Skip to main content
Top
Published in: Journal of Neuro-Oncology 2/2012

01-01-2012 | Laboratory Investigation - Human/Animal Tissue

Platelet-derived growth factor receptor (PDGFR) expression in primary spinal cord gliomas

Authors: Jason A. Ellis, Peter Canoll, Paul C. McCormick II, Neil A. Feldstein, Richard C. Anderson, Peter D. Angevine, Michael G. Kaiser, Paul C. McCormick, Jeffrey N. Bruce, Alfred T. Ogden

Published in: Journal of Neuro-Oncology | Issue 2/2012

Login to get access

Abstract

Abnormal signaling through the platelet-derived growth factor receptor (PDGFR) has been proposed as a possible mechanism of spinal cord glioma initiation and progression. However, the extent of PDGFR expression in human spinal cord gliomas remains unknown. In this study we perform immunohistochemical analysis of PDGFRα expression in a series of 33 primary intramedullary spinal cord gliomas of different types and grades. PDGFRα was seen to be expressed in a significant subset of these tumors across all major glioma types including ependymoma, oligodendroglioma, pilocytic astrocytoma, astrocytoma, and glioblastoma. These results support the hypothesis that growth factor signaling through the PDGFR may be important for the development of at least a subset of human spinal cord gliomas. Further studies investigating the prognostic significance of PDGFR expression as well as the role of PDGF signaling on the development of intramedullary spinal cord gliomas are warranted.
Literature
1.
go back to reference Hitoshi Y, Harris BT, Liu H, Popko B, Israel MA (2008) Spinal glioma: platelet-derived growth factor B-mediated oncogenesis in the spinal cord. Cancer Res 68:8507–8515PubMedCrossRef Hitoshi Y, Harris BT, Liu H, Popko B, Israel MA (2008) Spinal glioma: platelet-derived growth factor B-mediated oncogenesis in the spinal cord. Cancer Res 68:8507–8515PubMedCrossRef
2.
go back to reference Ellis J, Castelli M, Canoll P, Bruce J, Ogden A (2010) Adult white matter glial progenitors as cells of origin for intramedullary spinal cord tumors: evidence from a novel animal model. AANS/CNS Section on Disorders of the Spine and Peripheral Nerves Abstract. http://univ.cns.org/EducationalTools.htm. Accessed 2 Aug 2011 Ellis J, Castelli M, Canoll P, Bruce J, Ogden A (2010) Adult white matter glial progenitors as cells of origin for intramedullary spinal cord tumors: evidence from a novel animal model. AANS/CNS Section on Disorders of the Spine and Peripheral Nerves Abstract. http://​univ.​cns.​org/​EducationalTools​.​htm. Accessed 2 Aug 2011
3.
go back to reference Ellis JA, Castelli M, Bruce JN, Canoll P, Ogden AT (2011) Retroviral delivery of PDGF to spinal cord progenitor cells drives the formation of intramedullary gliomas. Neurosurgery (in press) Ellis JA, Castelli M, Bruce JN, Canoll P, Ogden AT (2011) Retroviral delivery of PDGF to spinal cord progenitor cells drives the formation of intramedullary gliomas. Neurosurgery (in press)
4.
go back to reference Fakhrai N, Neophytou P, Dieckmann K, Nemeth A, Prayer D, Hainfellner J, Marosi C (2004) Recurrent spinal ependymoma showing partial remission under Imatimib. Acta Neurochir (Wien) 146:1255–1258CrossRef Fakhrai N, Neophytou P, Dieckmann K, Nemeth A, Prayer D, Hainfellner J, Marosi C (2004) Recurrent spinal ependymoma showing partial remission under Imatimib. Acta Neurochir (Wien) 146:1255–1258CrossRef
5.
go back to reference Barton VN, Donson AM, Kleinschmidt-DeMasters BK, Birks DK, Handler MH, Foreman NK (2010) Unique molecular characteristics of pediatric myxopapillary ependymoma. Brain Pathol 20(3):560–570PubMedCrossRef Barton VN, Donson AM, Kleinschmidt-DeMasters BK, Birks DK, Handler MH, Foreman NK (2010) Unique molecular characteristics of pediatric myxopapillary ependymoma. Brain Pathol 20(3):560–570PubMedCrossRef
6.
