Skip to main content
Top
Published in: Journal of Assisted Reproduction and Genetics 10/2013

01-10-2013 | Review

Plasticity of granulosa cells: on the crossroad of stemness and transdifferentiation potential

Authors: Edo Dzafic, Martin Stimpfel, Irma Virant-Klun

Published in: Journal of Assisted Reproduction and Genetics | Issue 10/2013

Login to get access

Abstract

The ovarian follicle represents the basic functional unit of the ovary and consists of an oocyte, which is surrounded by granulosa cells (GCs). GCs play an important role in the growth and development of the follicle. They are subject to increased attention since it has recently been shown that the subpopulation of GCs within the growing follicle possesses exceptionally plasticity showing stem cell characteristics. In assisted reproduction programs, oocytes are retrieved from patients together with GCs, which are currently discarded daily, but could be an interesting subject to be researched and potentially used in regenerative medicine in the future. Isolated GCs expressed stem cell markers such as OCT-4, NANOG and SOX-2, showed high telomerase activity, and were in vitro differentiated into other cell types, otherwise not present within ovarian follicles. Recently another phenomenon demonstrated in GCs is transdifferentiation, which could explain many ovarian pathological conditions. Possible applications in regenerative medicine are also given.
Literature
1.
go back to reference Albrecht KH, Eicher EM. Evidence that Sry is expressed in pre-Sertoli cells and Sertoli and granulosa cells have a common precursor. Dev Biol. 2001;240:92–107.PubMedCrossRef Albrecht KH, Eicher EM. Evidence that Sry is expressed in pre-Sertoli cells and Sertoli and granulosa cells have a common precursor. Dev Biol. 2001;240:92–107.PubMedCrossRef
2.
go back to reference Atlasi Y, Mowla SJ, Ziaee SA, et al. OCT4 spliced variants are differentially expressed in human pluripotent and nonpluripotent cells. Stem Cells. 2008;26:3068–74.PubMedCrossRef Atlasi Y, Mowla SJ, Ziaee SA, et al. OCT4 spliced variants are differentially expressed in human pluripotent and nonpluripotent cells. Stem Cells. 2008;26:3068–74.PubMedCrossRef
4.
go back to reference Bayne S, Li H, Jones ME, et al. Estrogen deficiency reversibly induces telomere shortening in mouse granulosa cells and ovarian aging in vivo. Protein Cell. 2011;2:333–46.PubMedCrossRef Bayne S, Li H, Jones ME, et al. Estrogen deficiency reversibly induces telomere shortening in mouse granulosa cells and ovarian aging in vivo. Protein Cell. 2011;2:333–46.PubMedCrossRef
5.
go back to reference Boerboom D, Paguet M, Hsieh M, et al. Misregulated Wnt/beta-catenin signaling leads to ovarian granulosa cell tumor development. Cancer Res. 2005;65:9206–15.PubMedCrossRef Boerboom D, Paguet M, Hsieh M, et al. Misregulated Wnt/beta-catenin signaling leads to ovarian granulosa cell tumor development. Cancer Res. 2005;65:9206–15.PubMedCrossRef
6.
go back to reference Boyer A, Goff AK, Boerboom D. WNT signaling in ovarian follicle biology and tumorigenesis. Trends Endocrinol Metab. 2010;21:25–32.PubMedCrossRef Boyer A, Goff AK, Boerboom D. WNT signaling in ovarian follicle biology and tumorigenesis. Trends Endocrinol Metab. 2010;21:25–32.PubMedCrossRef
7.
go back to reference Bukovsky A, Caudle MR. Immunoregulation of follicular renewal, selection, POF, and menopause in vivo, vs. neo-oogenesis in vitro, POF and ovarian infertility treatment, and a clinical trial. Reprod Biol Endocrinol. 2012. doi:10.1186/1477-7827-10-97.PubMed Bukovsky A, Caudle MR. Immunoregulation of follicular renewal, selection, POF, and menopause in vivo, vs. neo-oogenesis in vitro, POF and ovarian infertility treatment, and a clinical trial. Reprod Biol Endocrinol. 2012. doi:10.​1186/​1477-7827-10-97.PubMed
8.
go back to reference Bukovsky A. Ovarian stem cell niche and follicular renewal in mammals. Anat Rec (Hoboken). 2011;294:1284–306.CrossRef Bukovsky A. Ovarian stem cell niche and follicular renewal in mammals. Anat Rec (Hoboken). 2011;294:1284–306.CrossRef
9.
