 2008;181(7):1211–22.PubMedPubMedCentralCrossRef Watanabe N, Bodin L, Pandey M, Krause M, Coughlin S, Boussiotis VA, et al. Mechanisms and consequences of agonist-induced talin recruitment to platelet integrin αIIbβ3. J Cell Biol. 2008;181(7):1211–22.PubMedPubMedCentralCrossRef
133.
go back to reference Zhu L, Yang J, Bromberger T, Holly A, Lu F, Liu H, et al. Structure of Rap1b bound to talin reveals a pathway for triggering integrin activation. Nat Commun. 2017;8(1):1744.PubMedPubMedCentralCrossRef Zhu L, Yang J, Bromberger T, Holly A, Lu F, Liu H, et al. Structure of Rap1b bound to talin reveals a pathway for triggering integrin activation. Nat Commun. 2017;8(1):1744.PubMedPubMedCentralCrossRef
134.
go back to reference Lagarrigue F, Gingras AR, Paul DS, Valadez AJ, Cuevas MN, Sun H, et al. Rap1 binding to the talin 1 F0 domain makes a minimal contribution to murine platelet GPIIb-IIIa activation. Blood Adv. 2018;2(18):2358–68.PubMedPubMedCentralCrossRef Lagarrigue F, Gingras AR, Paul DS, Valadez AJ, Cuevas MN, Sun H, et al. Rap1 binding to the talin 1 F0 domain makes a minimal contribution to murine platelet GPIIb-IIIa activation. Blood Adv. 2018;2(18):2358–68.PubMedPubMedCentralCrossRef
135.
go back to reference Srinivasan S, Schiemer J, Zhang X, Chishti AH, Le Breton GC. Gα13 switch region 2 binds to the talin head domain and activates αIIbβ3 integrin in human platelets. J Biol Chem. 2015;290(41):25129–39.PubMedPubMedCentralCrossRef Srinivasan S, Schiemer J, Zhang X, Chishti AH, Le Breton GC. Gα13 switch region 2 binds to the talin head domain and activates αIIbβ3 integrin in human platelets. J Biol Chem. 2015;290(41):25129–39.PubMedPubMedCentralCrossRef
136.
go back to reference Wee JL, Jackson DE. The Ig-ITIM superfamily member PECAM-1 regulates the “outside-in” signaling properties of integrin αIIbβ3 in platelets. Blood. 2005;106(12):3816–23.PubMedCrossRef Wee JL, Jackson DE. The Ig-ITIM superfamily member PECAM-1 regulates the “outside-in” signaling properties of integrin αIIbβ3 in platelets. Blood. 2005;106(12):3816–23.PubMedCrossRef
137.
go back to reference Wong C, Liu Y, Yip J, Chand R, Wee JL, Oates L, et al. CEACAM1 negatively regulates platelet-collagen interactions and thrombus growth in vitro and in vivo. Blood. 2009;113(8):1818–28.PubMedCrossRef Wong C, Liu Y, Yip J, Chand R, Wee JL, Oates L, et al. CEACAM1 negatively regulates platelet-collagen interactions and thrombus growth in vitro and in vivo. Blood. 2009;113(8):1818–28.PubMedCrossRef
138.
go back to reference Jones CI, Sage T, Moraes LA, Vaiyapuri S, Hussain U, Tucker KL, et al. Platelet endothelial cell adhesion molecule-1 inhibits platelet response to thrombin and von Willebrand factor by regulating the internalization of glycoprotein Ib via AKT/glycogen synthase kinase-3/dynamin and integrin αIIbβ3. Arterioscler Thromb Vasc Biol. 2014;34(9):1968–76.PubMedCrossRef Jones CI, Sage T, Moraes LA, Vaiyapuri S, Hussain U, Tucker KL, et al. Platelet endothelial cell adhesion molecule-1 inhibits platelet response to thrombin and von Willebrand factor by regulating the internalization of glycoprotein Ib via AKT/glycogen synthase kinase-3/dynamin and integrin αIIbβ3. Arterioscler Thromb Vasc Biol. 2014;34(9):1968–76.PubMedCrossRef
139.
go back to reference Newland SA, Macaulay IC, Floto AR, de Vet EC, Ouwehand WH, Watkins NA, et al. The novel inhibitory receptor G6B is expressed on the surface of platelets and attenuates platelet function in vitro. Blood. 2007;109(11):4806–9.PubMedCrossRef Newland SA, Macaulay IC, Floto AR, de Vet EC, Ouwehand WH, Watkins NA, et al. The novel inhibitory receptor G6B is expressed on the surface of platelets and attenuates platelet function in vitro. Blood. 2007;109(11):4806–9.PubMedCrossRef
140.
go back to reference Geer MJ, van Geffen JP, Gopalasingam P, Vogtle T, Smith CW, Heising S, et al. Uncoupling ITIM receptor G6b-B from tyrosine phosphatases Shp1 and Shp2 disrupts murine platelet homeostasis. Blood. 2018;132(13):1413–25.PubMedPubMedCentralCrossRef Geer MJ, van Geffen JP, Gopalasingam P, Vogtle T, Smith CW, Heising S, et al. Uncoupling ITIM receptor G6b-B from tyrosine phosphatases Shp1 and Shp2 disrupts murine platelet homeostasis. Blood. 2018;132(13):1413–25.PubMedPubMedCentralCrossRef
141.
go back to reference Mazharian A, Wang YJ, Mori J, Bem D, Finney B, Heising S, et al. Mice lacking the ITIM-containing receptor G6b-B exhibit macrothrombocytopenia and aberrant platelet function. Sci Signal. 2012;5(248):ra78.PubMedPubMedCentralCrossRef Mazharian A, Wang YJ, Mori J, Bem D, Finney B, Heising S, et al. Mice lacking the ITIM-containing receptor G6b-B exhibit macrothrombocytopenia and aberrant platelet function. Sci Signal. 2012;5(248):ra78.PubMedPubMedCentralCrossRef
142.
go back to reference Hu M, Liu P, Liu Y, Yue M, Wang Y, Wang S, et al. Platelet Shp2 negatively regulates thrombus stability under high shear stress. J Thromb Haemost. 2019;17(1):220–31.PubMedCrossRef Hu M, Liu P, Liu Y, Yue M, Wang Y, Wang S, et al. Platelet Shp2 negatively regulates thrombus stability under high shear stress. J Thromb Haemost. 2019;17(1):220–31.PubMedCrossRef
143.
go back to reference Naik UP, Ehrlich YH, Kornecki E. Mechanisms of platelet activation by a stimulatory antibody: cross-linking of a novel platelet receptor for monoclonal antibody F11 with the FcγRII receptor. Biochem J. 1995;310(Pt 1):155–62.PubMedPubMedCentralCrossRef Naik UP, Ehrlich YH, Kornecki E. Mechanisms of platelet activation by a stimulatory antibody: cross-linking of a novel platelet receptor for monoclonal antibody F11 with the FcγRII receptor. Biochem J. 1995;310(Pt 1):155–62.PubMedPubMedCentralCrossRef
144.
go back to reference Nasdala I, Wolburg-Buchholz K, Wolburg H, Kuhn A, Ebnet K, Brachtendorf G, et al. A transmembrane tight junction protein selectively expressed on endothelial cells and platelets. J Biol Chem. 2002;277(18):16294–303.PubMedCrossRef Nasdala I, Wolburg-Buchholz K, Wolburg H, Kuhn A, Ebnet K, Brachtendorf G, et al. A transmembrane tight junction protein selectively expressed on endothelial cells and platelets. J Biol Chem. 2002;277(18):16294–303.PubMedCrossRef
145.
go back to reference Stalker TJ, Wu J, Morgans A, Traxler EA, Wang L, Chatterjee MS, et al. Endothelial cell specific adhesion molecule (ESAM) localizes to platelet-platelet contacts and regulates thrombus formation in vivo. J Thromb Haemost. 2009;7(11):1886–96.PubMedPubMedCentralCrossRef Stalker TJ, Wu J, Morgans A, Traxler EA, Wang L, Chatterjee MS, et al. Endothelial cell specific adhesion molecule (ESAM) localizes to platelet-platelet contacts and regulates thrombus formation in vivo. J Thromb Haemost. 2009;7(11):1886–96.PubMedPubMedCentralCrossRef
146.
go back to reference Sobocka MB, Sobocki T, Babinska A, Hartwig JH, Li M, Ehrlich YH, et al. Signaling pathways of the F11 receptor (F11R; a.k.a. JAM-1, JAM-A) in human platelets: F11R dimerization, phosphorylation and complex formation with the integrin GPIIIa. J Recept Signal Transduct Res. 2004;24(1–2):85–105.PubMedCrossRef Sobocka MB, Sobocki T, Babinska A, Hartwig JH, Li M, Ehrlich YH, et al. Signaling pathways of the F11 receptor (F11R; a.k.a. JAM-1, JAM-A) in human platelets: F11R dimerization, phosphorylation and complex formation with the integrin GPIIIa. J Recept Signal Transduct Res. 2004;24(1–2):85–105.PubMedCrossRef
147.
go back to reference Naik MU, Caplan JL, Naik UP. Junctional adhesion molecule-A suppresses platelet integrin αIIbβ3 signaling by recruiting Csk to the integrin-c-Src complex. Blood. 2014;123(9):1393–402.PubMedPubMedCentralCrossRef Naik MU, Caplan JL, Naik UP. Junctional adhesion molecule-A suppresses platelet integrin αIIbβ3 signaling by recruiting Csk to the integrin-c-Src complex. Blood. 2014;123(9):1393–402.PubMedPubMedCentralCrossRef
148.
go back to reference Naik MU, Stalker TJ, Brass LF, Naik UP. JAM-A protects from thrombosis by suppressing integrin αIIbβ3-dependent outside-in signaling in platelets. Blood. 2012;119(14):3352–60.PubMedPubMedCentralCrossRef Naik MU, Stalker TJ, Brass LF, Naik UP. JAM-A protects from thrombosis by suppressing integrin αIIbβ3-dependent outside-in signaling in platelets. Blood. 2012;119(14):3352–60.PubMedPubMedCentralCrossRef
149.
