Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2015

Open Access 01-12-2015 | Research article

Placement-induced effects on high tibial osteotomized construct - biomechanical tests and finite-element analyses

Authors: Chu-An Luo, Su-Yang Hwa, Shang-Chih Lin, Chun-Ming Chen, Ching-Shiow Tseng

Published in: BMC Musculoskeletal Disorders | Issue 1/2015

Login to get access

Abstract

Background

High tibial osteotomy (HTO) with a medially opening wedge has been used to treat osteoarthritic knees. However, the osteotomized tibia becomes a highly unstable structure and necessitates the use of plate and screws to stabilize the medial opening and enhance bone healing. A T-shaped plate (e.g. TomoFix) with locking screws has been extensively used as a stabilizer of the HTO wedge. From the biomechanical viewpoint, however, the different plate sites and support bases of the HTO plate should affect the load-transferring path and wedge-stabilizing ability of the HTO construct. This study uses biomechanical tests and finite-element analyses to evaluate the placement- and base-induced effects of the HTO plates on construct performance.

Methods

Test-grade synthetic tibiae are chosen as the standard specimens of the static tests. A medial wedge is created for each specimen and stabilized by three plate variations: hybrid use of T- and I-shaped plates (TIP), anteriorly placed TomoFix (APT), and medially placed TomoFix (MPT). There are five tests for each variation. The failure loads of the three constructs are measured and used as the load references of the fatigue finite-element analysis. The residual life after two hundred thousand cycles is predicted for all variations.

Results

The testing results show no occurrence of implant back-out and breakage under all variations. However, the wedge fracture consistently occurs at the opening tip for the APT and MPT and the medially resected plateau for the TIP, respectively. The testing results reveal that both failure load and wedge stiffness of the TIP are the highest, followed by the MPT, while those of the APT are the least (P < 0.05). The fatigue analyses predict comparable values of residual life for the TIP and MPT and the highest value of damage accumulation for the APT. Both experimental and numerical tests show the biomechanical disadvantage of the APT than their counterparts. However, the TIP construct without locking screws shows the highest stress at the plate-screw interfaces.

Conclusions

This study demonstrates the significant effect of placement site and support base on the construct behaviors. The TIP provides a wider base for supporting the HTO wedge even without the use of locking screws, thus significantly enhancing construct stiffness and suppressing wedge fracture. Compared to the APT, the MPT shows performance more comparable to that of the TIP. If a single plate and a smaller incision are considered, the MPT is recommended as the better alternative for stabilizing the medial HTO wedge.
Literature
1.
go back to reference Ryohei T, Hiroyuki I, Masato A, Haruhiko B, Izumi S, Ken K, et al. Medial opening wedge high tibial osteotomy with early full weight bearing. J Arth Rel Surg. 2009;25:46–53.CrossRef Ryohei T, Hiroyuki I, Masato A, Haruhiko B, Izumi S, Ken K, et al. Medial opening wedge high tibial osteotomy with early full weight bearing. J Arth Rel Surg. 2009;25:46–53.CrossRef
2.
go back to reference Spahn G. Complications in high tibial (medial opening wedge) osteotomy. Arch Orthop Trauma Surg. 2004;124:649–53.CrossRefPubMed Spahn G. Complications in high tibial (medial opening wedge) osteotomy. Arch Orthop Trauma Surg. 2004;124:649–53.CrossRefPubMed
3.
go back to reference Amis AA. Biomechanics of high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc. 2013;21:197–205.CrossRefPubMed Amis AA. Biomechanics of high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc. 2013;21:197–205.CrossRefPubMed
4.
go back to reference Su CL, Kwang AJ, Chang HN, Soong HJ, Seung HH. The short-term follow-up results of open wedge high tibial osteotomy with using an Aescula Open Wedge Plate and an Allogenic Bone Graft: The minimum 1-year follow-up results. Clin Orthop Surg. 2010;2:47–54.CrossRef Su CL, Kwang AJ, Chang HN, Soong HJ, Seung HH. The short-term follow-up results of open wedge high tibial osteotomy with using an Aescula Open Wedge Plate and an Allogenic Bone Graft: The minimum 1-year follow-up results. Clin Orthop Surg. 2010;2:47–54.CrossRef
5.
go back to reference Staubli AE, Simoni CD, Babst R, Lobenhoffer P. TomoFix: a new LCP-concept for open wedge osteotomy of the medial proximal tibia – early results in 92 cases. Injury. 2003;34:55–62.CrossRef Staubli AE, Simoni CD, Babst R, Lobenhoffer P. TomoFix: a new LCP-concept for open wedge osteotomy of the medial proximal tibia – early results in 92 cases. Injury. 2003;34:55–62.CrossRef
6.
go back to reference Blecha LD, Zambelli PY, Ramaniraka NA, Bourban PE, Manson JA, Pioletti DP. How plate positioning impacts the biomechanics of the open wedge tibial osteotomy: A finite element analysis. Comp Meth Biomech Biomed Eng. 2005;8:307–13.CrossRef Blecha LD, Zambelli PY, Ramaniraka NA, Bourban PE, Manson JA, Pioletti DP. How plate positioning impacts the biomechanics of the open wedge tibial osteotomy: A finite element analysis. Comp Meth Biomech Biomed Eng. 2005;8:307–13.CrossRef
7.
go back to reference Spahn G, Wittig R. Primary stability of various implants in tibial opening wedge osteotomy: a biomechanical study. J Orthop Sci. 2002;7:683–7.CrossRefPubMed Spahn G, Wittig R. Primary stability of various implants in tibial opening wedge osteotomy: a biomechanical study. J Orthop Sci. 2002;7:683–7.CrossRefPubMed
8.
go back to reference Amendola A, Bonasia DE. Results of high tibial osteotomy: review of the literature. Int Orthop. 2010;34:115–60.CrossRef Amendola A, Bonasia DE. Results of high tibial osteotomy: review of the literature. Int Orthop. 2010;34:115–60.CrossRef
9.
go back to reference Agneskirchner JD, Freiling D, Hurschler C, Lobenhoffer P. Primary stability of four different implants for opening wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc. 2006;14:291–300.CrossRefPubMed Agneskirchner JD, Freiling D, Hurschler C, Lobenhoffer P. Primary stability of four different implants for opening wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc. 2006;14:291–300.CrossRefPubMed
10.
go back to reference Schröter S, Gonser CE, Konstantinidis L, Helwig P, Albrecht D. High Complication Rate After Biplanar Open Wedge High Tibial Osteotomy Stabilized With a New Spacer Plate (Position HTO Plate) Without Bone Substitute. Arthroscopy. 2011;27:644–52.CrossRefPubMed Schröter S, Gonser CE, Konstantinidis L, Helwig P, Albrecht D. High Complication Rate After Biplanar Open Wedge High Tibial Osteotomy Stabilized With a New Spacer Plate (Position HTO Plate) Without Bone Substitute. Arthroscopy. 2011;27:644–52.CrossRefPubMed
11.
go back to reference Lobenhoffer P, Agneskirchner JD. Improvements in surgical technique of valgus high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc. 2003;11:132–8.PubMed Lobenhoffer P, Agneskirchner JD. Improvements in surgical technique of valgus high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc. 2003;11:132–8.PubMed
12.
go back to reference Nelissen EM, Langelaan EJ, Nelissen RGHH. Stability of medial opening wedge high tibial osteotomy: a failure analysis. Int Orthop. 2010;34:217–23.CrossRefPubMed Nelissen EM, Langelaan EJ, Nelissen RGHH. Stability of medial opening wedge high tibial osteotomy: a failure analysis. Int Orthop. 2010;34:217–23.CrossRefPubMed
13.
go back to reference Kolb W, Guhlmann H, Windisch C, Kolb K, Koller H, Grützner P. Opening-wedge high tibial osteotomy with a locked low-profile plate. J Bone Joint Surg Am. 2009;91:2581–8.CrossRefPubMed Kolb W, Guhlmann H, Windisch C, Kolb K, Koller H, Grützner P. Opening-wedge high tibial osteotomy with a locked low-profile plate. J Bone Joint Surg Am. 2009;91:2581–8.CrossRefPubMed
14.
go back to reference Koshino T, Murase T, Saito T. Medial opening-wedge high tibial osteotomy with use of porous hydroxyapatite to treat medial compartment osteoarthritis of the knee. J Bone Joint Surg Am. 2003;85A:78–85. Koshino T, Murase T, Saito T. Medial opening-wedge high tibial osteotomy with use of porous hydroxyapatite to treat medial compartment osteoarthritis of the knee. J Bone Joint Surg Am. 2003;85A:78–85.
15.
go back to reference Rodner CM, Adams DJ, Diaz-Doran V, Tate JP, Santangelo SA, Mazzocca AD, et al. Medial opening wedge tibial osteotomy and the sagittal plane: the effect of increasing tibial slope on tibiofemoral contact pressure. Am J Sports Med. 2006;34:1431–41.CrossRefPubMed Rodner CM, Adams DJ, Diaz-Doran V, Tate JP, Santangelo SA, Mazzocca AD, et al. Medial opening wedge tibial osteotomy and the sagittal plane: the effect of increasing tibial slope on tibiofemoral contact pressure. Am J Sports Med. 2006;34:1431–41.CrossRefPubMed
16.
go back to reference Christoph BM, Emanuel G, Stefan WW, Roland PJ. Accuracy of frontal and sagittal plane correction in open-wedge high tibial osteotomy. J Arthros Rel Surg. 2004;20:366–72.CrossRef Christoph BM, Emanuel G, Stefan WW, Roland PJ. Accuracy of frontal and sagittal plane correction in open-wedge high tibial osteotomy. J Arthros Rel Surg. 2004;20:366–72.CrossRef
17.
go back to reference Yanasse RH, Cavallari CE, Chaud FL, Hernandez AJ, Mizobuchi RR, Laraya MH. Measurement of tibial slope angle after medial opening wedge high tibial osteotomy: case series. Sao Paulo Med J. 2009;127:34–9.CrossRefPubMed Yanasse RH, Cavallari CE, Chaud FL, Hernandez AJ, Mizobuchi RR, Laraya MH. Measurement of tibial slope angle after medial opening wedge high tibial osteotomy: case series. Sao Paulo Med J. 2009;127:34–9.CrossRefPubMed
18.
go back to reference Hernigou P, Medevielle D, Debeyre J, Goutallier D. Proximal tibial osteotomy for osteoarthritis with varus deformity: a ten to thirteen-year follow-up study. J Bone Joint Surg Am. 1987;69:332–54.PubMed Hernigou P, Medevielle D, Debeyre J, Goutallier D. Proximal tibial osteotomy for osteoarthritis with varus deformity: a ten to thirteen-year follow-up study. J Bone Joint Surg Am. 1987;69:332–54.PubMed
19.
go back to reference Marti CB, Gautier E, Wachtl SW, Jakob RP. Accuracy of frontal and sagittal plane correction in open-wedge high tibial osteotomy. Arthroscopy. 2004;20:366–72.CrossRefPubMed Marti CB, Gautier E, Wachtl SW, Jakob RP. Accuracy of frontal and sagittal plane correction in open-wedge high tibial osteotomy. Arthroscopy. 2004;20:366–72.CrossRefPubMed
21.
go back to reference Taylor WR, Heller MO, Bergmann G, Duda GN. Tibio-femoral loading during human gait and stair climbing. J Orthopaedic Res. 2004;22:625–32.CrossRef Taylor WR, Heller MO, Bergmann G, Duda GN. Tibio-femoral loading during human gait and stair climbing. J Orthopaedic Res. 2004;22:625–32.CrossRef
22.
go back to reference Paley D, Pfeil J. Principles of deformity correction around the knee. Orthopedics. 2000;29:18–38. Paley D, Pfeil J. Principles of deformity correction around the knee. Orthopedics. 2000;29:18–38.
23.
go back to reference Sonoda N, Chosa E, Totoribe K, Tajima N. Biomechanical analysis for stress fractures of the anterior middle third of the tibia in athletes: nonlinear analysis using a three-dimensional finite element method. J orthop Sci. 2003;8:505–13.CrossRefPubMed Sonoda N, Chosa E, Totoribe K, Tajima N. Biomechanical analysis for stress fractures of the anterior middle third of the tibia in athletes: nonlinear analysis using a three-dimensional finite element method. J orthop Sci. 2003;8:505–13.CrossRefPubMed
24.
go back to reference Luo CA, Lin SC, Hua SY, Chen CM, Tseng CS. Stress and stability comparison between different systems for high tibial osteotomies. BMC Musculoskel dis. 2013;14:110.CrossRef Luo CA, Lin SC, Hua SY, Chen CM, Tseng CS. Stress and stability comparison between different systems for high tibial osteotomies. BMC Musculoskel dis. 2013;14:110.CrossRef
25.
go back to reference Winter CC, Brandes M, Müller C, Schuber T, Ringling M, Hillmann A, et al. Walking ability during daily life in patients with osteoarthritis of the knee or the hip and lumbar spinal stenosis: a cross sectional study. BMC Musculoskelet Disord. 2010;11:233.CrossRefPubMedPubMedCentral Winter CC, Brandes M, Müller C, Schuber T, Ringling M, Hillmann A, et al. Walking ability during daily life in patients with osteoarthritis of the knee or the hip and lumbar spinal stenosis: a cross sectional study. BMC Musculoskelet Disord. 2010;11:233.CrossRefPubMedPubMedCentral
26.
go back to reference Silva M, Shepherd EF, Jackson WO, Dorey FJ, Schmalzried TP. Average patient walking activity approaches 2 million cycles per year: pedometers under-record walking activity. J Arthroplasty. 2002;17:693–7.CrossRefPubMed Silva M, Shepherd EF, Jackson WO, Dorey FJ, Schmalzried TP. Average patient walking activity approaches 2 million cycles per year: pedometers under-record walking activity. J Arthroplasty. 2002;17:693–7.CrossRefPubMed
27.
go back to reference Sato H, Morishita S. Effect of quadriceps exercise on synostosis following tibial osteotomy with internal fixation: a finite element simulation. Clin Biomech. 1999;14:1–6.CrossRef Sato H, Morishita S. Effect of quadriceps exercise on synostosis following tibial osteotomy with internal fixation: a finite element simulation. Clin Biomech. 1999;14:1–6.CrossRef
28.
go back to reference Giffin JR, Vogrin TM, Zantop T, Woo S, Harner CD. Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med. 2004;32:376–82.CrossRefPubMed Giffin JR, Vogrin TM, Zantop T, Woo S, Harner CD. Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med. 2004;32:376–82.CrossRefPubMed
29.
go back to reference Dejour H, Bonnin M. Tibial translation after anterior cruciate ligament rupture: two radiological tests compared. J Bone Joint Surg Br. 1994;76:745–9.PubMed Dejour H, Bonnin M. Tibial translation after anterior cruciate ligament rupture: two radiological tests compared. J Bone Joint Surg Br. 1994;76:745–9.PubMed
30.
go back to reference Augat P, Burger J, Schorlemmer S, Henke T, Peraus M, Claes L. Shear movement at the fracture site delays healing in a diaphyseal fracture model. J Orthop Res. 2003;21:1011–7.CrossRefPubMed Augat P, Burger J, Schorlemmer S, Henke T, Peraus M, Claes L. Shear movement at the fracture site delays healing in a diaphyseal fracture model. J Orthop Res. 2003;21:1011–7.CrossRefPubMed
31.
go back to reference Noordeen MH, Lavy CB, Shergill NS, Tuite JD, Jackson AM. Cyclical micromovement and fracture healing. J Bone Joint Surg Br. 1995;77:645–8.PubMed Noordeen MH, Lavy CB, Shergill NS, Tuite JD, Jackson AM. Cyclical micromovement and fracture healing. J Bone Joint Surg Br. 1995;77:645–8.PubMed
32.
go back to reference Benli S, Aksoy S, HavItcIoglu H, Kucuk M. Evaluation of bone plate with low-stiffness material in terms of stress distribution. J Biomech. 2008;41:3229–35.CrossRefPubMed Benli S, Aksoy S, HavItcIoglu H, Kucuk M. Evaluation of bone plate with low-stiffness material in terms of stress distribution. J Biomech. 2008;41:3229–35.CrossRefPubMed
33.
go back to reference Fan Y, Xiu K, Duan H, Zhang M. Biomechanical and histological evaluation of the application of biodegradable poly-L-lactic cushion to the plate internal fixation for bone fracture healing. Clin Biochem. 2008;23:S7–16. Fan Y, Xiu K, Duan H, Zhang M. Biomechanical and histological evaluation of the application of biodegradable poly-L-lactic cushion to the plate internal fixation for bone fracture healing. Clin Biochem. 2008;23:S7–16.
Metadata
Title
Placement-induced effects on high tibial osteotomized construct - biomechanical tests and finite-element analyses
Authors
Chu-An Luo
Su-Yang Hwa
Shang-Chih Lin
Chun-Ming Chen
Ching-Shiow Tseng
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2015
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-015-0630-2

Other articles of this Issue 1/2015

BMC Musculoskeletal Disorders 1/2015 Go to the issue