go back to reference Bukovsky A, Caudle MR, Svetlikova M. Steroid-mediated differentiation of neural/neuronal cells from epithelial ovarian precursors in vitro. Cell Cycle. 2008;7:3577–83.PubMedCrossRef Bukovsky A, Caudle MR, Svetlikova M. Steroid-mediated differentiation of neural/neuronal cells from epithelial ovarian precursors in vitro. Cell Cycle. 2008;7:3577–83.PubMedCrossRef
10.
go back to reference Butts S, Riethman H, Ratcliffe S, et al. Correlation of telomere length and telomerase activity with occult ovarian insufficiency. J Clin Endocrinol Metab. 2009;94:4835–43.PubMedCrossRef Butts S, Riethman H, Ratcliffe S, et al. Correlation of telomere length and telomerase activity with occult ovarian insufficiency. J Clin Endocrinol Metab. 2009;94:4835–43.PubMedCrossRef
11.
go back to reference Chen H, Wang W, Mo Y, et al. Women with high telomerase activity in luteinised granulosa cells have a higher pregnancy rate during in vitro fertilization treatment. J Assist Reprod Genet. 2011;28:797–807.PubMedCrossRef Chen H, Wang W, Mo Y, et al. Women with high telomerase activity in luteinised granulosa cells have a higher pregnancy rate during in vitro fertilization treatment. J Assist Reprod Genet. 2011;28:797–807.PubMedCrossRef
12.
go back to reference Cheng EH, Chen SU, Lee TH, et al. Evaluation of telomere length in cumulus cells as a potential biomarker of oocyte and embryo quality. Hum Reprod. 2013. doi:10.1093/humrep/det004. Cheng EH, Chen SU, Lee TH, et al. Evaluation of telomere length in cumulus cells as a potential biomarker of oocyte and embryo quality. Hum Reprod. 2013. doi:10.​1093/​humrep/​det004.
13.
go back to reference Chronowska E. Regulation of telomerase activity in ovarian granulosa cells. Indian J Exp Biol. 2012;50:595–601.PubMed Chronowska E. Regulation of telomerase activity in ovarian granulosa cells. Indian J Exp Biol. 2012;50:595–601.PubMed
15.
go back to reference Daniels R, Hall V, Trounson AO. Analysis of gene transcription in bovine nuclear transfer embryos reconstructed with granulosa cell nuclei. Biol Reprod. 2000;63:1034–40.PubMedCrossRef Daniels R, Hall V, Trounson AO. Analysis of gene transcription in bovine nuclear transfer embryos reconstructed with granulosa cell nuclei. Biol Reprod. 2000;63:1034–40.PubMedCrossRef
17.
go back to reference Erickson G. The graafian follicle: a functional definition. In: Adashi EY, editor. Ovulation: evolving scientific and clinical concepts. New York: Springer; 2000. p. 31–48.CrossRef Erickson G. The graafian follicle: a functional definition. In: Adashi EY, editor. Ovulation: evolving scientific and clinical concepts. New York: Springer; 2000. p. 31–48.CrossRef
18.
go back to reference Fan HY, O’Connor A, Shitanaka M, et al. β-Catenin (CTNNB1) promotes preovulatory follicular development but represses LH-mediated ovulation and luteinization. Mol Endocrinol. 2010;24:1529–42.PubMedCrossRef Fan HY, O’Connor A, Shitanaka M, et al. β-Catenin (CTNNB1) promotes preovulatory follicular development but represses LH-mediated ovulation and luteinization. Mol Endocrinol. 2010;24:1529–42.PubMedCrossRef
19.
go back to reference Flores I, Canela A, Vera E, et al. The longest telomeres: a general signature of adult stem cell compartments. Genes Dev. 2008;22:654–67.PubMedCrossRef Flores I, Canela A, Vera E, et al. The longest telomeres: a general signature of adult stem cell compartments. Genes Dev. 2008;22:654–67.PubMedCrossRef
20.
go back to reference Glister C, Kemp CF, Knight PG. Bone morphogenetic protein (BMP) ligands and receptors in bovine ovarian follicle cells: actions of BMP-4, -6 and -7 on granulosa cells and differential modulation of Smad-1 phosphorylation by follistatin. Reproduction. 2002;127:239–54.CrossRef Glister C, Kemp CF, Knight PG. Bone morphogenetic protein (BMP) ligands and receptors in bovine ovarian follicle cells: actions of BMP-4, -6 and -7 on granulosa cells and differential modulation of Smad-1 phosphorylation by follistatin. Reproduction. 2002;127:239–54.CrossRef
21.