go back to reference Orlowski E, Chand R, Yip J, Wong C, Goschnick MW, Wright MD, et al. A platelet tetraspanin superfamily member, CD151, is required for regulation of thrombus growth and stability in vivo. J Thromb Haemost. 2009;7(12):2074–84.PubMedCrossRef Orlowski E, Chand R, Yip J, Wong C, Goschnick MW, Wright MD, et al. A platelet tetraspanin superfamily member, CD151, is required for regulation of thrombus growth and stability in vivo. J Thromb Haemost. 2009;7(12):2074–84.PubMedCrossRef
150.
go back to reference Lau LM, Wee JL, Wright MD, Moseley GW, Hogarth PM, Ashman LK, et al. The tetraspanin superfamily member CD151 regulates outside-in integrin αIIbβ3 signaling and platelet function. Blood. 2004;104(8):2368–75.PubMedCrossRef Lau LM, Wee JL, Wright MD, Moseley GW, Hogarth PM, Ashman LK, et al. The tetraspanin superfamily member CD151 regulates outside-in integrin αIIbβ3 signaling and platelet function. Blood. 2004;104(8):2368–75.PubMedCrossRef
151.
go back to reference Goschnick MW, Lau LM, Wee JL, Liu YS, Hogarth PM, Robb LM, et al. Impaired “outside-in” integrin αIIbβ3 signaling and thrombus stability in TSSC6-deficient mice. Blood. 2006;108(6):1911–8.PubMedCrossRef Goschnick MW, Lau LM, Wee JL, Liu YS, Hogarth PM, Robb LM, et al. Impaired “outside-in” integrin αIIbβ3 signaling and thrombus stability in TSSC6-deficient mice. Blood. 2006;108(6):1911–8.PubMedCrossRef
152.
go back to reference Israels SJ, McMillan-Ward EM. CD63 modulates spreading and tyrosine phosphorylation of platelets on immobilized fibrinogen. Thromb Haemost. 2005;93(2):311–8.PubMedCrossRef Israels SJ, McMillan-Ward EM. CD63 modulates spreading and tyrosine phosphorylation of platelets on immobilized fibrinogen. Thromb Haemost. 2005;93(2):311–8.PubMedCrossRef
153.
go back to reference Uchtmann K, Park ER, Bergsma A, Segula J, Edick MJ, Miranti CK. Homozygous loss of mouse tetraspanin CD82 enhances integrin αIIbβ3 expression and clot retraction in platelets. Exp Cell Res. 2015;339(2):261–9.PubMedCrossRef Uchtmann K, Park ER, Bergsma A, Segula J, Edick MJ, Miranti CK. Homozygous loss of mouse tetraspanin CD82 enhances integrin αIIbβ3 expression and clot retraction in platelets. Exp Cell Res. 2015;339(2):261–9.PubMedCrossRef
154.
go back to reference Indig FE, Diaz-Gonzalez F, Ginsberg MH. Analysis of the tetraspanin CD9-integrin αIIbβ3 (GPIIb-IIIa) complex in platelet membranes and transfected cells. Biochem J. 1997;327(Pt 1):291–8.PubMedPubMedCentralCrossRef Indig FE, Diaz-Gonzalez F, Ginsberg MH. Analysis of the tetraspanin CD9-integrin αIIbβ3 (GPIIb-IIIa) complex in platelet membranes and transfected cells. Biochem J. 1997;327(Pt 1):291–8.PubMedPubMedCentralCrossRef
155.
go back to reference Israels SJ, McMillan-Ward EM, Easton J, Robertson C, McNicol A. CD63 associates with the αIIbβ3 integrin-CD9 complex on the surface of activated platelets. Thromb Haemost. 2001;85(1):134–41.PubMedCrossRef Israels SJ, McMillan-Ward EM, Easton J, Robertson C, McNicol A. CD63 associates with the αIIbβ3 integrin-CD9 complex on the surface of activated platelets. Thromb Haemost. 2001;85(1):134–41.PubMedCrossRef
156.
go back to reference Wright MD, Geary SM, Fitter S, Moseley GW, Lau LM, Sheng KC, et al. Characterization of mice lacking the tetraspanin superfamily member CD151. Mol Cell Biol. 2004;24(13):5978–88.PubMedPubMedCentralCrossRef Wright MD, Geary SM, Fitter S, Moseley GW, Lau LM, Sheng KC, et al. Characterization of mice lacking the tetraspanin superfamily member CD151. Mol Cell Biol. 2004;24(13):5978–88.PubMedPubMedCentralCrossRef
157.
go back to reference Makkawi M, Moheimani F, Alserihi R, Howells D, Wright M, Ashman L, et al. A complementary role for tetraspanin superfamily member CD151 and ADP purinergic P2Y12 receptor in platelets. Thromb Haemost. 2015;114(5):1004–19.PubMedCrossRef Makkawi M, Moheimani F, Alserihi R, Howells D, Wright M, Ashman L, et al. A complementary role for tetraspanin superfamily member CD151 and ADP purinergic P2Y12 receptor in platelets. Thromb Haemost. 2015;114(5):1004–19.PubMedCrossRef
158.
go back to reference Makkawi M, Howells D, Wright MD, Jackson DE. A complementary role for tetraspanin superfamily member TSSC6 and ADP purinergic P2Y12 receptor in platelets. Thromb Res. 2018;161:12–21.PubMedCrossRef Makkawi M, Howells D, Wright MD, Jackson DE. A complementary role for tetraspanin superfamily member TSSC6 and ADP purinergic P2Y12 receptor in platelets. Thromb Res. 2018;161:12–21.PubMedCrossRef
159.
go back to reference Mangin PH, Kleitz L, Boucheix C, Gachet C, Lanza F. CD9 negatively regulates integrin αIIbβ3 activation and could thus prevent excessive platelet recruitment at sites of vascular injury. J Thromb Haemost. 2009;7(5):900–2.PubMedCrossRef Mangin PH, Kleitz L, Boucheix C, Gachet C, Lanza F. CD9 negatively regulates integrin αIIbβ3 activation and could thus prevent excessive platelet recruitment at sites of vascular injury. J Thromb Haemost. 2009;7(5):900–2.PubMedCrossRef
160.
go back to reference Saller F, Burnier L, Schapira M, Angelillo-Scherrer A. Role of the growth arrest-specific gene 6 (gas6) product in thrombus stabilization. Blood Cells Mol Dis. 2006;36(3):373–8.PubMedCrossRef Saller F, Burnier L, Schapira M, Angelillo-Scherrer A. Role of the growth arrest-specific gene 6 (gas6) product in thrombus stabilization. Blood Cells Mol Dis. 2006;36(3):373–8.PubMedCrossRef
161.
go back to reference Angelillo-Scherrer A, Burnier L, Flores N, Savi P, DeMol M, Schaeffer P, et al. Role of Gas6 receptors in platelet signaling during thrombus stabilization and implications for antithrombotic therapy. J Clin Invest. 2005;115(2):237–46.PubMedPubMedCentralCrossRef Angelillo-Scherrer A, Burnier L, Flores N, Savi P, DeMol M, Schaeffer P, et al. Role of Gas6 receptors in platelet signaling during thrombus stabilization and implications for antithrombotic therapy. J Clin Invest. 2005;115(2):237–46.PubMedPubMedCentralCrossRef
162.
go back to reference Gould WR, Baxi SM, Schroeder R, Peng YW, Leadley RJ, Peterson JT, et al. Gas6 receptors Axl, Sky and Mer enhance platelet activation and regulate thrombotic responses. J Thromb Haemost. 2005;3(4):733–41.PubMedCrossRef Gould WR, Baxi SM, Schroeder R, Peng YW, Leadley RJ, Peterson JT, et al. Gas6 receptors Axl, Sky and Mer enhance platelet activation and regulate thrombotic responses. J Thromb Haemost. 2005;3(4):733–41.PubMedCrossRef
163.
go back to reference Cosemans JM, Van Kruchten R, Olieslagers S, Schurgers LJ, Verheyen FK, Munnix IC, et al. Potentiating role of Gas6 and Tyro3, Axl and Mer (TAM) receptors in human and murine platelet activation and thrombus stabilization. J Thromb Haemost. 2010;8(8):1797–808.PubMedCrossRef Cosemans JM, Van Kruchten R, Olieslagers S, Schurgers LJ, Verheyen FK, Munnix IC, et al. Potentiating role of Gas6 and Tyro3, Axl and Mer (TAM) receptors in human and murine platelet activation and thrombus stabilization. J Thromb Haemost. 2010;8(8):1797–808.PubMedCrossRef
164.
go back to reference Law LA, Graham DK, Di Paola J, Branchford BR. GAS6/TAM pathway signaling in hemostasis and thrombosis. Front Med (Lausanne). 2018;5:137.CrossRef Law LA, Graham DK, Di Paola J, Branchford BR. GAS6/TAM pathway signaling in hemostasis and thrombosis. Front Med (Lausanne). 2018;5:137.CrossRef
165.
go back to reference Wannemacher KM, Zhu L, Jiang H, Fong KP, Stalker TJ, Lee D, et al. Diminished contact-dependent reinforcement of Syk activation underlies impaired thrombus growth in mice lacking Semaphorin 4D. Blood. 2010;116(25):5707–15.PubMedPubMedCentralCrossRef Wannemacher KM, Zhu L, Jiang H, Fong KP, Stalker TJ, Lee D, et al. Diminished contact-dependent reinforcement of Syk activation underlies impaired thrombus growth in mice lacking Semaphorin 4D. Blood. 2010;116(25):5707–15.PubMedPubMedCentralCrossRef
166.
go back to reference Nanda N, Andre P, Bao M, Clauser K, Deguzman F, Howie D, et al. Platelet aggregation induces platelet aggregate stability via SLAM family receptor signaling. Blood. 2005;106(9):3028–34.PubMedCrossRef Nanda N, Andre P, Bao M, Clauser K, Deguzman F, Howie D, et al. Platelet aggregation induces platelet aggregate stability via SLAM family receptor signaling. Blood. 2005;106(9):3028–34.PubMedCrossRef
167.