go back to reference Martinho O, Longatto-Filho A, Lambros MB, Martins A, Pinheiro C, Silva A, Pardal F, Amorim J, Mackay A, Milanezi F, Tamber N, Fenwick K, Ashworth A, Reis-Filho JS, Lopes JM, Reis RM (2009) Expression, mutation and copy number analysis of platelet-derived growth factor receptor A (PDGFRA) and its ligand PDGFA in gliomas. Br J Cancer 101:973–982PubMedCrossRef Martinho O, Longatto-Filho A, Lambros MB, Martins A, Pinheiro C, Silva A, Pardal F, Amorim J, Mackay A, Milanezi F, Tamber N, Fenwick K, Ashworth A, Reis-Filho JS, Lopes JM, Reis RM (2009) Expression, mutation and copy number analysis of platelet-derived growth factor receptor A (PDGFRA) and its ligand PDGFA in gliomas. Br J Cancer 101:973–982PubMedCrossRef
7.
go back to reference Hermanson M, Funa K, Hartman M, Claesson-Welsh L, Heldin CH, Westermark B, Nister M (1992) Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res 52:3213–3219PubMed Hermanson M, Funa K, Hartman M, Claesson-Welsh L, Heldin CH, Westermark B, Nister M (1992) Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res 52:3213–3219PubMed
8.
go back to reference Haberler C, Gelpi E, Marosi C, Rossler K, Birner P, Budka H, Hainfellner JA (2006) Immunohistochemical analysis of platelet-derived growth factor receptor-alpha, -beta, c-kit, c-abl, and Arg proteins in glioblastoma: possible implications for patient selection for imatinib mesylate therapy. J Neurooncol 76:105–109PubMedCrossRef Haberler C, Gelpi E, Marosi C, Rossler K, Birner P, Budka H, Hainfellner JA (2006) Immunohistochemical analysis of platelet-derived growth factor receptor-alpha, -beta, c-kit, c-abl, and Arg proteins in glioblastoma: possible implications for patient selection for imatinib mesylate therapy. J Neurooncol 76:105–109PubMedCrossRef
9.
go back to reference Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O’Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110PubMedCrossRef Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O’Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110PubMedCrossRef
10.
go back to reference Brennan C, Momota H, Hambardzumyan D, Ozawa T, Tandon A, Pedraza A, Holland E (2009) Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS One 4:e7752PubMedCrossRef Brennan C, Momota H, Hambardzumyan D, Ozawa T, Tandon A, Pedraza A, Holland E (2009) Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS One 4:e7752PubMedCrossRef
11.
go back to reference Razis E, Selviaridis P, Labropoulos S, Norris JL, Zhu MJ, Song DD, Kalebic T, Torrens M, Kalogera-Fountzila A, Karkavelas G, Karanastasi S, Fletcher JA, Fountzilas G (2009) Phase II study of neoadjuvant imatinib in glioblastoma: evaluation of clinical and molecular effects of the treatment. Clin Cancer Res 15:6258–6266PubMedCrossRef Razis E, Selviaridis P, Labropoulos S, Norris JL, Zhu MJ, Song DD, Kalebic T, Torrens M, Kalogera-Fountzila A, Karkavelas G, Karanastasi S, Fletcher JA, Fountzilas G (2009) Phase II study of neoadjuvant imatinib in glioblastoma: evaluation of clinical and molecular effects of the treatment. Clin Cancer Res 15:6258–6266PubMedCrossRef
12.
go back to reference Baruchel S, Sharp JR, Bartels U, Hukin J, Odame I, Portwine C, Strother D, Fryer C, Halton J, Egorin MJ, Reis RM, Martinho O, Stempak D, Hawkins C, Gammon J, Bouffet E (2009) A Canadian paediatric brain tumour consortium (CPBTC) phase II molecularly targeted study of imatinib in recurrent and refractory paediatric central nervous system tumours. Eur J Cancer 45:2352–2359PubMedCrossRef Baruchel S, Sharp JR, Bartels U, Hukin J, Odame I, Portwine C, Strother D, Fryer C, Halton J, Egorin MJ, Reis RM, Martinho O, Stempak D, Hawkins C, Gammon J, Bouffet E (2009) A Canadian paediatric brain tumour consortium (CPBTC) phase II molecularly targeted study of imatinib in recurrent and refractory paediatric central nervous system tumours. Eur J Cancer 45:2352–2359PubMedCrossRef
13.