go back to reference Gong SP, Lee ST, Lee EJ, et al. Embryonic stem cell-like cells established by culture of adult ovarian cells in mice. Fertil Steril. 2010;93:2594–601.PubMedCrossRef Gong SP, Lee ST, Lee EJ, et al. Embryonic stem cell-like cells established by culture of adult ovarian cells in mice. Fertil Steril. 2010;93:2594–601.PubMedCrossRef
22.
go back to reference Grunwald K, Feldmann K, Melsheimer P, et al. Aneuploidy in human granulosa lutein cells obtained from gonadotrophin-stimulated follicles and its relation to intrafollicular hormone concentrations. Hum Reprod. 1998;10:2679–87.CrossRef Grunwald K, Feldmann K, Melsheimer P, et al. Aneuploidy in human granulosa lutein cells obtained from gonadotrophin-stimulated follicles and its relation to intrafollicular hormone concentrations. Hum Reprod. 1998;10:2679–87.CrossRef
23.
go back to reference Håkelien AM, Landsverk HB, Robl JM, et al. Reprogramming fibroblasts to express T-cell functions using cell extracts. Nature. 2002;20:460–6.CrossRef Håkelien AM, Landsverk HB, Robl JM, et al. Reprogramming fibroblasts to express T-cell functions using cell extracts. Nature. 2002;20:460–6.CrossRef
24.
go back to reference Hanson JA, Ambaye AB. Adult testicular granulosa cell tumor: a review of the literature for clinopathologic predictors of malignancy. Arch Pathol Lab Med. 2011;135:143–6.PubMed Hanson JA, Ambaye AB. Adult testicular granulosa cell tumor: a review of the literature for clinopathologic predictors of malignancy. Arch Pathol Lab Med. 2011;135:143–6.PubMed
25.
go back to reference Heng BC, Cao T, Bested SM, et al. “Waste” follicular aspirate from fertility treatment – a potential source of human germline stem cells? Stem Cells Dev. 2005;14:11–4.PubMedCrossRef Heng BC, Cao T, Bested SM, et al. “Waste” follicular aspirate from fertility treatment – a potential source of human germline stem cells? Stem Cells Dev. 2005;14:11–4.PubMedCrossRef
26.
go back to reference Hirshfield AN. Patterns of [3H] thymidine incorporation differ in immature rats and mature, cycling rats. Biol Reprod. 1986;34:229–35.PubMedCrossRef Hirshfield AN. Patterns of [3H] thymidine incorporation differ in immature rats and mature, cycling rats. Biol Reprod. 1986;34:229–35.PubMedCrossRef
27.
28.
go back to reference Hoffmeyer K, Raggioli A, Rudloff S, et al. Wnt/β-Catenin signaling regulates telomerase in stem cells and cancer cells. Science. 2012;336:1549–54.PubMedCrossRef Hoffmeyer K, Raggioli A, Rudloff S, et al. Wnt/β-Catenin signaling regulates telomerase in stem cells and cancer cells. Science. 2012;336:1549–54.PubMedCrossRef
29.
go back to reference Honda A, Hirose M, Hara K, et al. Isolation, characterization, and in vitro and in vivo differentiation of putative thecal stem cells. Proc Natl Acad Sci USA. 2007;104:12389–94.PubMedCrossRef Honda A, Hirose M, Hara K, et al. Isolation, characterization, and in vitro and in vivo differentiation of putative thecal stem cells. Proc Natl Acad Sci USA. 2007;104:12389–94.PubMedCrossRef
30.
go back to reference Iijima Y, Nagai T, Mizukami M, et al. Beating is necessary for transdifferentiation of skeletal muscle-derived cells into cardiomyocytes. FASEB J. 2003;17:1361–3.PubMed Iijima Y, Nagai T, Mizukami M, et al. Beating is necessary for transdifferentiation of skeletal muscle-derived cells into cardiomyocytes. FASEB J. 2003;17:1361–3.PubMed
31.
go back to reference Jamieson S, Fuller PJ. Molecular pathogenesis of granulosa cell tumors of the ovary. Endocr Rev. 2012;33:109–44.PubMedCrossRef Jamieson S, Fuller PJ. Molecular pathogenesis of granulosa cell tumors of the ovary. Endocr Rev. 2012;33:109–44.PubMedCrossRef
32.
go back to reference Jopling C, Boue S, Izpisua Belmonte JC. Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat Rev Mol Cell Biol. 2011;12:79–89.PubMedCrossRef Jopling C, Boue S, Izpisua Belmonte JC. Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat Rev Mol Cell Biol. 2011;12:79–89.PubMedCrossRef
33.