go back to reference Hofmann S, Braun A, Pozgaj R, Morowski M, Vogtle T, Nieswandt B. Mice lacking the SLAM family member CD84 display unaltered platelet function in hemostasis and thrombosis. PLoS One. 2014;9(12):e115306.PubMedPubMedCentralCrossRef Hofmann S, Braun A, Pozgaj R, Morowski M, Vogtle T, Nieswandt B. Mice lacking the SLAM family member CD84 display unaltered platelet function in hemostasis and thrombosis. PLoS One. 2014;9(12):e115306.PubMedPubMedCentralCrossRef
168.
go back to reference Gong H, Shen B, Flevaris P, Chow C, Lam SC, Voyno-Yasenetskaya TA, et al. G protein subunit Gα13 binds to integrin αIIbβ3 and mediates integrin “outside-in” signaling. Science. 2010;327(5963):340–3.PubMedPubMedCentralCrossRef Gong H, Shen B, Flevaris P, Chow C, Lam SC, Voyno-Yasenetskaya TA, et al. G protein subunit Gα13 binds to integrin αIIbβ3 and mediates integrin “outside-in” signaling. Science. 2010;327(5963):340–3.PubMedPubMedCentralCrossRef
169.
go back to reference Moers A, Nieswandt B, Massberg S, Wettschureck N, Gruner S, Konrad I, et al. G13 is an essential mediator of platelet activation in hemostasis and thrombosis. Nat Med. 2003;9(11):1418–22.PubMedCrossRef Moers A, Nieswandt B, Massberg S, Wettschureck N, Gruner S, Konrad I, et al. G13 is an essential mediator of platelet activation in hemostasis and thrombosis. Nat Med. 2003;9(11):1418–22.PubMedCrossRef
170.
go back to reference Xiang B, Zhang G, Ye S, Zhang R, Huang C, Liu J, et al. Characterization of a novel integrin binding protein, VPS33B, which is important for platelet activation and in vivo thrombosis and hemostasis. Circulation. 2015;132(24):2334–44.PubMedPubMedCentralCrossRef Xiang B, Zhang G, Ye S, Zhang R, Huang C, Liu J, et al. Characterization of a novel integrin binding protein, VPS33B, which is important for platelet activation and in vivo thrombosis and hemostasis. Circulation. 2015;132(24):2334–44.PubMedPubMedCentralCrossRef
171.
go back to reference Obergfell A, Judd BA, del Pozo MA, Schwartz MA, Koretzky GA, Shattil SJ. The molecular adapter SLP-76 relays signals from platelet integrin αIIbβ3 to the actin cytoskeleton. J Biol Chem. 2001;276(8):5916–23.PubMedCrossRef Obergfell A, Judd BA, del Pozo MA, Schwartz MA, Koretzky GA, Shattil SJ. The molecular adapter SLP-76 relays signals from platelet integrin αIIbβ3 to the actin cytoskeleton. J Biol Chem. 2001;276(8):5916–23.PubMedCrossRef
172.
go back to reference Leon C, Eckly A, Hechler B, Aleil B, Freund M, Ravanat C, et al. Megakaryocyte-restricted MYH9 inactivation dramatically affects hemostasis while preserving platelet aggregation and secretion. Blood. 2007;110(9):3183–91.PubMedCrossRef Leon C, Eckly A, Hechler B, Aleil B, Freund M, Ravanat C, et al. Megakaryocyte-restricted MYH9 inactivation dramatically affects hemostasis while preserving platelet aggregation and secretion. Blood. 2007;110(9):3183–91.PubMedCrossRef
173.
go back to reference Deshmukh L, Gorbatyuk V, Vinogradova O. Integrin β3 phosphorylation dictates its complex with the Shc phosphotyrosine-binding (PTB) domain. J Biol Chem. 2010;285(45):34875–84.PubMedPubMedCentralCrossRef Deshmukh L, Gorbatyuk V, Vinogradova O. Integrin β3 phosphorylation dictates its complex with the Shc phosphotyrosine-binding (PTB) domain. J Biol Chem. 2010;285(45):34875–84.PubMedPubMedCentralCrossRef
174.
go back to reference Law DA, Nannizzi-Alaimo L, Phillips DR. Outside-in integrin signal transduction. αIIbβ3-(GP IIb IIIa) tyrosine phosphorylation induced by platelet aggregation. J Biol Chem. 1996;271(18):10811–5.PubMedCrossRef Law DA, Nannizzi-Alaimo L, Phillips DR. Outside-in integrin signal transduction. αIIbβ3-(GP IIb IIIa) tyrosine phosphorylation induced by platelet aggregation. J Biol Chem. 1996;271(18):10811–5.PubMedCrossRef
175.
go back to reference Boylan B, Gao C, Rathore V, Gill JC, Newman DK, Newman PJ. Identification of FcγRIIa as the ITAM-bearing receptor mediating αIIbβ3 outside-in integrin signaling in human platelets. Blood. 2008;112(7):2780–6.PubMedPubMedCentralCrossRef Boylan B, Gao C, Rathore V, Gill JC, Newman DK, Newman PJ. Identification of FcγRIIa as the ITAM-bearing receptor mediating αIIbβ3 outside-in integrin signaling in human platelets. Blood. 2008;112(7):2780–6.PubMedPubMedCentralCrossRef
176.
go back to reference Takizawa H, Nishimura S, Takayama N, Oda A, Nishikii H, Morita Y, et al. Lnk regulates integrin αIIbβ3 outside-in signaling in mouse platelets, leading to stabilization of thrombus development in vivo. J Clin Invest. 2010;120(1):179–90.PubMedCrossRef Takizawa H, Nishimura S, Takayama N, Oda A, Nishikii H, Morita Y, et al. Lnk regulates integrin αIIbβ3 outside-in signaling in mouse platelets, leading to stabilization of thrombus development in vivo. J Clin Invest. 2010;120(1):179–90.PubMedCrossRef
177.
go back to reference Xu Y, Ouyang X, Yan L, Zhang M, Hu Z, Gu J, et al. Sin1 (stress-activated protein kinase-interacting protein) regulates ischemia-induced microthrombosis through integrin αIIbβ3-mediated outside-in signaling and hypoxia responses in platelets. Arterioscler Thromb Vasc Biol. 2018;38(12):2793–805. Xu Y, Ouyang X, Yan L, Zhang M, Hu Z, Gu J, et al. Sin1 (stress-activated protein kinase-interacting protein) regulates ischemia-induced microthrombosis through integrin αIIbβ3-mediated outside-in signaling and hypoxia responses in platelets. Arterioscler Thromb Vasc Biol. 2018;38(12):2793–805.
178.
179.
go back to reference Tsai HJ, Huang CL, Chang YW, Huang DY, Lin CC, Cooper JA, et al. Disabled-2 is required for efficient hemostasis and platelet activation by thrombin in mice. Arterioscler Thromb Vasc Biol. 2014;34(11):2404–12.PubMedPubMedCentralCrossRef Tsai HJ, Huang CL, Chang YW, Huang DY, Lin CC, Cooper JA, et al. Disabled-2 is required for efficient hemostasis and platelet activation by thrombin in mice. Arterioscler Thromb Vasc Biol. 2014;34(11):2404–12.PubMedPubMedCentralCrossRef
180.
go back to reference Shcherbina A, Cooley J, Lutskiy MI, Benarafa C, Gilbert GE, Remold-O’Donnell E. WASP plays a novel role in regulating platelet responses dependent on αIIbβ3 integrin outside-in signalling. Br J Haematol. 2010;148(3):416–27.PubMedCrossRef Shcherbina A, Cooley J, Lutskiy MI, Benarafa C, Gilbert GE, Remold-O’Donnell E. WASP plays a novel role in regulating platelet responses dependent on αIIbβ3 integrin outside-in signalling. Br J Haematol. 2010;148(3):416–27.PubMedCrossRef
181.
go back to reference Shen B, Zhao X, O’Brien KA, Stojanovic-Terpo A, Delaney MK, Kim K, et al. A directional switch of integrin signalling and a new anti-thrombotic strategy. Nature. 2013;503(7474):131–5.PubMedPubMedCentralCrossRef Shen B, Zhao X, O’Brien KA, Stojanovic-Terpo A, Delaney MK, Kim K, et al. A directional switch of integrin signalling and a new anti-thrombotic strategy. Nature. 2013;503(7474):131–5.PubMedPubMedCentralCrossRef
182.
go back to reference Clements JL, Lee JR, Gross B, Yang B, Olson JD, Sandra A, et al. Fetal hemorrhage and platelet dysfunction in SLP-76-deficient mice. J Clin Invest. 1999;103(1):19–25.PubMedPubMedCentralCrossRef Clements JL, Lee JR, Gross B, Yang B, Olson JD, Sandra A, et al. Fetal hemorrhage and platelet dysfunction in SLP-76-deficient mice. J Clin Invest. 1999;103(1):19–25.PubMedPubMedCentralCrossRef
183.
go back to reference Judd BA, Myung PS, Leng L, Obergfell A, Pear WS, Shattil SJ, et al. Hematopoietic reconstitution of SLP-76 corrects hemostasis and platelet signaling through αIIbβ3 and collagen receptors. Proc Natl Acad Sci U S A. 2000;97(22):12056–61.PubMedPubMedCentralCrossRef Judd BA, Myung PS, Leng L, Obergfell A, Pear WS, Shattil SJ, et al. Hematopoietic reconstitution of SLP-76 corrects hemostasis and platelet signaling through αIIbβ3 and collagen receptors. Proc Natl Acad Sci U S A. 2000;97(22):12056–61.PubMedPubMedCentralCrossRef
184.
go back to reference Zhang H, Berg JS, Li Z, Wang Y, Lang P, Sousa AD, et al. Myosin-X provides a motor-based link between integrins and the cytoskeleton. Nat Cell Biol. 2004;6(6):523–31.PubMedCrossRef Zhang H, Berg JS, Li Z, Wang Y, Lang P, Sousa AD, et al. Myosin-X provides a motor-based link between integrins and the cytoskeleton. Nat Cell Biol. 2004;6(6):523–31.PubMedCrossRef
185.
go back to reference Donner L, Gremer L, Ziehm T, Gertzen CGW, Gohlke H, Willbold D, et al. Relevance of N-terminal residues for amyloid-β binding to platelet integrin αIIbβ3, integrin outside-in signaling and amyloid-β fibril formation. Cell Signal. 2018;50:121–30.PubMedCrossRef Donner L, Gremer L, Ziehm T, Gertzen CGW, Gohlke H, Willbold D, et al. Relevance of N-terminal residues for amyloid-β binding to platelet integrin αIIbβ3, integrin outside-in signaling and amyloid-β fibril formation. Cell Signal. 2018;50:121–30.PubMedCrossRef
186.