go back to reference Raymond E, Brandes AA, Dittrich C, Fumoleau P, Coudert B, Clement PM, Frenay M, Rampling R, Stupp R, Kros JM, Heinrich MC, Gorlia T, Lacombe D, van den Bent MJ (2008) Phase II study of imatinib in patients with recurrent gliomas of various histologies: a European Organisation for Research and Treatment of Cancer Brain Tumor Group Study. J Clin Oncol 26:4659–4665PubMedCrossRef Raymond E, Brandes AA, Dittrich C, Fumoleau P, Coudert B, Clement PM, Frenay M, Rampling R, Stupp R, Kros JM, Heinrich MC, Gorlia T, Lacombe D, van den Bent MJ (2008) Phase II study of imatinib in patients with recurrent gliomas of various histologies: a European Organisation for Research and Treatment of Cancer Brain Tumor Group Study. J Clin Oncol 26:4659–4665PubMedCrossRef
14.
go back to reference Wen PY, Yung WK, Lamborn KR, Dahia PL, Wang Y, Peng B, Abrey LE, Raizer J, Cloughesy TF, Fink K, Gilbert M, Chang S, Junck L, Schiff D, Lieberman F, Fine HA, Mehta M, Robins HI, DeAngelis LM, Groves MD, Puduvalli VK, Levin V, Conrad C, Maher EA, Aldape K, Hayes M, Letvak L, Egorin MJ, Capdeville R, Kaplan R, Murgo AJ, Stiles C, Prados MD (2006) Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study 99–08. Clin Cancer Res 12:4899–4907PubMedCrossRef Wen PY, Yung WK, Lamborn KR, Dahia PL, Wang Y, Peng B, Abrey LE, Raizer J, Cloughesy TF, Fink K, Gilbert M, Chang S, Junck L, Schiff D, Lieberman F, Fine HA, Mehta M, Robins HI, DeAngelis LM, Groves MD, Puduvalli VK, Levin V, Conrad C, Maher EA, Aldape K, Hayes M, Letvak L, Egorin MJ, Capdeville R, Kaplan R, Murgo AJ, Stiles C, Prados MD (2006) Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study 99–08. Clin Cancer Res 12:4899–4907PubMedCrossRef
15.
go back to reference Reardon DA, Dresemann G, Taillibert S, Campone M, van den Bent M, Clement P, Blomquist E, Gordower L, Schultz H, Raizer J, Hau P, Easaw J, Gil M, Tonn J, Gijtenbeek A, Schlegel U, Bergstrom P, Green S, Weir A, Nikolova Z (2009) Multicentre phase II studies evaluating imatinib plus hydroxyurea in patients with progressive glioblastoma. Br J Cancer 101:1995–2004PubMedCrossRef Reardon DA, Dresemann G, Taillibert S, Campone M, van den Bent M, Clement P, Blomquist E, Gordower L, Schultz H, Raizer J, Hau P, Easaw J, Gil M, Tonn J, Gijtenbeek A, Schlegel U, Bergstrom P, Green S, Weir A, Nikolova Z (2009) Multicentre phase II studies evaluating imatinib plus hydroxyurea in patients with progressive glioblastoma. Br J Cancer 101:1995–2004PubMedCrossRef
16.
go back to reference Neyns B, Sadones J, Chaskis C, Dujardin M, Everaert H, Lv S, Duerinck J, Tynninen O, Nupponen N, Michotte A, De Greve J (2011) Phase II study of sunitinib malate in patients with recurrent high-grade glioma. J Neurooncol 103(3):491–501PubMedCrossRef Neyns B, Sadones J, Chaskis C, Dujardin M, Everaert H, Lv S, Duerinck J, Tynninen O, Nupponen N, Michotte A, De Greve J (2011) Phase II study of sunitinib malate in patients with recurrent high-grade glioma. J Neurooncol 103(3):491–501PubMedCrossRef
17.
go back to reference Hainsworth JD, Ervin T, Friedman E, Priego V, Murphy PB, Clark BL, Lamar RE (2010) Concurrent radiotherapy and temozolomide followed by temozolomide and sorafenib in the first-line treatment of patients with glioblastoma multiforme. Cancer 116:3663–3669PubMedCrossRef Hainsworth JD, Ervin T, Friedman E, Priego V, Murphy PB, Clark BL, Lamar RE (2010) Concurrent radiotherapy and temozolomide followed by temozolomide and sorafenib in the first-line treatment of patients with glioblastoma multiforme. Cancer 116:3663–3669PubMedCrossRef
18.
go back to reference Calzolari F, Malatesta P (2010) Recent insights into PDGF-induced gliomagenesis. Brain Pathol 20(3):527–538PubMedCrossRef Calzolari F, Malatesta P (2010) Recent insights into PDGF-induced gliomagenesis. Brain Pathol 20(3):527–538PubMedCrossRef
19.