go back to reference Kaleli S, Yanikkaya-Demirel G, Erel CT, et al. High rate of aneuploidy in luteinized granulosa cells obtained from follicular fluid in women who underwent controlled ovarian hyperstimulation. Fertil Steril. 2005;84:802–4.PubMedCrossRef Kaleli S, Yanikkaya-Demirel G, Erel CT, et al. High rate of aneuploidy in luteinized granulosa cells obtained from follicular fluid in women who underwent controlled ovarian hyperstimulation. Fertil Steril. 2005;84:802–4.PubMedCrossRef
34.
go back to reference Karuputhula NB, Chattopadhyay R, Chakravarty B, et al. Oxidative status in granulosa cells of infertile women undergoing IVF. Syst Biol Reprod Med. 2013;59:91–8.PubMedCrossRef Karuputhula NB, Chattopadhyay R, Chakravarty B, et al. Oxidative status in granulosa cells of infertile women undergoing IVF. Syst Biol Reprod Med. 2013;59:91–8.PubMedCrossRef
35.
go back to reference Kinugawa C, Murakami T, Okamura K, et al. Telomerase activity in normal ovaries and premature ovarian failure. Tohoku J Exp Med. 2000;190:231–8.PubMedCrossRef Kinugawa C, Murakami T, Okamura K, et al. Telomerase activity in normal ovaries and premature ovarian failure. Tohoku J Exp Med. 2000;190:231–8.PubMedCrossRef
36.
go back to reference Kléber M, Sommer L. Wnt signaling and the regulation of stem cell function. Curr Opin Cell Biol. 2004;16:681–7.PubMedCrossRef Kléber M, Sommer L. Wnt signaling and the regulation of stem cell function. Curr Opin Cell Biol. 2004;16:681–7.PubMedCrossRef
37.
go back to reference Knight PG, Muttukrishna S, Groome NP. Development and application of a two-site enzyme immunoassay for the determination of “total” activin-A concentrations in serum and follicular fluid. J Endocrinol. 1996;148:267–79.PubMedCrossRef Knight PG, Muttukrishna S, Groome NP. Development and application of a two-site enzyme immunoassay for the determination of “total” activin-A concentrations in serum and follicular fluid. J Endocrinol. 1996;148:267–79.PubMedCrossRef
38.
40.
go back to reference Kossowska-Tomaszczuk K, Pelezar P, Güven S, et al. A novel three-dimensional culture system allows prolonged culture of functional human granulosa cells and mimics the ovarian environment. Tissue Eng A. 2010;16:2063–73.CrossRef Kossowska-Tomaszczuk K, Pelezar P, Güven S, et al. A novel three-dimensional culture system allows prolonged culture of functional human granulosa cells and mimics the ovarian environment. Tissue Eng A. 2010;16:2063–73.CrossRef
41.
go back to reference Kossowska-Tomaszczuk K, De Geyter C, De Geyter M, et al. The multipotency of luteinizing granulosa cells collected from mature ovarian follicles. Stem Cells. 2009;27:210–9.PubMedCrossRef Kossowska-Tomaszczuk K, De Geyter C, De Geyter M, et al. The multipotency of luteinizing granulosa cells collected from mature ovarian follicles. Stem Cells. 2009;27:210–9.PubMedCrossRef
42.
go back to reference Lavranos TC, Mathis JM, Latham SE, et al. Evidence for ovarian granulosa stem cells: telomerase activity and localization of the telomerase ribonucleic acid component in bovine ovarian follicles. Biol Reprod. 1999;61:358–66.PubMedCrossRef Lavranos TC, Mathis JM, Latham SE, et al. Evidence for ovarian granulosa stem cells: telomerase activity and localization of the telomerase ribonucleic acid component in bovine ovarian follicles. Biol Reprod. 1999;61:358–66.PubMedCrossRef
43.
go back to reference Lee HW, Blasco MA, Gottlieb GJ, et al. Essential role of mouse telomerase in highly proliferative organs. Nature. 1998;392:569–74.PubMedCrossRef Lee HW, Blasco MA, Gottlieb GJ, et al. Essential role of mouse telomerase in highly proliferative organs. Nature. 1998;392:569–74.PubMedCrossRef
44.
go back to reference Lima JF, Jin L, de Araujo AR, et al. FOXL2 mutations in granulosa cell tumors occurring in males. Arch Pathol Lab Med. 2012;136:825–8.PubMedCrossRef Lima JF, Jin L, de Araujo AR, et al. FOXL2 mutations in granulosa cell tumors occurring in males. Arch Pathol Lab Med. 2012;136:825–8.PubMedCrossRef
45.