go back to reference Verhaar R, Dekkers DW, De Cuyper IM, Ginsberg MH, de Korte D, Verhoeven AJ. UV-C irradiation disrupts platelet surface disulfide bonds and activates the platelet integrin αIIbβ3. Blood. 2008;112(13):4935–9.PubMedPubMedCentralCrossRef Verhaar R, Dekkers DW, De Cuyper IM, Ginsberg MH, de Korte D, Verhoeven AJ. UV-C irradiation disrupts platelet surface disulfide bonds and activates the platelet integrin αIIbβ3. Blood. 2008;112(13):4935–9.PubMedPubMedCentralCrossRef
188.
go back to reference Gao C, Boylan B, Fang J, Wilcox DA, Newman DK, Newman PJ. Heparin promotes platelet responsiveness by potentiating αIIbβ3-mediated outside-in signaling. Blood. 2011;117(18):4946–52.PubMedPubMedCentralCrossRef Gao C, Boylan B, Fang J, Wilcox DA, Newman DK, Newman PJ. Heparin promotes platelet responsiveness by potentiating αIIbβ3-mediated outside-in signaling. Blood. 2011;117(18):4946–52.PubMedPubMedCentralCrossRef
189.
go back to reference Kiouptsi K, Gambaryan S, Walter E, Walter U, Jurk K, Reinhardt C. Hypoxia impairs agonist-induced integrin αIIbβ3 activation and platelet aggregation. Sci Rep. 2017;7(1):7621.PubMedPubMedCentralCrossRef Kiouptsi K, Gambaryan S, Walter E, Walter U, Jurk K, Reinhardt C. Hypoxia impairs agonist-induced integrin αIIbβ3 activation and platelet aggregation. Sci Rep. 2017;7(1):7621.PubMedPubMedCentralCrossRef
190.
go back to reference Unsworth AJ, Kriek N, Bye AP, Naran K, Sage T, Flora GD, et al. PPARγ agonists negatively regulate αIIbβ3 integrin outside-in signaling and platelet function through up-regulation of protein kinase A activity. J Thromb Haemost. 2017;15(2):356–69.PubMedPubMedCentralCrossRef Unsworth AJ, Kriek N, Bye AP, Naran K, Sage T, Flora GD, et al. PPARγ agonists negatively regulate αIIbβ3 integrin outside-in signaling and platelet function through up-regulation of protein kinase A activity. J Thromb Haemost. 2017;15(2):356–69.PubMedPubMedCentralCrossRef
191.
go back to reference Tseng WL, Huang CL, Chong KY, Liao CH, Stern A, Cheng JC, et al. Reelin is a platelet protein and functions as a positive regulator of platelet spreading on fibrinogen. Cell Mol Life Sci. 2010;67(4):641–53.PubMedCrossRef Tseng WL, Huang CL, Chong KY, Liao CH, Stern A, Cheng JC, et al. Reelin is a platelet protein and functions as a positive regulator of platelet spreading on fibrinogen. Cell Mol Life Sci. 2010;67(4):641–53.PubMedCrossRef
192.
go back to reference Gowert NS, Kruger I, Klier M, Donner L, Kipkeew F, Gliem M, et al. Loss of Reelin protects mice against arterial thrombosis by impairing integrin activation and thrombus formation under high shear conditions. Cell Signal. 2017;40:210–21.PubMedCrossRef Gowert NS, Kruger I, Klier M, Donner L, Kipkeew F, Gliem M, et al. Loss of Reelin protects mice against arterial thrombosis by impairing integrin activation and thrombus formation under high shear conditions. Cell Signal. 2017;40:210–21.PubMedCrossRef
193.
go back to reference Zhao Z, Wu Y, Zhou J, Chen F, Yang A, Essex DW. The transmembrane protein disulfide isomerase TMX1 negatively regulates platelet responses. Blood. 2019;133(3):246–51.PubMedCrossRef Zhao Z, Wu Y, Zhou J, Chen F, Yang A, Essex DW. The transmembrane protein disulfide isomerase TMX1 negatively regulates platelet responses. Blood. 2019;133(3):246–51.PubMedCrossRef
194.
go back to reference Arias-Salgado EG, Lizano S, Shattil SJ, Ginsberg MH. Specification of the direction of adhesive signaling by the integrin β cytoplasmic domain. J Biol Chem. 2005;280(33):29699–707.PubMedCrossRef Arias-Salgado EG, Lizano S, Shattil SJ, Ginsberg MH. Specification of the direction of adhesive signaling by the integrin β cytoplasmic domain. J Biol Chem. 2005;280(33):29699–707.PubMedCrossRef
195.
go back to reference Arias-Salgado EG, Lizano S, Sarkar S, Brugge JS, Ginsberg MH, Shattil SJ. Src kinase activation by direct interaction with the integrin β cytoplasmic domain. Proc Natl Acad Sci U S A. 2003;100(23):13298–302.PubMedPubMedCentralCrossRef Arias-Salgado EG, Lizano S, Sarkar S, Brugge JS, Ginsberg MH, Shattil SJ. Src kinase activation by direct interaction with the integrin β cytoplasmic domain. Proc Natl Acad Sci U S A. 2003;100(23):13298–302.PubMedPubMedCentralCrossRef
196.
go back to reference Huang J, Shi X, Xi W, Liu P, Long Z, Xi X. Evaluation of targeting c-Src by the RGT-containing peptide as a novel antithrombotic strategy. J Hematol Oncol. 2015;8:62.PubMedPubMedCentralCrossRef Huang J, Shi X, Xi W, Liu P, Long Z, Xi X. Evaluation of targeting c-Src by the RGT-containing peptide as a novel antithrombotic strategy. J Hematol Oncol. 2015;8:62.PubMedPubMedCentralCrossRef
197.
go back to reference Su X, Mi J, Yan J, Flevaris P, Lu Y, Liu H, et al. RGT, a synthetic peptide corresponding to the integrin β3 cytoplasmic C-terminal sequence, selectively inhibits outside-in signaling in human platelets by disrupting the interaction of integrin αIIbβ3 with Src kinase. Blood. 2008;112(3):592–602.PubMedPubMedCentralCrossRef Su X, Mi J, Yan J, Flevaris P, Lu Y, Liu H, et al. RGT, a synthetic peptide corresponding to the integrin β3 cytoplasmic C-terminal sequence, selectively inhibits outside-in signaling in human platelets by disrupting the interaction of integrin αIIbβ3 with Src kinase. Blood. 2008;112(3):592–602.PubMedPubMedCentralCrossRef
198.
go back to reference Ablooglu AJ, Kang J, Petrich BG, Ginsberg MH, Shattil SJ. Antithrombotic effects of targeting αIIbβ3 signaling in platelets. Blood. 2009;113(15):3585–92.PubMedPubMedCentralCrossRef Ablooglu AJ, Kang J, Petrich BG, Ginsberg MH, Shattil SJ. Antithrombotic effects of targeting αIIbβ3 signaling in platelets. Blood. 2009;113(15):3585–92.PubMedPubMedCentralCrossRef
199.
go back to reference Arias-Salgado EG, Haj F, Dubois C, Moran B, Kasirer-Friede A, Furie BC, et al. PTP-1B is an essential positive regulator of platelet integrin signaling. J Cell Biol. 2005;170(5):837–45.PubMedPubMedCentralCrossRef Arias-Salgado EG, Haj F, Dubois C, Moran B, Kasirer-Friede A, Furie BC, et al. PTP-1B is an essential positive regulator of platelet integrin signaling. J Cell Biol. 2005;170(5):837–45.PubMedPubMedCentralCrossRef
200.
go back to reference Obergfell A, Eto K, Mocsai A, Buensuceso C, Moores SL, Brugge JS, et al. Coordinate interactions of Csk, Src, and Syk kinases with αIIbβ3 initiate integrin signaling to the cytoskeleton. J Cell Biol. 2002;157(2):265–75.PubMedPubMedCentralCrossRef Obergfell A, Eto K, Mocsai A, Buensuceso C, Moores SL, Brugge JS, et al. Coordinate interactions of Csk, Src, and Syk kinases with αIIbβ3 initiate integrin signaling to the cytoskeleton. J Cell Biol. 2002;157(2):265–75.PubMedPubMedCentralCrossRef
202.
go back to reference Pearce AC, McCarty OJ, Calaminus SD, Vigorito E, Turner M, Watson SP. Vav family proteins are required for optimal regulation of PLCγ2 by integrin αIIbβ3. Biochem J. 2007;401(3):753–61.PubMedPubMedCentralCrossRef Pearce AC, McCarty OJ, Calaminus SD, Vigorito E, Turner M, Watson SP. Vav family proteins are required for optimal regulation of PLCγ2 by integrin αIIbβ3. Biochem J. 2007;401(3):753–61.PubMedPubMedCentralCrossRef
203.
go back to reference Law DA, Nannizzi-Alaimo L, Ministri K, Hughes PE, Forsyth J, Turner M, et al. Genetic and pharmacological analyses of Syk function in αIIbβ3 signaling in platelets. Blood. 1999;93(8):2645–52.PubMed Law DA, Nannizzi-Alaimo L, Ministri K, Hughes PE, Forsyth J, Turner M, et al. Genetic and pharmacological analyses of Syk function in αIIbβ3 signaling in platelets. Blood. 1999;93(8):2645–52.PubMed
204.
go back to reference Poole A, Gibbins JM, Turner M, van Vugt MJ, van de Winkel JG, Saito T, et al. The Fc receptor γ-chain and the tyrosine kinase Syk are essential for activation of mouse platelets by collagen. EMBO J. 1997;16(9):2333–41.PubMedPubMedCentralCrossRef Poole A, Gibbins JM, Turner M, van Vugt MJ, van de Winkel JG, Saito T, et al. The Fc receptor γ-chain and the tyrosine kinase Syk are essential for activation of mouse platelets by collagen. EMBO J. 1997;16(9):2333–41.PubMedPubMedCentralCrossRef
205.