go back to reference Shih AH, Holland EC (2006) Platelet-derived growth factor (PDGF) and glial tumorigenesis. Cancer Lett 232:139–147PubMedCrossRef Shih AH, Holland EC (2006) Platelet-derived growth factor (PDGF) and glial tumorigenesis. Cancer Lett 232:139–147PubMedCrossRef
20.
go back to reference Westermark B, Heldin CH, Nister M (1995) Platelet-derived growth factor in human glioma. Glia 15:257–263PubMedCrossRef Westermark B, Heldin CH, Nister M (1995) Platelet-derived growth factor in human glioma. Glia 15:257–263PubMedCrossRef
21.
go back to reference Di Rocco F, Carroll RS, Zhang J, Black PM (1998) Platelet-derived growth factor and its receptor expression in human oligodendrogliomas. Neurosurgery 42:341–346PubMedCrossRef Di Rocco F, Carroll RS, Zhang J, Black PM (1998) Platelet-derived growth factor and its receptor expression in human oligodendrogliomas. Neurosurgery 42:341–346PubMedCrossRef
22.
go back to reference Assanah M, Lochhead R, Ogden A, Bruce J, Goldman J, Canoll P (2006) Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses. J Neurosci 26:6781–6790PubMedCrossRef Assanah M, Lochhead R, Ogden A, Bruce J, Goldman J, Canoll P (2006) Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses. J Neurosci 26:6781–6790PubMedCrossRef
23.
go back to reference Ozawa T, Brennan CW, Wang L, Squatrito M, Sasayama T, Nakada M, Huse JT, Pedraza A, Utsuki S, Yasui Y, Tandon A, Fomchenko EI, Oka H, Levine RL, Fujii K, Ladanyi M, Holland EC (2010) PDGFRA gene rearrangements are frequent genetic events in PDGFRA-amplified glioblastomas. Genes Dev 24:2205–2218PubMedCrossRef Ozawa T, Brennan CW, Wang L, Squatrito M, Sasayama T, Nakada M, Huse JT, Pedraza A, Utsuki S, Yasui Y, Tandon A, Fomchenko EI, Oka H, Levine RL, Fujii K, Ladanyi M, Holland EC (2010) PDGFRA gene rearrangements are frequent genetic events in PDGFRA-amplified glioblastomas. Genes Dev 24:2205–2218PubMedCrossRef
24.
go back to reference Dai C, Celestino JC, Okada Y, Louis DN, Fuller GN, Holland EC (2001) PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 15:1913–1925PubMedCrossRef Dai C, Celestino JC, Okada Y, Louis DN, Fuller GN, Holland EC (2001) PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 15:1913–1925PubMedCrossRef
25.
go back to reference Uhrbom L, Hesselager G, Nister M, Westermark B (1998) Induction of brain tumors in mice using a recombinant platelet-derived growth factor B-chain retrovirus. Cancer Res 58:5275–5279PubMed Uhrbom L, Hesselager G, Nister M, Westermark B (1998) Induction of brain tumors in mice using a recombinant platelet-derived growth factor B-chain retrovirus. Cancer Res 58:5275–5279PubMed
26.
go back to reference Servidei T, Riccardi A, Sanguinetti M, Dominici C, Riccardi R (2006) Increased sensitivity to the platelet-derived growth factor (PDGF) receptor inhibitor STI571 in chemoresistant glioma cells is associated with enhanced PDGF-BB-mediated signaling and STI571-induced Akt inactivation. J Cell Physiol 208:220–228PubMedCrossRef Servidei T, Riccardi A, Sanguinetti M, Dominici C, Riccardi R (2006) Increased sensitivity to the platelet-derived growth factor (PDGF) receptor inhibitor STI571 in chemoresistant glioma cells is associated with enhanced PDGF-BB-mediated signaling and STI571-induced Akt inactivation. J Cell Physiol 208:220–228PubMedCrossRef
27.
go back to reference Oude Weernink PA, Verheul E, Kerkhof E, van Veelen CW, Rijksen G (1996) Inhibitors of protein tyrosine phosphorylation reduce the proliferation of two human glioma cell lines. Neurosurgery 38:108–113 Discussion 113–104PubMedCrossRef Oude Weernink PA, Verheul E, Kerkhof E, van Veelen CW, Rijksen G (1996) Inhibitors of protein tyrosine phosphorylation reduce the proliferation of two human glioma cell lines. Neurosurgery 38:108–113 Discussion 113–104PubMedCrossRef
28.