go back to reference Liu S, Wang Y, Wang L, et al. Transdifferentiation of fibroblasts into adipocyte-like cells by chicken adipogenic transcription factors. Comp Biochem Physiol A Mol Integr Physiol. 2010;156:502–8.PubMedCrossRef Liu S, Wang Y, Wang L, et al. Transdifferentiation of fibroblasts into adipocyte-like cells by chicken adipogenic transcription factors. Comp Biochem Physiol A Mol Integr Physiol. 2010;156:502–8.PubMedCrossRef
46.
go back to reference Luu HH, Song W, Luo X, et al. Distinct role of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. J Orthop Res. 2007;25:665–77.PubMedCrossRef Luu HH, Song W, Luo X, et al. Distinct role of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. J Orthop Res. 2007;25:665–77.PubMedCrossRef
47.
go back to reference Mattioli M, Gloria A, Turriani M, et al. Osteo-regenerative potential of ovarian granulosa cells: an in vitro and in vivo study. Theriogenology. 2012;77:1425–37.PubMedCrossRef Mattioli M, Gloria A, Turriani M, et al. Osteo-regenerative potential of ovarian granulosa cells: an in vitro and in vivo study. Theriogenology. 2012;77:1425–37.PubMedCrossRef
48.
go back to reference Misselevich I, Boss JH. Metaplastic bone in a mucinous cystadenoma of the ovary. Pathol Res Pract. 2000;196:847–8.PubMedCrossRef Misselevich I, Boss JH. Metaplastic bone in a mucinous cystadenoma of the ovary. Pathol Res Pract. 2000;196:847–8.PubMedCrossRef
49.
go back to reference Monti M, Redi C. Oogenesis specific genes (Nobox, Oct4, Bmp15, Gdf9, Oogenesin1 and Oogenesin2) are differentially expressed during natural and gonadotropin-induced mouse follicular development. Mol Reprod Dev. 2009;76:994–1003.PubMedCrossRef Monti M, Redi C. Oogenesis specific genes (Nobox, Oct4, Bmp15, Gdf9, Oogenesin1 and Oogenesin2) are differentially expressed during natural and gonadotropin-induced mouse follicular development. Mol Reprod Dev. 2009;76:994–1003.PubMedCrossRef
50.
go back to reference Mooney EE, Vaidya KP, Tavassoli FA. Ossifying well-differentiated Sertoli-Leydig cell tumor of the ovary. Ann Diagn Pathol. 2000;4:34–8.PubMedCrossRef Mooney EE, Vaidya KP, Tavassoli FA. Ossifying well-differentiated Sertoli-Leydig cell tumor of the ovary. Ann Diagn Pathol. 2000;4:34–8.PubMedCrossRef
51.
go back to reference Mora JM, Fenwick MA, Castle L, et al. Characterization and significance of adhesion and junction-related proteins in mouse ovarian follicles. Biol Reprod. 2012;86:1–14.CrossRef Mora JM, Fenwick MA, Castle L, et al. Characterization and significance of adhesion and junction-related proteins in mouse ovarian follicles. Biol Reprod. 2012;86:1–14.CrossRef
52.
go back to reference Morizane M, Ohara N, Mori T, et al. Ossifying luteinized thecoma of the ovary. Arch Gynecol Obstet. 2003;267:167–9.PubMedCrossRef Morizane M, Ohara N, Mori T, et al. Ossifying luteinized thecoma of the ovary. Arch Gynecol Obstet. 2003;267:167–9.PubMedCrossRef
53.
go back to reference Morrison SJ, Prowse KR, Ho P, et al. Telomerase activity in hematopoietic cells is associated with self-renewal potential. Immunity. 1996;5:207–16.PubMedCrossRef Morrison SJ, Prowse KR, Ho P, et al. Telomerase activity in hematopoietic cells is associated with self-renewal potential. Immunity. 1996;5:207–16.PubMedCrossRef
54.
go back to reference Mukonoweshuro P, Oriowolo A. Stromal osseous metaplasia in a low-grade ovarian adenocarcinoma. Gynecol Oncol. 2005;99:222–4.PubMedCrossRef Mukonoweshuro P, Oriowolo A. Stromal osseous metaplasia in a low-grade ovarian adenocarcinoma. Gynecol Oncol. 2005;99:222–4.PubMedCrossRef
55.
go back to reference Nguyen T, Lee S, Hatzirodos N, et al. Spatial differences within the membrana granulosa in the expression of focimatrix and steroidogenic capacity. Mol Cell Endocrinol. 2012;363:62–73.PubMedCrossRef Nguyen T, Lee S, Hatzirodos N, et al. Spatial differences within the membrana granulosa in the expression of focimatrix and steroidogenic capacity. Mol Cell Endocrinol. 2012;363:62–73.PubMedCrossRef
56.
go back to reference Okada TS. Transdifferentiation: flexibility in cell differentiation. Oxford: Oxford University Press; 1991. Okada TS. Transdifferentiation: flexibility in cell differentiation. Oxford: Oxford University Press; 1991.