go back to reference Clark EA, Shattil SJ, Brugge JS. Regulation of protein tyrosine kinases in platelets. Trends Biochem Sci. 1994;19(11):464–9.PubMedCrossRef Clark EA, Shattil SJ, Brugge JS. Regulation of protein tyrosine kinases in platelets. Trends Biochem Sci. 1994;19(11):464–9.PubMedCrossRef
206.
go back to reference Beck S, Leitges M, Stegner D. Protein kinase Cι/λ is dispensable for platelet function in thrombosis and hemostasis in mice. Cell Signal. 2017;38:223–9.PubMedCrossRef Beck S, Leitges M, Stegner D. Protein kinase Cι/λ is dispensable for platelet function in thrombosis and hemostasis in mice. Cell Signal. 2017;38:223–9.PubMedCrossRef
207.
go back to reference Yoshioka A, Shirakawa R, Nishioka H, Tabuchi A, Higashi T, Ozaki H, et al. Identification of protein kinase Cα as an essential, but not sufficient, cytosolic factor for Ca2+-induced α- and dense-core granule secretion in platelets. J Biol Chem. 2001;276(42):39379–85.PubMedCrossRef Yoshioka A, Shirakawa R, Nishioka H, Tabuchi A, Higashi T, Ozaki H, et al. Identification of protein kinase Cα as an essential, but not sufficient, cytosolic factor for Ca2+-induced α- and dense-core granule secretion in platelets. J Biol Chem. 2001;276(42):39379–85.PubMedCrossRef
208.
go back to reference Tabuchi A, Yoshioka A, Higashi T, Shirakawa R, Nishioka H, Kita T, et al. Direct demonstration of involvement of protein kinase Cα in the Ca2+-induced platelet aggregation. J Biol Chem. 2003;278(29):26374–9.PubMedCrossRef Tabuchi A, Yoshioka A, Higashi T, Shirakawa R, Nishioka H, Kita T, et al. Direct demonstration of involvement of protein kinase Cα in the Ca2+-induced platelet aggregation. J Biol Chem. 2003;278(29):26374–9.PubMedCrossRef
209.
go back to reference Buensuceso CS, Obergfell A, Soriani A, Eto K, Kiosses WB, Arias-Salgado EG, et al. Regulation of outside-in signaling in platelets by integrin-associated protein kinase Cβ. J Biol Chem. 2005;280(1):644–53.PubMedCrossRef Buensuceso CS, Obergfell A, Soriani A, Eto K, Kiosses WB, Arias-Salgado EG, et al. Regulation of outside-in signaling in platelets by integrin-associated protein kinase Cβ. J Biol Chem. 2005;280(1):644–53.PubMedCrossRef
210.
go back to reference Pula G, Schuh K, Nakayama K, Nakayama KI, Walter U, Poole AW. PKCδ regulates collagen-induced platelet aggregation through inhibition of VASP-mediated filopodia formation. Blood. 2006;108(13):4035–44.PubMedCrossRef Pula G, Schuh K, Nakayama K, Nakayama KI, Walter U, Poole AW. PKCδ regulates collagen-induced platelet aggregation through inhibition of VASP-mediated filopodia formation. Blood. 2006;108(13):4035–44.PubMedCrossRef
211.
go back to reference Chari R, Getz T, Nagy B Jr, Bhavaraju K, Mao Y, Bynagari YS, et al. Protein kinase Cδ differentially regulates platelet functional responses. Arterioscler Thromb Vasc Biol. 2009;29(5):699–705.PubMedPubMedCentralCrossRef Chari R, Getz T, Nagy B Jr, Bhavaraju K, Mao Y, Bynagari YS, et al. Protein kinase Cδ differentially regulates platelet functional responses. Arterioscler Thromb Vasc Biol. 2009;29(5):699–705.PubMedPubMedCentralCrossRef
212.
go back to reference Soriani A, Moran B, de Virgilio M, Kawakami T, Altman A, Lowell C, et al. A role for PKCθ in outside-in αIIbβ3 signaling. J Thromb Haemost. 2006;4(3):648–55.PubMedCrossRef Soriani A, Moran B, de Virgilio M, Kawakami T, Altman A, Lowell C, et al. A role for PKCθ in outside-in αIIbβ3 signaling. J Thromb Haemost. 2006;4(3):648–55.PubMedCrossRef
213.
go back to reference Hall KJ, Harper MT, Gilio K, Cosemans JM, Heemskerk JW, Poole AW. Genetic analysis of the role of protein kinase Cθ in platelet function and thrombus formation. PLoS One. 2008;3(9):e3277.PubMedPubMedCentralCrossRef Hall KJ, Harper MT, Gilio K, Cosemans JM, Heemskerk JW, Poole AW. Genetic analysis of the role of protein kinase Cθ in platelet function and thrombus formation. PLoS One. 2008;3(9):e3277.PubMedPubMedCentralCrossRef
214.
go back to reference Maxwell MJ, Yuan Y, Anderson KE, Hibbs ML, Salem HH, Jackson SP. SHIP1 and Lyn kinase negatively regulate integrin αIIbβ3 signaling in platelets. J Biol Chem. 2004;279(31):32196–204.PubMedCrossRef Maxwell MJ, Yuan Y, Anderson KE, Hibbs ML, Salem HH, Jackson SP. SHIP1 and Lyn kinase negatively regulate integrin αIIbβ3 signaling in platelets. J Biol Chem. 2004;279(31):32196–204.PubMedCrossRef
215.
go back to reference Battram AM, Durrant TN, Agbani EO, Heesom KJ, Paul DS, Piatt R, et al. The phosphatidylinositol 3,4,5-trisphosphate (PI (3,4,5) P3) binder Rasa3 regulates phosphoinositide 3-kinase (PI3K)-dependent integrin αIIbβ3 outside-in signaling. J Biol Chem. 2017;292(5):1691–704.PubMedCrossRef Battram AM, Durrant TN, Agbani EO, Heesom KJ, Paul DS, Piatt R, et al. The phosphatidylinositol 3,4,5-trisphosphate (PI (3,4,5) P3) binder Rasa3 regulates phosphoinositide 3-kinase (PI3K)-dependent integrin αIIbβ3 outside-in signaling. J Biol Chem. 2017;292(5):1691–704.PubMedCrossRef
216.
go back to reference Sun DS, Lo SJ, Lin CH, Yu MS, Huang CY, Chen YF, et al. Calcium oscillation and phosphatidylinositol 3-kinase positively regulate integrin αIIbβ3-mediated outside-in signaling. J Biomed Sci. 2005;12(2):321–33.PubMedCrossRef Sun DS, Lo SJ, Lin CH, Yu MS, Huang CY, Chen YF, et al. Calcium oscillation and phosphatidylinositol 3-kinase positively regulate integrin αIIbβ3-mediated outside-in signaling. J Biomed Sci. 2005;12(2):321–33.PubMedCrossRef
217.
go back to reference Lian L, Wang Y, Draznin J, Eslin D, Bennett JS, Poncz M, et al. The relative role of PLCβ and PI3Kγ in platelet activation. Blood. 2005;106(1):110–7.PubMedPubMedCentralCrossRef Lian L, Wang Y, Draznin J, Eslin D, Bennett JS, Poncz M, et al. The relative role of PLCβ and PI3Kγ in platelet activation. Blood. 2005;106(1):110–7.PubMedPubMedCentralCrossRef
218.
go back to reference Cosemans JM, Munnix IC, Wetzker R, Heller R, Jackson SP, Heemskerk JW. Continuous signaling via PI3K isoforms β and γ is required for platelet ADP receptor function in dynamic thrombus stabilization. Blood. 2006;108(9):3045–52.PubMedCrossRef Cosemans JM, Munnix IC, Wetzker R, Heller R, Jackson SP, Heemskerk JW. Continuous signaling via PI3K isoforms β and γ is required for platelet ADP receptor function in dynamic thrombus stabilization. Blood. 2006;108(9):3045–52.PubMedCrossRef
219.
go back to reference Laurent PA, Hechler B, Solinhac R, Ragab A, Cabou C, Anquetil T, et al. Impact of PI3Kα (phosphoinositide 3-kinase α) inhibition on hemostasis and thrombosis. Arterioscler Thromb Vasc Biol. 2018;38(9):2041–53.PubMedCrossRef Laurent PA, Hechler B, Solinhac R, Ragab A, Cabou C, Anquetil T, et al. Impact of PI3Kα (phosphoinositide 3-kinase α) inhibition on hemostasis and thrombosis. Arterioscler Thromb Vasc Biol. 2018;38(9):2041–53.PubMedCrossRef
220.
go back to reference Buitrago L, Langdon WY, Sanjay A, Kunapuli SP. Tyrosine phosphorylated c-Cbl regulates platelet functional responses mediated by outside-in signaling. Blood. 2011;118(20):5631–40.PubMedPubMedCentralCrossRef Buitrago L, Langdon WY, Sanjay A, Kunapuli SP. Tyrosine phosphorylated c-Cbl regulates platelet functional responses mediated by outside-in signaling. Blood. 2011;118(20):5631–40.PubMedPubMedCentralCrossRef
221.
go back to reference Cipolla L, Consonni A, Guidetti G, Canobbio I, Okigaki M, Falasca M, et al. The proline-rich tyrosine kinase Pyk2 regulates platelet integrin αIIbβ3 outside-in signaling. J Thromb Haemost. 2013;11(2):345–56.PubMedCrossRef Cipolla L, Consonni A, Guidetti G, Canobbio I, Okigaki M, Falasca M, et al. The proline-rich tyrosine kinase Pyk2 regulates platelet integrin αIIbβ3 outside-in signaling. J Thromb Haemost. 2013;11(2):345–56.PubMedCrossRef
222.
go back to reference Canobbio I, Cipolla L, Consonni A, Momi S, Guidetti G, Oliviero B, et al. Impaired thrombin-induced platelet activation and thrombus formation in mice lacking the Ca (2+)-dependent tyrosine kinase Pyk2. Blood. 2013;121(4):648–57.PubMedCrossRef Canobbio I, Cipolla L, Consonni A, Momi S, Guidetti G, Oliviero B, et al. Impaired thrombin-induced platelet activation and thrombus formation in mice lacking the Ca (2+)-dependent tyrosine kinase Pyk2. Blood. 2013;121(4):648–57.PubMedCrossRef
223.