go back to reference Assanah MC, Bruce JN, Suzuki SO, Chen A, Goldman JE, Canoll P (2009) PDGF stimulates the massive expansion of glial progenitors in the neonatal forebrain. Glia 57:1835–1847PubMedCrossRef Assanah MC, Bruce JN, Suzuki SO, Chen A, Goldman JE, Canoll P (2009) PDGF stimulates the massive expansion of glial progenitors in the neonatal forebrain. Glia 57:1835–1847PubMedCrossRef
29.
go back to reference Masui K, Suzuki SO, Torisu R, Goldman JE, Canoll P, Iwaki T (2010) Glial progenitors in the brainstem give rise to malignant gliomas by platelet-derived growth factor stimulation. Glia 58:1050–1065PubMedCrossRef Masui K, Suzuki SO, Torisu R, Goldman JE, Canoll P, Iwaki T (2010) Glial progenitors in the brainstem give rise to malignant gliomas by platelet-derived growth factor stimulation. Glia 58:1050–1065PubMedCrossRef
30.
go back to reference Shih AH, Dai C, Hu X, Rosenblum MK, Koutcher JA, Holland EC (2004) Dose-dependent effects of platelet-derived growth factor-B on glial tumorigenesis. Cancer Res 64:4783–4789PubMedCrossRef Shih AH, Dai C, Hu X, Rosenblum MK, Koutcher JA, Holland EC (2004) Dose-dependent effects of platelet-derived growth factor-B on glial tumorigenesis. Cancer Res 64:4783–4789PubMedCrossRef
31.
go back to reference Canoll P, Goldman JE (2008) The interface between glial progenitors and gliomas. Acta Neuropathol 116:465–477PubMedCrossRef Canoll P, Goldman JE (2008) The interface between glial progenitors and gliomas. Acta Neuropathol 116:465–477PubMedCrossRef
32.
go back to reference Shoshan Y, Nishiyama A, Chang A, Mork S, Barnett GH, Cowell JK, Trapp BD, Staugaitis SM (1999) Expression of oligodendrocyte progenitor cell antigens by gliomas: implications for the histogenesis of brain tumors. Proc Natl Acad Sci USA 96:10361–10366PubMedCrossRef Shoshan Y, Nishiyama A, Chang A, Mork S, Barnett GH, Cowell JK, Trapp BD, Staugaitis SM (1999) Expression of oligodendrocyte progenitor cell antigens by gliomas: implications for the histogenesis of brain tumors. Proc Natl Acad Sci USA 96:10361–10366PubMedCrossRef
33.
go back to reference Staugaitis SM, Trapp BD (2009) NG2-positive glia in the human central nervous system. Neuron Glia Biol 5:35–44PubMedCrossRef Staugaitis SM, Trapp BD (2009) NG2-positive glia in the human central nervous system. Neuron Glia Biol 5:35–44PubMedCrossRef
34.
35.
go back to reference Harrop JS, Ganju A, Groff M, Bilsky M (2009) Primary intramedullary tumors of the spinal cord. Spine (Phila Pa 1976) 34:S69–S77CrossRef Harrop JS, Ganju A, Groff M, Bilsky M (2009) Primary intramedullary tumors of the spinal cord. Spine (Phila Pa 1976) 34:S69–S77CrossRef
36.
go back to reference Isaacson SR (2000) Radiation therapy and the management of intramedullary spinal cord tumors. J Neurooncol 47:231–238PubMedCrossRef Isaacson SR (2000) Radiation therapy and the management of intramedullary spinal cord tumors. J Neurooncol 47:231–238PubMedCrossRef
37.
go back to reference Chamberlain MC, Tredway TL (2011) Adult primary intradural spinal cord tumors: a review. Curr Neurol Neurosci Rep 11(3):320–328PubMedCrossRef Chamberlain MC, Tredway TL (2011) Adult primary intradural spinal cord tumors: a review. Curr Neurol Neurosci Rep 11(3):320–328PubMedCrossRef
Metadata
Title
Platelet-derived growth factor receptor (PDGFR) expression in primary spinal cord gliomas
Authors
Jason A. Ellis
Peter Canoll
Paul C. McCormick II
Neil A. Feldstein
Richard C. Anderson
Peter D. Angevine
Michael G. Kaiser
Paul C. McCormick
Jeffrey N. Bruce
Alfred T. Ogden
Publication date
01-01-2012
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 2/2012
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-011-0666-6

Other articles of this Issue 2/2012

Journal of Neuro-Oncology 2/2012 Go to the issue

Clinical Study–Patient Study

Oligodendrogliomas in children

Laboratory Investigation - Human/Animal Tissue

Expression profile of frizzled receptors in human medulloblastomas