57.
go back to reference Oki Y, Ono H, Motohashi T, et al. Dedifferentiated follicular granulosa cells derived from pig ovary can transdifferentiate into osteoblasts. Biochem J. 2012;447:239–48.PubMedCrossRef Oki Y, Ono H, Motohashi T, et al. Dedifferentiated follicular granulosa cells derived from pig ovary can transdifferentiate into osteoblasts. Biochem J. 2012;447:239–48.PubMedCrossRef
58.
go back to reference Otsuka F, Shimasaki S. A negative feedback system between oocyte bone morphogenetic protein 15 and granulosa cell kit ligand: Its role in regulating granulosa cell mitosis. Proc Natl Acad Sci USA. 2002;99:8060–5.PubMedCrossRef Otsuka F, Shimasaki S. A negative feedback system between oocyte bone morphogenetic protein 15 and granulosa cell kit ligand: Its role in regulating granulosa cell mitosis. Proc Natl Acad Sci USA. 2002;99:8060–5.PubMedCrossRef
59.
go back to reference Pandey A, Gupta SC, Gupta N, et al. Comparative potential of cultured skin fibroblast, cumulus, and granulosa cell to produce somatic cell nuclear transfer (SCNT) preimplantation embryos in buffaloes (Bubalus bubalis) in relation to gene expressions. Cell Reprogram. 2010;12:357–68.PubMedCrossRef Pandey A, Gupta SC, Gupta N, et al. Comparative potential of cultured skin fibroblast, cumulus, and granulosa cell to produce somatic cell nuclear transfer (SCNT) preimplantation embryos in buffaloes (Bubalus bubalis) in relation to gene expressions. Cell Reprogram. 2010;12:357–68.PubMedCrossRef
60.
go back to reference Park ES, Park J, Franceschi RT, Jo M. The role for runt related transcription factor 2 (RUNX2) as a transcriptional repressor in luteinizing granulosa cells. Mol Cell Endocrinol. 2012;362:165–75.PubMedCrossRef Park ES, Park J, Franceschi RT, Jo M. The role for runt related transcription factor 2 (RUNX2) as a transcriptional repressor in luteinizing granulosa cells. Mol Cell Endocrinol. 2012;362:165–75.PubMedCrossRef
61.
go back to reference Parte S, Bhartiya D, Telang J, et al. Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary. Stem Cells Dev. 2011;20:1451–64.PubMedCrossRef Parte S, Bhartiya D, Telang J, et al. Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary. Stem Cells Dev. 2011;20:1451–64.PubMedCrossRef
62.
go back to reference Perán M, Marchal JA, Rodríguez-Serrano F, et al. Transdifferentiation: why and how? Cell Biol Int. 2011;35:373–9.PubMedCrossRef Perán M, Marchal JA, Rodríguez-Serrano F, et al. Transdifferentiation: why and how? Cell Biol Int. 2011;35:373–9.PubMedCrossRef
63.
go back to reference Red-Horse K, Ueno H, Weissman I, et al. Coronary arteries form by developmental reprogramming of venous cells. Nature. 2010;464:549–53.PubMedCrossRef Red-Horse K, Ueno H, Weissman I, et al. Coronary arteries form by developmental reprogramming of venous cells. Nature. 2010;464:549–53.PubMedCrossRef
64.
go back to reference Rodgers RJ, Irving-Rodgers HF, van Wezel IL, et al. Dynamics of the membrana granulosa during expansion of the ovarian follicular antrum. Mol Cell Endocrinol. 2001;171:41–8.PubMedCrossRef Rodgers RJ, Irving-Rodgers HF, van Wezel IL, et al. Dynamics of the membrana granulosa during expansion of the ovarian follicular antrum. Mol Cell Endocrinol. 2001;171:41–8.PubMedCrossRef
65.
go back to reference Silva JC R e, Andrade D, Becker AP, et al. Isolated osseous ovarian metaplasia: case report. Eur J Gynaecol Oncol. 2010;31:469–70. Silva JC R e, Andrade D, Becker AP, et al. Isolated osseous ovarian metaplasia: case report. Eur J Gynaecol Oncol. 2010;31:469–70.