go back to reference Laurent PA, Severin S, Hechler B, Vanhaesebroeck B, Payrastre B, Gratacap MP. Platelet PI3Kβ and GSK3 regulate thrombus stability at a high shear rate. Blood. 2015;125(5):881–8.PubMedCrossRef Laurent PA, Severin S, Hechler B, Vanhaesebroeck B, Payrastre B, Gratacap MP. Platelet PI3Kβ and GSK3 regulate thrombus stability at a high shear rate. Blood. 2015;125(5):881–8.PubMedCrossRef
224.
go back to reference Prevost N, Mitsios JV, Kato H, Burke JE, Dennis EA, Shimizu T, et al. Group IVA cytosolic phospholipase A2 (cPLA2α) and integrin αIIbβ3 reinforce each other’s functions during αIIbβ3 signaling in platelets. Blood. 2009;113(2):447–57.PubMedPubMedCentralCrossRef Prevost N, Mitsios JV, Kato H, Burke JE, Dennis EA, Shimizu T, et al. Group IVA cytosolic phospholipase A2 (cPLA2α) and integrin αIIbβ3 reinforce each other’s functions during αIIbβ3 signaling in platelets. Blood. 2009;113(2):447–57.PubMedPubMedCentralCrossRef
225.
go back to reference Wong DA, Kita Y, Uozumi N, Shimizu T. Discrete role for cytosolic phospholipase A (2) α in platelets: studies using single and double mutant mice of cytosolic and group IIA secretory phospholipase A (2). J Exp Med. 2002;196(3):349–57.PubMedPubMedCentralCrossRef Wong DA, Kita Y, Uozumi N, Shimizu T. Discrete role for cytosolic phospholipase A (2) α in platelets: studies using single and double mutant mice of cytosolic and group IIA secretory phospholipase A (2). J Exp Med. 2002;196(3):349–57.PubMedPubMedCentralCrossRef
226.
go back to reference Khatlani T, Pradhan S, Da Q, Shaw T, Buchman VL, Cruz MA, et al. A novel interaction of the catalytic subunit of protein phosphatase 2A with the adaptor protein CIN85 suppresses phosphatase activity and facilitates platelet outside-in αIIbβ3 integrin signaling. J Biol Chem. 2016;291(33):17360–8.PubMedPubMedCentralCrossRef Khatlani T, Pradhan S, Da Q, Shaw T, Buchman VL, Cruz MA, et al. A novel interaction of the catalytic subunit of protein phosphatase 2A with the adaptor protein CIN85 suppresses phosphatase activity and facilitates platelet outside-in αIIbβ3 integrin signaling. J Biol Chem. 2016;291(33):17360–8.PubMedPubMedCentralCrossRef
227.
go back to reference Pleines I, Hagedorn I, Gupta S, May F, Chakarova L, van Hengel J, et al. Megakaryocyte-specific RhoA deficiency causes macrothrombocytopenia and defective platelet activation in hemostasis and thrombosis. Blood. 2012;119(4):1054–63.PubMedCrossRef Pleines I, Hagedorn I, Gupta S, May F, Chakarova L, van Hengel J, et al. Megakaryocyte-specific RhoA deficiency causes macrothrombocytopenia and defective platelet activation in hemostasis and thrombosis. Blood. 2012;119(4):1054–63.PubMedCrossRef
228.
go back to reference Pleines I, Elvers M, Strehl A, Pozgajova M, Varga-Szabo D, May F, et al. Rac1 is essential for phospholipase C-γ2 activation in platelets. Pflugers Arch. 2009;457(5):1173–85.PubMedCrossRef Pleines I, Elvers M, Strehl A, Pozgajova M, Varga-Szabo D, May F, et al. Rac1 is essential for phospholipase C-γ2 activation in platelets. Pflugers Arch. 2009;457(5):1173–85.PubMedCrossRef
229.
go back to reference Akbar H, Shang X, Perveen R, Berryman M, Funk K, Johnson JF, et al. Gene targeting implicates Cdc42 GTPase in GPVI and non-GPVI mediated platelet filopodia formation, secretion and aggregation. PLoS One. 2011;6(7):e22117.PubMedPubMedCentralCrossRef Akbar H, Shang X, Perveen R, Berryman M, Funk K, Johnson JF, et al. Gene targeting implicates Cdc42 GTPase in GPVI and non-GPVI mediated platelet filopodia formation, secretion and aggregation. PLoS One. 2011;6(7):e22117.PubMedPubMedCentralCrossRef
230.
go back to reference Giordano A, Musumeci G, D’Angelillo A, Rossini R, Zoccai GB, Messina S, et al. Effects of glycoprotein IIb/IIIa antagonists: anti platelet aggregation and beyond. Curr Drug Metab. 2016;17(2):194–203.PubMedCrossRef Giordano A, Musumeci G, D’Angelillo A, Rossini R, Zoccai GB, Messina S, et al. Effects of glycoprotein IIb/IIIa antagonists: anti platelet aggregation and beyond. Curr Drug Metab. 2016;17(2):194–203.PubMedCrossRef
231.
go back to reference Schwarz M, Nordt T, Bode C, Peter K. The GP IIb/IIIa inhibitor abciximab (c7E3) inhibits the binding of various ligands to the leukocyte integrin Mac-1 (CD11b/CD18, alphaMbeta2). Thromb Res. 2002;107(3–4):121–8.PubMedCrossRef Schwarz M, Nordt T, Bode C, Peter K. The GP IIb/IIIa inhibitor abciximab (c7E3) inhibits the binding of various ligands to the leukocyte integrin Mac-1 (CD11b/CD18, alphaMbeta2). Thromb Res. 2002;107(3–4):121–8.PubMedCrossRef
232.
go back to reference Scarborough RM, Naughton MA, Teng W, Rose JW, Phillips DR, Nannizzi L, et al. Design of potent and specific integrin antagonists. Peptide antagonists with high specificity for glycoprotein IIb-IIIa. J Biol Chem. 1993;268(2):1066–73.PubMed Scarborough RM, Naughton MA, Teng W, Rose JW, Phillips DR, Nannizzi L, et al. Design of potent and specific integrin antagonists. Peptide antagonists with high specificity for glycoprotein IIb-IIIa. J Biol Chem. 1993;268(2):1066–73.PubMed
233.
go back to reference Topol EJ, Califf RM, Weisman HF, Ellis SG, Tcheng JE, Worley S, et al. Randomised trial of coronary intervention with antibody against platelet IIb/IIIa integrin for reduction of clinical restenosis: results at six months. The EPIC Investigators Lancet. 1994;343(8902):881–6.PubMedCrossRef Topol EJ, Califf RM, Weisman HF, Ellis SG, Tcheng JE, Worley S, et al. Randomised trial of coronary intervention with antibody against platelet IIb/IIIa integrin for reduction of clinical restenosis: results at six months. The EPIC Investigators Lancet. 1994;343(8902):881–6.PubMedCrossRef
234.
go back to reference Stoffer K, Shah S. Abciximab. StatPearls, Vol. Treasure Island (FL); 2018. Stoffer K, Shah S. Abciximab. StatPearls, Vol. Treasure Island (FL); 2018.
235.
go back to reference De Luca G, Savonitto S, van’t Hof AW, Suryapranata H. Platelet GP IIb-IIIa receptor antagonists in primary angioplasty: back to the future. Drugs. 2015;75(11):1229–53.PubMedCrossRef De Luca G, Savonitto S, van’t Hof AW, Suryapranata H. Platelet GP IIb-IIIa receptor antagonists in primary angioplasty: back to the future. Drugs. 2015;75(11):1229–53.PubMedCrossRef
236.
go back to reference Cannon CP, McCabe CH, Wilcox RG, Langer A, Caspi A, Berink P, et al. Oral glycoprotein IIb/IIIa inhibition with orbofiban in patients with unstable coronary syndromes (OPUS-TIMI 16) trial. Circulation. 2000;102(2):149–56.PubMedCrossRef Cannon CP, McCabe CH, Wilcox RG, Langer A, Caspi A, Berink P, et al. Oral glycoprotein IIb/IIIa inhibition with orbofiban in patients with unstable coronary syndromes (OPUS-TIMI 16) trial. Circulation. 2000;102(2):149–56.PubMedCrossRef
237.
238.
239.
go back to reference Xie Z, Cao C, Feng S, Huang J, Li Z. Progress in the research of GPIIb/IIIa antagonists. Future Med Chem. 2015;7(9):1149–71.PubMedCrossRef Xie Z, Cao C, Feng S, Huang J, Li Z. Progress in the research of GPIIb/IIIa antagonists. Future Med Chem. 2015;7(9):1149–71.PubMedCrossRef
240.
go back to reference Jamasbi J, Ayabe K, Goto S, Nieswandt B, Peter K, Siess W. Platelet receptors as therapeutic targets: past, present and future. Thromb Haemost. 2017;117(7):1249–57.PubMedCrossRef Jamasbi J, Ayabe K, Goto S, Nieswandt B, Peter K, Siess W. Platelet receptors as therapeutic targets: past, present and future. Thromb Haemost. 2017;117(7):1249–57.PubMedCrossRef
241.
go back to reference Estevez B, Shen B, Du X. Targeting integrin and integrin signaling in treating thrombosis. Arterioscler Thromb Vasc Biol. 2015;35(1):24–9.PubMedCrossRef Estevez B, Shen B, Du X. Targeting integrin and integrin signaling in treating thrombosis. Arterioscler Thromb Vasc Biol. 2015;35(1):24–9.PubMedCrossRef
242.
go back to reference Bassler N, Loeffler C, Mangin P, Yuan Y, Schwarz M, Hagemeyer CE, et al. A mechanistic model for paradoxical platelet activation by ligand-mimetic αIIbβ3 (GPIIb/IIIa) antagonists. Arterioscler Thromb Vasc Biol. 2007;27(3):e9–15. Bassler N, Loeffler C, Mangin P, Yuan Y, Schwarz M, Hagemeyer CE, et al. A mechanistic model for paradoxical platelet activation by ligand-mimetic αIIbβ3 (GPIIb/IIIa) antagonists. Arterioscler Thromb Vasc Biol. 2007;27(3):e9–15.
