Skip to main content
Top
Published in: Annals of Nuclear Medicine 4/2017

Open Access 01-05-2017 | Original Article

Pixel-by-pixel precise delay correction for measurement of cerebral hemodynamic parameters in H2 15O PET study

Authors: Muhammad M. Islam, Tetsuya Tsujikawa, Tetsuya Mori, Yasushi Kiyono, Hidehiko Okazawa

Published in: Annals of Nuclear Medicine | Issue 4/2017

Login to get access

Abstract

Objective

A new method of delay time estimation was proposed to measure precise cerebral blood flow (CBF) and arterial-to-capillary blood volume (V 0) using 15O-water PET.

Methods

Nineteen patients with unilateral arterial stenoocclusive lesions were studied to evaluate hemodynamic status before treatment. The delay time of each pixel was calculated using least squares fitting with an arterial blood input curve adjusted to the internal carotid artery counts at the skull base. Pixel-by-pixel delay estimation provided a delay map image that could be used for precise calculation of CBF and V 0 using a one-tissue compartment model, and the values from this method were compared with those from the slice-by-slice correction method.

Results

The affected side showed a longer delay time than the contralateral cerebral hemisphere. Although the mean cortical CBF values were not different between the two methods, the slice-by-slice delay correction overestimated CBF in the hypo perfused area. The scatter plot of V 0 pixel values showed significant difference between the two correction methods where the slice-by-slice delay correction significantly overestimated V 0 in the whole brain (P < 0.05).