66.
go back to reference Russo V, Berardinelli P, Martelli A, et al. Expression of telomerase reverse transcriptase subunit (TERT) and telomere sizing in pig ovarian follicles. J Histochem Cytochem. 2006;54:443–55.PubMedCrossRef Russo V, Berardinelli P, Martelli A, et al. Expression of telomerase reverse transcriptase subunit (TERT) and telomere sizing in pig ovarian follicles. J Histochem Cytochem. 2006;54:443–55.PubMedCrossRef
67.
go back to reference Schmidt D, Ovitt CE, Anlag K, et al. The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development. 2004;131:933–42.PubMedCrossRef Schmidt D, Ovitt CE, Anlag K, et al. The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development. 2004;131:933–42.PubMedCrossRef
68.
go back to reference Shukla AR, Huff DS, Canning DA, et al. Juvenile granulosa cell tumor of the testis: contemporary clinical management and pathological diagnosis. J Urol. 2004;171:1900–2.PubMedCrossRef Shukla AR, Huff DS, Canning DA, et al. Juvenile granulosa cell tumor of the testis: contemporary clinical management and pathological diagnosis. J Urol. 2004;171:1900–2.PubMedCrossRef
69.
go back to reference Sittadjody S, Saul JM, Joo S, et al. Engineered multilayer ovarian tissue that secretes sex steroids and peptide hormones in response to gonadotropins. Biomaterials. 2012;34:2412–20.PubMedCrossRef Sittadjody S, Saul JM, Joo S, et al. Engineered multilayer ovarian tissue that secretes sex steroids and peptide hormones in response to gonadotropins. Biomaterials. 2012;34:2412–20.PubMedCrossRef
70.
go back to reference Stand M, Micchelli CA. Quiescent gastric stem cells maintain the adult Drosophila stomach. Proc Natl Acad Sci USA. 2011;108:17696–701.CrossRef Stand M, Micchelli CA. Quiescent gastric stem cells maintain the adult Drosophila stomach. Proc Natl Acad Sci USA. 2011;108:17696–701.CrossRef
71.
go back to reference Su YQ, Sugiura K, Eppig JJ. Mouse oocyte control of granulosa cell development and function: paracrine regulation of cumulus cell metabolism. Semin Reprod Med. 2009;27:32–42.PubMedCrossRef Su YQ, Sugiura K, Eppig JJ. Mouse oocyte control of granulosa cell development and function: paracrine regulation of cumulus cell metabolism. Semin Reprod Med. 2009;27:32–42.PubMedCrossRef
72.
go back to reference Sugimoto K, Gordon SP, Meyerowitz EM. Regeneration in plants and animals: dedifferentiation, transdifferentiation, or just differentiation? Trends Cell Biol. 2011;21:212–8.PubMedCrossRef Sugimoto K, Gordon SP, Meyerowitz EM. Regeneration in plants and animals: dedifferentiation, transdifferentiation, or just differentiation? Trends Cell Biol. 2011;21:212–8.PubMedCrossRef
74.
go back to reference Tománek M, Chronowska E, Kott T, et al. Telomerase activity in pig granulosa cells proliferating and differentiating in vitro. Anim Reprod Sci. 2008;104:284–98.PubMedCrossRef Tománek M, Chronowska E, Kott T, et al. Telomerase activity in pig granulosa cells proliferating and differentiating in vitro. Anim Reprod Sci. 2008;104:284–98.PubMedCrossRef
75.
go back to reference Tsonis PA, Madhavan M, Tancous EE, et al. A newt’s eye view of lens regeneration. Int J Dev Biol. 2004;48:975–80.PubMedCrossRef Tsonis PA, Madhavan M, Tancous EE, et al. A newt’s eye view of lens regeneration. Int J Dev Biol. 2004;48:975–80.PubMedCrossRef
76.
go back to reference Uhlenhaut NH, Jakob S, Anlag K, et al. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell. 2009;139:1130–42.PubMedCrossRef Uhlenhaut NH, Jakob S, Anlag K, et al. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell. 2009;139:1130–42.PubMedCrossRef
77.