243.
go back to reference Wang X, Palasubramaniam J, Gkanatsas Y, Hohmann JD, Westein E, Kanojia R, et al. Towards effective and safe thrombolysis and thromboprophylaxis: preclinical testing of a novel antibody-targeted recombinant plasminogen activator directed against activated platelets. Circ Res. 2014;114(7):1083–93.PubMedCrossRef Wang X, Palasubramaniam J, Gkanatsas Y, Hohmann JD, Westein E, Kanojia R, et al. Towards effective and safe thrombolysis and thromboprophylaxis: preclinical testing of a novel antibody-targeted recombinant plasminogen activator directed against activated platelets. Circ Res. 2014;114(7):1083–93.PubMedCrossRef
244.
go back to reference Fuentes RE, Zaitsev S, Ahn HS, Hayes V, Kowalska MA, Lambert MP, et al. A chimeric platelet-targeted urokinase prodrug selectively blocks new thrombus formation. J Clin Invest. 2016;126(2):483–94.PubMedCrossRef Fuentes RE, Zaitsev S, Ahn HS, Hayes V, Kowalska MA, Lambert MP, et al. A chimeric platelet-targeted urokinase prodrug selectively blocks new thrombus formation. J Clin Invest. 2016;126(2):483–94.PubMedCrossRef
245.
go back to reference Hohmann JD, Wang X, Krajewski S, Selan C, Haller CA, Straub A, et al. Delayed targeting of CD39 to activated platelet GPIIb/IIIa via a single-chain antibody: breaking the link between antithrombotic potency and bleeding? Blood. 2013;121(16):3067–75.PubMedPubMedCentralCrossRef Hohmann JD, Wang X, Krajewski S, Selan C, Haller CA, Straub A, et al. Delayed targeting of CD39 to activated platelet GPIIb/IIIa via a single-chain antibody: breaking the link between antithrombotic potency and bleeding? Blood. 2013;121(16):3067–75.PubMedPubMedCentralCrossRef
246.
go back to reference Liu TD, Ren SH, Ding X, Xie ZL, Kong Y. A short half-life αIIbβ3 antagonist ANTP266 reduces thrombus formation. Int J Mol Sci. 2018;19(8):2306. Liu TD, Ren SH, Ding X, Xie ZL, Kong Y. A short half-life αIIbβ3 antagonist ANTP266 reduces thrombus formation. Int J Mol Sci. 2018;19(8):2306.
247.
go back to reference Li J, Vootukuri S, Shang Y, Negri A, Jiang JK, Nedelman M, et al. RUC-4: a novel αIIbβ3 antagonist for prehospital therapy of myocardial infarction. Arterioscler Thromb Vasc Biol. 2014;34(10):2321–9. Li J, Vootukuri S, Shang Y, Negri A, Jiang JK, Nedelman M, et al. RUC-4: a novel αIIbβ3 antagonist for prehospital therapy of myocardial infarction. Arterioscler Thromb Vasc Biol. 2014;34(10):2321–9.
248.
go back to reference Law DA, DeGuzman FR, Heiser P, Ministri-Madrid K, Killeen N, Phillips DR. Integrin cytoplasmic tyrosine motif is required for outside-in αIIbβ3 signalling and platelet function. Nature. 1999;401(6755):808–11. Law DA, DeGuzman FR, Heiser P, Ministri-Madrid K, Killeen N, Phillips DR. Integrin cytoplasmic tyrosine motif is required for outside-in αIIbβ3 signalling and platelet function. Nature. 1999;401(6755):808–11.
249.
go back to reference Schroder J, Lullmann-Rauch R, Himmerkus N, Pleines I, Nieswandt B, Orinska Z, et al. Deficiency of the tetraspanin CD63 associated with kidney pathology but normal lysosomal function. Mol Cell Biol. 2009;29(4):1083–94.PubMedCrossRef Schroder J, Lullmann-Rauch R, Himmerkus N, Pleines I, Nieswandt B, Orinska Z, et al. Deficiency of the tetraspanin CD63 associated with kidney pathology but normal lysosomal function. Mol Cell Biol. 2009;29(4):1083–94.PubMedCrossRef
250.
go back to reference Senis YA, Tomlinson MG, Ellison S, Mazharian A, Lim J, Zhao Y, et al. The tyrosine phosphatase CD148 is an essential positive regulator of platelet activation and thrombosis. Blood. 2009;113(20):4942–54.PubMedPubMedCentralCrossRef Senis YA, Tomlinson MG, Ellison S, Mazharian A, Lim J, Zhao Y, et al. The tyrosine phosphatase CD148 is an essential positive regulator of platelet activation and thrombosis. Blood. 2009;113(20):4942–54.PubMedPubMedCentralCrossRef
251.
go back to reference Wang L, Wu Y, Zhou J, Ahmad SS, Mutus B, Garbi N, et al. Platelet-derived ERp57 mediates platelet incorporation into a growing thrombus by regulation of the αIIbβ3 integrin. Blood. 2013;122(22):3642–50.PubMedPubMedCentralCrossRef Wang L, Wu Y, Zhou J, Ahmad SS, Mutus B, Garbi N, et al. Platelet-derived ERp57 mediates platelet incorporation into a growing thrombus by regulation of the αIIbβ3 integrin. Blood. 2013;122(22):3642–50.PubMedPubMedCentralCrossRef
252.
go back to reference Fan X, Wang C, Shi P, Gao W, Gu J, Geng Y, et al. Platelet MEKK3 regulates arterial thrombosis and myocardial infarct expansion in mice. Blood Adv. 2018;2(12):1439–48.PubMedPubMedCentralCrossRef Fan X, Wang C, Shi P, Gao W, Gu J, Geng Y, et al. Platelet MEKK3 regulates arterial thrombosis and myocardial infarct expansion in mice. Blood Adv. 2018;2(12):1439–48.PubMedPubMedCentralCrossRef
253.
go back to reference Chen X, Fan X, Tan J, Shi P, Wang X, Wang J, et al. Palladin is involved in platelet activation and arterial thrombosis. Thromb Res. 2017;149:1–8.PubMedCrossRef Chen X, Fan X, Tan J, Shi P, Wang X, Wang J, et al. Palladin is involved in platelet activation and arterial thrombosis. Thromb Res. 2017;149:1–8.PubMedCrossRef
254.
go back to reference Chen X, Zhang Y, Wang Y, Li D, Zhang L, Wang K, et al. PDK1 regulates platelet activation and arterial thrombosis. Blood. 2013;121(18):3718–26.PubMedCrossRef Chen X, Zhang Y, Wang Y, Li D, Zhang L, Wang K, et al. PDK1 regulates platelet activation and arterial thrombosis. Blood. 2013;121(18):3718–26.PubMedCrossRef
255.
go back to reference Weng Z, Li D, Zhang L, Chen J, Ruan C, Chen G, et al. PTEN regulates collagen-induced platelet activation. Blood. 2010;116(14):2579–81.PubMedCrossRef Weng Z, Li D, Zhang L, Chen J, Ruan C, Chen G, et al. PTEN regulates collagen-induced platelet activation. Blood. 2010;116(14):2579–81.PubMedCrossRef
256.
go back to reference McCarty OJ, Larson MK, Auger JM, Kalia N, Atkinson BT, Pearce AC, et al. Rac1 is essential for platelet lamellipodia formation and aggregate stability under flow. J Biol Chem. 2005;280(47):39474–84.PubMedPubMedCentralCrossRef McCarty OJ, Larson MK, Auger JM, Kalia N, Atkinson BT, Pearce AC, et al. Rac1 is essential for platelet lamellipodia formation and aggregate stability under flow. J Biol Chem. 2005;280(47):39474–84.PubMedPubMedCentralCrossRef
257.
go back to reference Sladojevic N, Oh GT, Kim HH, Beaulieu LM, Falet H, Kaminski K, et al. Decreased thromboembolic stroke but not atherosclerosis or vascular remodelling in mice with ROCK2-deficient platelets. Cardiovasc Res. 2017;113(11):1307–17.PubMedPubMedCentralCrossRef Sladojevic N, Oh GT, Kim HH, Beaulieu LM, Falet H, Kaminski K, et al. Decreased thromboembolic stroke but not atherosclerosis or vascular remodelling in mice with ROCK2-deficient platelets. Cardiovasc Res. 2017;113(11):1307–17.PubMedPubMedCentralCrossRef
258.
go back to reference Graff J, Klinkhardt U, Westrup D, Kirchmaier CM, Breddin HK, Harder S. Pharmacodynamic characterization of the interaction between the glycoprotein IIb/IIIa inhibitor YM337 and unfractionated heparin and aspirin in humans. Br J Clin Pharmacol. 2003;56(3):321–6.PubMedPubMedCentralCrossRef Graff J, Klinkhardt U, Westrup D, Kirchmaier CM, Breddin HK, Harder S. Pharmacodynamic characterization of the interaction between the glycoprotein IIb/IIIa inhibitor YM337 and unfractionated heparin and aspirin in humans. Br J Clin Pharmacol. 2003;56(3):321–6.PubMedPubMedCentralCrossRef
259.
go back to reference Greenberg HE, Wissel P, Barrett J, Barchowsky A, Gould R, Farrell D, et al. Antiplatelet effects of MK-852, a platelet fibrinogen receptor antagonist, in healthy volunteers. J Clin Pharmacol. 2000;40(5):496–507.PubMedCrossRef Greenberg HE, Wissel P, Barrett J, Barchowsky A, Gould R, Farrell D, et al. Antiplatelet effects of MK-852, a platelet fibrinogen receptor antagonist, in healthy volunteers. J Clin Pharmacol. 2000;40(5):496–507.PubMedCrossRef
260.
go back to reference Collen D, Lu HR, Stassen JM, Vreys I, Yasuda T, Bunting S, et al. Antithrombotic effects and bleeding time prolongation with synthetic platelet GPIIb/IIIa inhibitors in animal models of platelet-mediated thrombosis. Thromb Haemost. 1994;71(1):95–102.PubMedCrossRef Collen D, Lu HR, Stassen JM, Vreys I, Yasuda T, Bunting S, et al. Antithrombotic effects and bleeding time prolongation with synthetic platelet GPIIb/IIIa inhibitors in animal models of platelet-mediated thrombosis. Thromb Haemost. 1994;71(1):95–102.PubMedCrossRef
261.