Conclusion

Pixel-by-pixel delay correction provides delay images as well as better estimation of CBF and V 0, thus offering useful and beneficial information for the treatment of cerebrovascular disease.
Literature
1.
go back to reference Frackowiak RS, Lenzi GL, Jones T, Heather JD. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr. 1980;4:727–36.CrossRefPubMed Frackowiak RS, Lenzi GL, Jones T, Heather JD. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr. 1980;4:727–36.CrossRefPubMed
2.
go back to reference Herscovitch P, Markham J, Raichle ME. Brain blood flow measured with intravenous H2 15O. I. Theory and error analysis. J Nucl Med. 1983;24:782–9.PubMed Herscovitch P, Markham J, Raichle ME. Brain blood flow measured with intravenous H2 15O. I. Theory and error analysis. J Nucl Med. 1983;24:782–9.PubMed
3.
go back to reference Raichle ME, Martin WRW, Herscovitch P, Mintun MA, Markham J. Brain blood flow measured with intravenous H2 15O: II. Implementation and validation. J Nucl Med. 1983;24:790–8.PubMed Raichle ME, Martin WRW, Herscovitch P, Mintun MA, Markham J. Brain blood flow measured with intravenous H2 15O: II. Implementation and validation. J Nucl Med. 1983;24:790–8.PubMed
4.
go back to reference Kanno I, Iida H, Miura S, Murakami M, Takahashi K, Sasaki H, et al. A system for cerebral blood flow measurement using an H2 15O autoradiographic method and positron emission tomography. J Cereb Blood Flow Metab. 1987;7:143–53.CrossRefPubMed Kanno I, Iida H, Miura S, Murakami M, Takahashi K, Sasaki H, et al. A system for cerebral blood flow measurement using an H2 15O autoradiographic method and positron emission tomography. J Cereb Blood Flow Metab. 1987;7:143–53.CrossRefPubMed
5.
go back to reference Gambhir SS, Huang SC, Hawkins RA, Phelps ME. A study of the single compartment tracer kinetic model for the measurement of local cerebral blood flow using 15O water and positron emission tomography. J Cereb Blood Flow Metab. 1987;7:13–20.CrossRefPubMed Gambhir SS, Huang SC, Hawkins RA, Phelps ME. A study of the single compartment tracer kinetic model for the measurement of local cerebral blood flow using 15O water and positron emission tomography. J Cereb Blood Flow Metab. 1987;7:13–20.CrossRefPubMed
6.
go back to reference Ohta S, Meyer E, Thompson CJ, Gjedde A. Oxygen consumption of the living human brain measured after a single inhalation of positron emitting oxygen. J Cereb Blood Flow Metab. 1992;12:179–92.CrossRefPubMed Ohta S, Meyer E, Thompson CJ, Gjedde A. Oxygen consumption of the living human brain measured after a single inhalation of positron emitting oxygen. J Cereb Blood Flow Metab. 1992;12:179–92.CrossRefPubMed
7.
go back to reference Ohta S, Meyer E, Fujita H, Reutens DC, Evans A, Gjedde A. Cerebral [15O]water clearance in humans determined by PET: I. Theory and normal values. J Cereb Blood Flow Metab. 1996;16:765–80.CrossRefPubMed Ohta S, Meyer E, Fujita H, Reutens DC, Evans A, Gjedde A. Cerebral [15O]water clearance in humans determined by PET: I. Theory and normal values. J Cereb Blood Flow Metab. 1996;16:765–80.CrossRefPubMed
8.
go back to reference Toussaint PJ, Meyer E. A sensitivity analysis of model parameters in dynamic blood flow studies using H2 15O and PET. In: Myers R, Cunningham V, Bailey D, Jones T, editors. Quantification of brain function using PET. San Diego: Academic Press; 1996. pp. 196–200.CrossRef Toussaint PJ, Meyer E. A sensitivity analysis of model parameters in dynamic blood flow studies using H2 15O and PET. In: Myers R, Cunningham V, Bailey D, Jones T, editors. Quantification of brain function using PET. San Diego: Academic Press; 1996. pp. 196–200.CrossRef
9.
go back to reference Iida H, Higano S, Tomura N, Shishido F, Kanno I, Miura S, et al. Evaluation of regional differences of tracer appearance time in cerebral tissues using [15O]water and dynamic positron emission tomography. J Cereb Blood Flow Metab. 1988;8:285–8.CrossRefPubMed Iida H, Higano S, Tomura N, Shishido F, Kanno I, Miura S, et al. Evaluation of regional differences of tracer appearance time in cerebral tissues using [15O]water and dynamic positron emission tomography. J Cereb Blood Flow Metab. 1988;8:285–8.CrossRefPubMed
10.
go back to reference Iida H, Kanno I, Miura S, Murakami M, Takahashi K, Uemura K. A determination of the regional brain/blood partition coefficient of water using dynamic positron emission tomography. J Cereb Blood Flow Metab. 1989;9:874–85.CrossRefPubMed Iida H, Kanno I, Miura S, Murakami M, Takahashi K, Uemura K. A determination of the regional brain/blood partition coefficient of water using dynamic positron emission tomography. J Cereb Blood Flow Metab. 1989;9:874–85.CrossRefPubMed
11.
go back to reference Okazawa H, Yamauchi H, Sugimoto K, Takahashi M, Toyoda H, Kishibe Y, et al. Quantitative comparison of the bolus and steady-state methods for measurement of cerebral perfusion and oxygen metabolism: Positron emission tomography study using15O-Gas and Water. J Cereb Blood Flow Metab. 2001;21:793–803.CrossRefPubMed Okazawa H, Yamauchi H, Sugimoto K, Takahashi M, Toyoda H, Kishibe Y, et al. Quantitative comparison of the bolus and steady-state methods for measurement of cerebral perfusion and oxygen metabolism: Positron emission tomography study using15O-Gas and Water. J Cereb Blood Flow Metab. 2001;21:793–803.CrossRefPubMed
12.
go back to reference Okazawa H, Vafaee M. Effect of vascular radioactivity on regional values of cerebral blood flow evaluation of methods for H2 15O PET to distinguish cerebral perfusion from blood volume. J Nucl Med. 2001;42:1032–9.PubMed Okazawa H, Vafaee M. Effect of vascular radioactivity on regional values of cerebral blood flow evaluation of methods for H2 15O PET to distinguish cerebral perfusion from blood volume. J Nucl Med. 2001;42:1032–9.PubMed
13.
go back to reference Iida H, Law I, Pakkenberg B, Krarup-Hansen A, Eberl S, Holm S, et al. Quantitation of regional cerebral blood flow corrected for partial volume effect using O-15 water and PET: I. Theory, error analysis, and stereologic comparison. J Cereb Blood Flow Metab. 2000;20:1237–51.CrossRefPubMed Iida H, Law I, Pakkenberg B, Krarup-Hansen A, Eberl S, Holm S, et al. Quantitation of regional cerebral blood flow corrected for partial volume effect using O-15 water and PET: I. Theory, error analysis, and stereologic comparison. J Cereb Blood Flow Metab. 2000;20:1237–51.CrossRefPubMed
14.
go back to reference Okazawa H, Kudo T. Clinical impact of hemodynamic parameter measurement for cerebrovascular disease using positron emission tomography and 15O-labeled tracers. Ann Nucl Med. 2009;23:217–27.CrossRefPubMed Okazawa H, Kudo T. Clinical impact of hemodynamic parameter measurement for cerebrovascular disease using positron emission tomography and 15O-labeled tracers. Ann Nucl Med. 2009;23:217–27.CrossRefPubMed
16.
go back to reference DeGrado TR, Turkington TG, Williams JJ, Stearns CW, Hoffman JM, Coleman RE. Performance characteristics of a whole-body PET scanner. J Nucl Med. 1994;35:1398–1306.PubMed DeGrado TR, Turkington TG, Williams JJ, Stearns CW, Hoffman JM, Coleman RE. Performance characteristics of a whole-body PET scanner. J Nucl Med. 1994;35:1398–1306.PubMed
17.
go back to reference Isozaki M, Kiyono Y, Arai Y, Kudo T, Mori T, Maruyama R, et al. Feasibility of 62Cu-ATSM PET for evaluation of brain ischemia and misery perfusion in patients with cerebrovascular disease. Eur J Nucl Med Mol Imaging. 2011;38:1075–82.CrossRefPubMed Isozaki M, Kiyono Y, Arai Y, Kudo T, Mori T, Maruyama R, et al. Feasibility of 62Cu-ATSM PET for evaluation of brain ischemia and misery perfusion in patients with cerebrovascular disease. Eur J Nucl Med Mol Imaging. 2011;38:1075–82.CrossRefPubMed
18.
go back to reference Okazawa H, Tsuchida T, Kobayashi M, Arai Y, Pagani M, Isozaki M, et al. Can reductions in baseline CBF and vasoreactivity detect misery perfusion in chronic cerebrovascular disease? Eur J Nucl Med Mol Imaging. 2007;34:121–9.CrossRefPubMed Okazawa H, Tsuchida T, Kobayashi M, Arai Y, Pagani M, Isozaki M, et al. Can reductions in baseline CBF and vasoreactivity detect misery perfusion in chronic cerebrovascular disease? Eur J Nucl Med Mol Imaging. 2007;34:121–9.CrossRefPubMed
19.
go back to reference Mintun MA, Raichle ME, Martin WRW, Herscovitch P. Brain oxygen utilization measured with 0–15 radiotracers and positron emission tomography. J Nucl Med. 1984;25:177–87.PubMed Mintun MA, Raichle ME, Martin WRW, Herscovitch P. Brain oxygen utilization measured with 0–15 radiotracers and positron emission tomography. J Nucl Med. 1984;25:177–87.PubMed
20.
go back to reference Okazawa H, Kishibe Y, Sugimoto K, Takahashi M, Yamauchi H. Delay and dispersion correction for a new coincidential radioactivity detector, pico-count, in quantitative PET studies. In: Senda M, Kimura Y, Herscovitch P, editors. Brain imaging using PET. San Diego, CA: Academic Press; 2002. pp. 15–21. Okazawa H, Kishibe Y, Sugimoto K, Takahashi M, Yamauchi H. Delay and dispersion correction for a new coincidential radioactivity detector, pico-count, in quantitative PET studies. In: Senda M, Kimura Y, Herscovitch P, editors. Brain imaging using PET. San Diego, CA: Academic Press; 2002. pp. 15–21.
21.
go back to reference Vafaee M, Murase K, Gjedde A, Meyer E. Dispersion correction for automatic sampling of O-15-labeled H2O and red blood cells. In: Myers R, Cunningham V, Bailey D, Jones T, editors. Quantification of brain function using PET. San Diego: Academic Press; 1996. pp. 72–5.CrossRef Vafaee M, Murase K, Gjedde A, Meyer E. Dispersion correction for automatic sampling of O-15-labeled H2O and red blood cells. In: Myers R, Cunningham V, Bailey D, Jones T, editors. Quantification of brain function using PET. San Diego: Academic Press; 1996. pp. 72–5.CrossRef
22.
go back to reference Meyer E. Simultaneous correction for tracer arrival delay and dispersion in CBF measurements by the H2 15O autoradiographic method and dynamic PET. J Nucl Med. 1989;30:1069–78.PubMed Meyer E. Simultaneous correction for tracer arrival delay and dispersion in CBF measurements by the H2 15O autoradiographic method and dynamic PET. J Nucl Med. 1989;30:1069–78.PubMed
23.
go back to reference Iida H, Kanno I, Miura S, Murakami M, Takahashi K, Uemura K. Error analysis of a quantitative cerebral blood flow measurement using H2 15O autoradiography and positron emission tomography, with respect to the dispersion of the input function. J Cereb Blood Flow Metab. 1986;6:536–45.CrossRefPubMed Iida H, Kanno I, Miura S, Murakami M, Takahashi K, Uemura K. Error analysis of a quantitative cerebral blood flow measurement using H2 15O autoradiography and positron emission tomography, with respect to the dispersion of the input function. J Cereb Blood Flow Metab. 1986;6:536–45.CrossRefPubMed
24.
go back to reference Yamauchi H, Higashi T, Kagawa S, Nishii R, Kudo T, Sugimoto K, et al. Is misery perfusion still a predictor of stroke in symptomatic major cerebral artery disease? Brain. 2012;135:2515–26.CrossRefPubMed Yamauchi H, Higashi T, Kagawa S, Nishii R, Kudo T, Sugimoto K, et al. Is misery perfusion still a predictor of stroke in symptomatic major cerebral artery disease? Brain. 2012;135:2515–26.CrossRefPubMed
25.
go back to reference Ogasawara K, Ogawa A, Yoshimoto T. Cerebrovascular reactivity to acetazolamide and outcome in patients with symptomatic internal carotid or middle cerebral artery occlusion: a xenon-133 single-photon emission computed tomography study. Stroke. 2002;33:1857–62.CrossRefPubMed Ogasawara K, Ogawa A, Yoshimoto T. Cerebrovascular reactivity to acetazolamide and outcome in patients with symptomatic internal carotid or middle cerebral artery occlusion: a xenon-133 single-photon emission computed tomography study. Stroke. 2002;33:1857–62.CrossRefPubMed
26.
go back to reference Kuroda S, Houkin K, Kamiyama H, Mitsumori K, Iwasaki Y, Abe H. Long-term prognosis of medically treated patients with internal carotid or middle cerebral artery occlusion: can acetazolamide test predict it? Stroke. 2001;32:2110–6.CrossRefPubMed Kuroda S, Houkin K, Kamiyama H, Mitsumori K, Iwasaki Y, Abe H. Long-term prognosis of medically treated patients with internal carotid or middle cerebral artery occlusion: can acetazolamide test predict it? Stroke. 2001;32:2110–6.CrossRefPubMed
27.
go back to reference Kudomi N, Maeda Y, Sasakawa Y, Monden T, Yamamoto Y, Kawai N, et al. Imaging of the appearance time of cerebral blood using [15O]H2O PET for the computation of correct CBF. Eur J Nucl Med Mol Imaging Res. 2013;3:41. Kudomi N, Maeda Y, Sasakawa Y, Monden T, Yamamoto Y, Kawai N, et al. Imaging of the appearance time of cerebral blood using [15O]H2O PET for the computation of correct CBF. Eur J Nucl Med Mol Imaging Res. 2013;3:41.
28.
go back to reference Okazawa H, Yamauchi H, Toyoda H, Sugimoto K, Fujibayashi Y, Yonekura Y. Relationship between vasodilatation and cerebral blood flow increase in impaired hemodynamics: a PET study with the acetazolamide test in cerebrovascular disease. J Nucl Med. 2003;44:1875–83.PubMed Okazawa H, Yamauchi H, Toyoda H, Sugimoto K, Fujibayashi Y, Yonekura Y. Relationship between vasodilatation and cerebral blood flow increase in impaired hemodynamics: a PET study with the acetazolamide test in cerebrovascular disease. J Nucl Med. 2003;44:1875–83.PubMed
29.
go back to reference Ito H, Iida H, Bloomfield PM, Murakami M, Inugami A, Kanno I, et al. Rapid calculation of regional cerebral blood flow and distribution volume using iodine-123-iodo- amphetamine and dynamic SPECT. J Nucl Med. 1995;36:531–6.PubMed Ito H, Iida H, Bloomfield PM, Murakami M, Inugami A, Kanno I, et al. Rapid calculation of regional cerebral blood flow and distribution volume using iodine-123-iodo- amphetamine and dynamic SPECT. J Nucl Med. 1995;36:531–6.PubMed
30.
go back to reference Powers WJ. Cerebral hemodynamics in ischemic cerebrovascular disease. Ann Neurol. 1991;29:231–40.CrossRefPubMed Powers WJ. Cerebral hemodynamics in ischemic cerebrovascular disease. Ann Neurol. 1991;29:231–40.CrossRefPubMed
31.
go back to reference Ito H, Kanno I, Iida H, Hatazawa J, Shimosegawa E, Tamura H, Okudera T. Arterial fraction of cerebral blood volume in humans measured by positron emission tomography. Ann Nucl Med. 2001;15:111–6.CrossRefPubMed Ito H, Kanno I, Iida H, Hatazawa J, Shimosegawa E, Tamura H, Okudera T. Arterial fraction of cerebral blood volume in humans measured by positron emission tomography. Ann Nucl Med. 2001;15:111–6.CrossRefPubMed
32.
go back to reference Mellander S, Johansson B. Control of resistance, exchange, and capacitance functions in the peripheral circulation. Pharmacol Rev. 1968;20:117–96.PubMed Mellander S, Johansson B. Control of resistance, exchange, and capacitance functions in the peripheral circulation. Pharmacol Rev. 1968;20:117–96.PubMed
33.
go back to reference Okazawa H, Yamauchi H, Sugimoto K, Takahashi M. Differences of vasodilatory capacity and changes in cerebral blood flow induced by acetazolamide in patients with cerebrovascular disease. J Nucl Med. 2003;44:1371–8.PubMed Okazawa H, Yamauchi H, Sugimoto K, Takahashi M. Differences of vasodilatory capacity and changes in cerebral blood flow induced by acetazolamide in patients with cerebrovascular disease. J Nucl Med. 2003;44:1371–8.PubMed
34.
go back to reference Taylor ZJ, Hui ES, Watson AN, et al. Microvascular basis for growth of small infarcts following occlusion of single penetrating arterioles in mouse cortex. J Cereb Blood Flow Metab. 2016;36:1357–73.CrossRefPubMed Taylor ZJ, Hui ES, Watson AN, et al. Microvascular basis for growth of small infarcts following occlusion of single penetrating arterioles in mouse cortex. J Cereb Blood Flow Metab. 2016;36:1357–73.CrossRefPubMed
Metadata
Title
Pixel-by-pixel precise delay correction for measurement of cerebral hemodynamic parameters in H2 15O PET study
Authors
Muhammad M. Islam
Tetsuya Tsujikawa
Tetsuya Mori
Yasushi Kiyono
Hidehiko Okazawa
Publication date
01-05-2017
Publisher
Springer Japan
Published in
Annals of Nuclear Medicine / Issue 4/2017
Print ISSN: 0914-7187
Electronic ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-017-1156-5

Other articles of this Issue 4/2017

Annals of Nuclear Medicine 4/2017 Go to the issue