78.
go back to reference Virant-Klun I, Zech N, Rozman P, et al. Putative stem cells with an embryonic character isolated from the ovarian surface epithelium of women with no naturally present follicles and oocytes. Differentiation. 2008;76:843–56.PubMedCrossRef Virant-Klun I, Zech N, Rozman P, et al. Putative stem cells with an embryonic character isolated from the ovarian surface epithelium of women with no naturally present follicles and oocytes. Differentiation. 2008;76:843–56.PubMedCrossRef
79.
go back to reference Virant-Klun I, Rozman P, Cvjeticanin B, et al. Parthenogenetic embryo-like structures in the human ovarian surface epithelium cell culture in postmenopausal women with no naturally present follicles and oocytes. Stem Cells Dev. 2009;18:137–49.PubMedCrossRef Virant-Klun I, Rozman P, Cvjeticanin B, et al. Parthenogenetic embryo-like structures in the human ovarian surface epithelium cell culture in postmenopausal women with no naturally present follicles and oocytes. Stem Cells Dev. 2009;18:137–49.PubMedCrossRef
80.
go back to reference Virant-Klun I, Skutella T, Stimpfel M, et al. Ovarian surface epithelium in patients with severe ovarian infertility: a potential source of cells expressing markers of pluripotent/multipotent stem cells. J Biomed Biotechnol. 2011. doi:10.1155/2011/381928.PubMed Virant-Klun I, Skutella T, Stimpfel M, et al. Ovarian surface epithelium in patients with severe ovarian infertility: a potential source of cells expressing markers of pluripotent/multipotent stem cells. J Biomed Biotechnol. 2011. doi:10.​1155/​2011/​381928.PubMed
81.
go back to reference Wang HX, Li TY, Kidder GM. WNT2 regulates DNA synthesis in mouse granulosa cells through beta-catenin. Biol Reprod. 2010;82:865–75.PubMedCrossRef Wang HX, Li TY, Kidder GM. WNT2 regulates DNA synthesis in mouse granulosa cells through beta-catenin. Biol Reprod. 2010;82:865–75.PubMedCrossRef
82.
go back to reference Wells DN, Misica PM, Tervit HR. Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells. Biol Reprod. 1999;60:996–1005.PubMedCrossRef Wells DN, Misica PM, Tervit HR. Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells. Biol Reprod. 1999;60:996–1005.PubMedCrossRef
83.
go back to reference Yamagata Y, Nakamura Y, Umayahara K, et al. Changes in telomerase activity in experimentally induced atretic follicles of immature rats. Endocr J. 2002;49:589–95.PubMedCrossRef Yamagata Y, Nakamura Y, Umayahara K, et al. Changes in telomerase activity in experimentally induced atretic follicles of immature rats. Endocr J. 2002;49:589–95.PubMedCrossRef
84.
go back to reference Yang L, Li S, Hatch H, et al. In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proc Natl Acad Sci USA. 2002;99:8078–83.PubMedCrossRef Yang L, Li S, Hatch H, et al. In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proc Natl Acad Sci USA. 2002;99:8078–83.PubMedCrossRef
85.
go back to reference Yong EL, Baird DT, Yates R, et al. Hormonal regulation of the growth and steroidogenic function of human granulosa cells. J Clin Endocrinol Metab. 1992;74:842–9.PubMedCrossRef Yong EL, Baird DT, Yates R, et al. Hormonal regulation of the growth and steroidogenic function of human granulosa cells. J Clin Endocrinol Metab. 1992;74:842–9.PubMedCrossRef
86.
go back to reference Zhang X, Yang M, Lin L, et al. Runx2 overexpression enhances osteoblastic differentiation and mineralization in adipose-derived stem cells in vitro and in vivo. Calcif Tissue Int. 2006;79:169–78.PubMedCrossRef Zhang X, Yang M, Lin L, et al. Runx2 overexpression enhances osteoblastic differentiation and mineralization in adipose-derived stem cells in vitro and in vivo. Calcif Tissue Int. 2006;79:169–78.PubMedCrossRef
87.
go back to reference Zuccotti M, Merico V, Belli M, et al. OCT4 and the acquisition of oocyte developmental competence during folliculogenesis. Int J Dev Biol. 2012;56:853–8.PubMedCrossRef Zuccotti M, Merico V, Belli M, et al. OCT4 and the acquisition of oocyte developmental competence during folliculogenesis. Int J Dev Biol. 2012;56:853–8.PubMedCrossRef
Metadata
Title
Plasticity of granulosa cells: on the crossroad of stemness and transdifferentiation potential
Authors
Edo Dzafic
Martin Stimpfel
Irma Virant-Klun
Publication date
01-10-2013
Publisher
Springer US
Published in
Journal of Assisted Reproduction and Genetics / Issue 10/2013
Print ISSN: 1058-0468
Electronic ISSN: 1573-7330
DOI
https://doi.org/10.1007/s10815-013-0068-0

Other articles of this Issue 10/2013

Journal of Assisted Reproduction and Genetics 10/2013 Go to the issue