go back to reference Michaelis W, Turlapaty P, Gray J, Fiske WD, Faulkner E, Kornhauser D, et al. Pharmacodynamics and pharmacokinetics of DMP 728, a platelet GPIIb/IIIa antagonist, in healthy subjects. Clin Pharmacol Ther. 1998;63(3):384–92.PubMedCrossRef Michaelis W, Turlapaty P, Gray J, Fiske WD, Faulkner E, Kornhauser D, et al. Pharmacodynamics and pharmacokinetics of DMP 728, a platelet GPIIb/IIIa antagonist, in healthy subjects. Clin Pharmacol Ther. 1998;63(3):384–92.PubMedCrossRef
262.
go back to reference Hartman GD, Egbertson MS, Halczenko W, Laswell WL, Duggan ME, Smith RL, et al. Non-peptide fibrinogen receptor antagonists. 1. Discovery and design of exosite inhibitors. J Med Chem. 1992;35(24):4640–2.PubMedCrossRef Hartman GD, Egbertson MS, Halczenko W, Laswell WL, Duggan ME, Smith RL, et al. Non-peptide fibrinogen receptor antagonists. 1. Discovery and design of exosite inhibitors. J Med Chem. 1992;35(24):4640–2.PubMedCrossRef
263.
go back to reference Starnes HB, Patel AA, Stouffer GA. Optimal use of platelet glycoprotein IIb/IIIa receptor antagonists in patients undergoing percutaneous coronary interventions. Drugs. 2011;71(15):2009–30.PubMedCrossRef Starnes HB, Patel AA, Stouffer GA. Optimal use of platelet glycoprotein IIb/IIIa receptor antagonists in patients undergoing percutaneous coronary interventions. Drugs. 2011;71(15):2009–30.PubMedCrossRef
264.
go back to reference Storey RF, Wilcox RG, Heptinstall S. Differential effects of glycoprotein IIb/IIIa antagonists on platelet microaggregate and macroaggregate formation and effect of anticoagulant on antagonist potency. Implications for assay methodology and comparison of different antagonists. Circulation. 1998;98(16):1616–21.PubMedCrossRef Storey RF, Wilcox RG, Heptinstall S. Differential effects of glycoprotein IIb/IIIa antagonists on platelet microaggregate and macroaggregate formation and effect of anticoagulant on antagonist potency. Implications for assay methodology and comparison of different antagonists. Circulation. 1998;98(16):1616–21.PubMedCrossRef
265.
go back to reference Brugts JJ, Mercado N, Hu S, Guarneri M, Price M, Schatz R, et al. Relation of periprocedural bleeding complications and long-term outcome in patients undergoing percutaneous coronary revascularization (from the Evaluation of Oral Xemilofiban in Controlling Thrombotic Events [EXCITE] Trial). Am J Cardiol. 2009;103(7):917–22.PubMedCrossRef Brugts JJ, Mercado N, Hu S, Guarneri M, Price M, Schatz R, et al. Relation of periprocedural bleeding complications and long-term outcome in patients undergoing percutaneous coronary revascularization (from the Evaluation of Oral Xemilofiban in Controlling Thrombotic Events [EXCITE] Trial). Am J Cardiol. 2009;103(7):917–22.PubMedCrossRef
266.
go back to reference Smith EE, Cannon CP, Murphy S, Feske SK, Schwamm LH. Risk factors for stroke after acute coronary syndromes in the orbofiban in patients with unstable coronary syndromes--thrombolysis in myocardial infarction (OPUS-TIMI) 16 study. Am Heart J. 2006;151(2):338–44.PubMedCrossRef Smith EE, Cannon CP, Murphy S, Feske SK, Schwamm LH. Risk factors for stroke after acute coronary syndromes in the orbofiban in patients with unstable coronary syndromes--thrombolysis in myocardial infarction (OPUS-TIMI) 16 study. Am Heart J. 2006;151(2):338–44.PubMedCrossRef
267.
go back to reference Wong CK, Newby LK, Bhapker MV, Aylward PE, Pfisterer M, Alexander KP, et al. Use of evidence-based medicine for acute coronary syndromes in the elderly and very elderly: insights from the Sibrafiban vs aspirin to yield maximum protection from ischemic heart events postacute cOroNary sYndromes trials. Am Heart J. 2007;154(2):313–21.PubMedCrossRef Wong CK, Newby LK, Bhapker MV, Aylward PE, Pfisterer M, Alexander KP, et al. Use of evidence-based medicine for acute coronary syndromes in the elderly and very elderly: insights from the Sibrafiban vs aspirin to yield maximum protection from ischemic heart events postacute cOroNary sYndromes trials. Am Heart J. 2007;154(2):313–21.PubMedCrossRef
268.
go back to reference Topol EJ, Easton D, Harrington RA, Amarenco P, Califf RM, Graffagnino C, et al. Randomized, double-blind, placebo-controlled, international trial of the oral IIb/IIIa antagonist lotrafiban in coronary and cerebrovascular disease. Circulation. 2003;108(4):399–406.PubMedCrossRef Topol EJ, Easton D, Harrington RA, Amarenco P, Califf RM, Graffagnino C, et al. Randomized, double-blind, placebo-controlled, international trial of the oral IIb/IIIa antagonist lotrafiban in coronary and cerebrovascular disease. Circulation. 2003;108(4):399–406.PubMedCrossRef
269.
go back to reference Murphy J, Wright RS, Gussak I, Williams B, Daly RN, Cain VA, et al. The use of roxifiban (DMP754), a novel oral platelet glycoprotein IIb/IIIa receptor inhibitor, in patients with stable coronary artery disease. Am J Cardiovasc Drugs. 2003;3(2):101–12.PubMedCrossRef Murphy J, Wright RS, Gussak I, Williams B, Daly RN, Cain VA, et al. The use of roxifiban (DMP754), a novel oral platelet glycoprotein IIb/IIIa receptor inhibitor, in patients with stable coronary artery disease. Am J Cardiovasc Drugs. 2003;3(2):101–12.PubMedCrossRef
270.
go back to reference Damiano BP, Mitchell JA, Giardino E, Corcoran T, Haertlein BJ, de Garavilla L, et al. Antiplatelet and antithrombotic activity of RWJ-53308, a novel orally active glycoprotein IIb/IIIa antagonist. Thromb Res. 2001;104(2):113–26.PubMedCrossRef Damiano BP, Mitchell JA, Giardino E, Corcoran T, Haertlein BJ, de Garavilla L, et al. Antiplatelet and antithrombotic activity of RWJ-53308, a novel orally active glycoprotein IIb/IIIa antagonist. Thromb Res. 2001;104(2):113–26.PubMedCrossRef
271.
go back to reference Savi P, Badorc A, Lale A, Bordes MF, Bornia J, Labouret C, et al. SR 121787, a new orally active fibrinogen receptor antagonist. Thromb Haemost. 1998;80(3):469–76.PubMedCrossRef Savi P, Badorc A, Lale A, Bordes MF, Bornia J, Labouret C, et al. SR 121787, a new orally active fibrinogen receptor antagonist. Thromb Haemost. 1998;80(3):469–76.PubMedCrossRef
272.
go back to reference Giugliano RP, McCabe CH, Sequeira RF, Frey MJ, Henry TD, Piana RN, et al. First report of an intravenous and oral glycoprotein IIb/IIIa inhibitor (RPR 109891) in patients with recent acute coronary syndromes: results of the TIMI 15A and 15B trials. Am Heart J. 2000;140(1):81–93.PubMedCrossRef Giugliano RP, McCabe CH, Sequeira RF, Frey MJ, Henry TD, Piana RN, et al. First report of an intravenous and oral glycoprotein IIb/IIIa inhibitor (RPR 109891) in patients with recent acute coronary syndromes: results of the TIMI 15A and 15B trials. Am Heart J. 2000;140(1):81–93.PubMedCrossRef
273.
go back to reference Zhu J, Choi WS, McCoy JG, Negri A, Zhu J, Naini S, et al. Structure-guided design of a high-affinity platelet integrin αIIbβ3 receptor antagonist that disrupts Mg (2)(+) binding to the MIDAS. Sci Transl Med. 2012;4(125):125ra32. Zhu J, Choi WS, McCoy JG, Negri A, Zhu J, Naini S, et al. Structure-guided design of a high-affinity platelet integrin αIIbβ3 receptor antagonist that disrupts Mg (2)(+) binding to the MIDAS. Sci Transl Med. 2012;4(125):125ra32.
274.
go back to reference Polishchuk PG, Samoylenko GV, Khristova TM, Krysko OL, Kabanova TA, Kabanov VM, et al. Design, virtual screening, and synthesis of antagonists of αIIbβ3 as antiplatelet agents. J Med Chem. 2015;58(19):7681–94. Polishchuk PG, Samoylenko GV, Khristova TM, Krysko OL, Kabanova TA, Kabanov VM, et al. Design, virtual screening, and synthesis of antagonists of αIIbβ3 as antiplatelet agents. J Med Chem. 2015;58(19):7681–94.
275.
go back to reference Ziegler M, Hohmann JD, Searle AK, Abraham MK, Nandurkar HH, Wang X, et al. A single-chain antibody-CD39 fusion protein targeting activated platelets protects from cardiac ischaemia/reperfusion injury. Eur Heart J. 2018;39(2):111–6.PubMed Ziegler M, Hohmann JD, Searle AK, Abraham MK, Nandurkar HH, Wang X, et al. A single-chain antibody-CD39 fusion protein targeting activated platelets protects from cardiac ischaemia/reperfusion injury. Eur Heart J. 2018;39(2):111–6.PubMed
Metadata
Title
Platelet integrin αIIbβ3: signal transduction, regulation, and its therapeutic targeting
Authors
Jiansong Huang
Xia Li
Xiaofeng Shi
Mark Zhu
Jinghan Wang
Shujuan Huang
Xin Huang
Huafeng Wang
Ling Li
Huan Deng
Yulan Zhou
Jianhua Mao
Zhangbiao Long
Zhixin Ma
Wenle Ye
Jiajia Pan
Xiaodong Xi
Jie Jin
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2019
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-019-0709-6

Other articles of this Issue 1/2019

Journal of Hematology & Oncology 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine